1
|
Luo Z, Lv S, Lou F, Yan L, Xu J, Kang N, Dong Y, Jin X. Roles of intralesional bacteria in the initiation and progression of oral squamous cell carcinoma. Cancer Med 2024; 13:e70209. [PMID: 39300932 PMCID: PMC11413416 DOI: 10.1002/cam4.70209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the predominant form of head and neck cancer, often diagnosed at late stages, resulting in a poor prognosis. Recent studies indicate a potential association between OSCC and microbial presence. Microorganisms have been identified in various tumors and lesions, including OSCC and oral potentially malignant disorders (OPMDs). Intralesional microbiota are considered important components of the tumor microenvironment (TME) and may contribute to carcinogenesis. METHODS Sources were collected through thorough searches of databases PubMed and Embase. The review focused on microbial characteristics, potential origins, and their impact on cancer progression. RESULTS Bacteria display varying abundance and diversity throughout the stages of OSCC and OPMDs. Intraleisional bacteria may have diverse sources, including not only oral plaque and saliva but also potentially the gut. Intralesional bacteria have both pro-carcinogenic and anti-carcinogenic effects, affecting processes like cell proliferation, invasion, and immune response. CONCLUSIONS Intralesional microbiota are crucial in OSCC and OPMDs, influencing both disease progression and treatments. Despite their significance, challenges like inconsistent sampling and microbial identification remain. Future research is required to fully understand their role and improve clinical applications.
Collapse
Affiliation(s)
- Zhuoyan Luo
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Shiping Lv
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Fangzhi Lou
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Li Yan
- College of Medical InformaticsChongqing Medical UniversityChongqingChina
| | - Jingyi Xu
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Ning Kang
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Yunmei Dong
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Xin Jin
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| |
Collapse
|
2
|
Burus T, Damgacioglu H, Huang B, Christian WJ, Hull PC, Ellis AR, Arnold SM, Deshmukh AA, Lang Kuhs KA. Trends in Oral Tongue Cancer Incidence in the US. JAMA Otolaryngol Head Neck Surg 2024; 150:436-443. [PMID: 38573630 PMCID: PMC11082689 DOI: 10.1001/jamaoto.2024.0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/05/2024] [Indexed: 04/05/2024]
Abstract
Importance Oral tongue cancer (OTC) incidence has increased rapidly among young (<50 years) non-Hispanic White individuals in the US during the past 2 decades; however, it is unknown if age-associated trajectories have persisted. Objective To examine US trends in OTC incidence and project future case burden. Design, Setting, and Participants This cross-sectional analysis of OTC incidence trends used the US Cancer Statistics Public Use Database, which covers approximately 98% of the US population, and included individuals with an OTC diagnosis reported to US cancer registries between January 1, 2001, and December 31, 2019. Exposures Sex, race and ethnicity, and age. Main Outcomes and Measures Estimated average annual percentage change in OTC incidence from 2001 to 2019. Given the substantial incidence rate increases among non-Hispanic White individuals compared with those of racial and ethnic minority groups, subsequent analyses were restricted to non-Hispanic White individuals. Forecasted OTC incidence trends and case burden among non-Hispanic White individuals to 2034. Results There were 58 661 new cases of OTC identified between 2001 and 2019. Male individuals (57.6%), non-Hispanic White individuals (83.7%), those aged 60 years or older (58.0%), and individuals with localized stage disease at diagnosis (62.7%) comprised most cases. OTC incidence increased across all age, sex, and racial and ethnic groups, with marked increases observed among non-Hispanic White individuals (2.9% per year; 95% CI, 2.2%-3.7%). Increases among female individuals aged 50 to 59 years were most notable and significantly outpaced increases among younger non-Hispanic White female individuals (4.8% per year [95% CI, 4.1%-5.4%] vs 3.3% per year [95% CI, 2.7%-3.8%]). While all non-Hispanic White birth cohorts from 1925 to 1980 saw sustained increases, rates stabilized among female individuals born after 1980. Should trends continue, the burden of new OTC cases among non-Hispanic White individuals in the US is projected to shift more toward older individuals (from 33.1% to 49.3% among individuals aged 70 years or older) and female individuals (86% case increase vs 62% among male individuals). Conclusions and Relevance The results of this cross-sectional study suggest that the period of rapidly increasing OTC incidence among younger non-Hispanic White female individuals in the US is tempering and giving way to greater increases among older female individuals, suggesting a birth cohort effect may have been associated with previously observed trends. Recent increases among non-Hispanic White individuals 50 years or older of both sexes have matched or outpaced younger age groups. Continuing increases among older individuals, particularly female individuals, may be associated with a shift in the OTC patient profile over time.
Collapse
Affiliation(s)
- Todd Burus
- Markey Cancer Center, University of Kentucky, Lexington
| | - Haluk Damgacioglu
- Department of Public Health Sciences, Medical University of South Carolina, Charleston
- Hollings Cancer Center, Medical University of South Carolina, Charleston
| | - Bin Huang
- Markey Cancer Center, University of Kentucky, Lexington
- Division of Cancer Biostatistics, College of Medicine, University of Kentucky, Lexington
- Kentucky Cancer Registry, Markey Cancer Center, University of Kentucky, Lexington
| | - W. Jay Christian
- Department of Epidemiology & Environmental Health, College of Public Health, University of Kentucky, Lexington
| | - Pamela C. Hull
- Markey Cancer Center, University of Kentucky, Lexington
- Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington
| | - Amanda R. Ellis
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington
| | - Susanne M. Arnold
- Markey Cancer Center, University of Kentucky, Lexington
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington
| | - Ashish A. Deshmukh
- Department of Public Health Sciences, Medical University of South Carolina, Charleston
- Hollings Cancer Center, Medical University of South Carolina, Charleston
| | - Krystle A. Lang Kuhs
- Markey Cancer Center, University of Kentucky, Lexington
- Department of Epidemiology & Environmental Health, College of Public Health, University of Kentucky, Lexington
| |
Collapse
|
3
|
Cheng C, Wang Z, Ding C, Liu P, Xu X, Li Y, Yan Y, Yin X, Chen B, Gu B. Bronchoalveolar Lavage Fluid Microbiota is Associated with the Diagnosis and Prognosis Evaluation of Lung Cancer. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:125-137. [PMID: 38884058 PMCID: PMC11169441 DOI: 10.1007/s43657-023-00135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 06/18/2024]
Abstract
The gut microbiota and cancer have been demonstrated to be closely related. However, few studies have explored the bronchoalveolar lavage fluid (BALF) microbiota in patients with lung cancer (LC), specifically the microbiota related to progression-free survival (PFS) in LC. A total of 216 BALF samples were collected including 166 LC and 50 benign pulmonary disease (N-LC) samples, and further sequenced using 16S rRNA amplicon sequencing. Enrolled LC patients were followed up, the therapeutic efficacy was assessed, and PFS was calculated. The associated clinical and microbiota sequencing data were deeply analysed. Distinct differences in the microbial profiles were evident in the lower airways of patients with LC and N-LC, which was also found between non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). A combined random forest model was built to distinguish NSCLC from SCLC and reached area under curves (AUCs) of 0.919 (95% CI 86.69-97.1%) and 0.893 (95% CI 79.39-99.29%) in the training and test groups, respectively. The lower alpha diversity of the BALF microbiota in NSCLC patients was significantly associated with reduced PFS, although this link was not observed in SCLC. Specifically, NSCLC with a higher abundance of f_Lachnospiraceae, s_Prevotella nigrescens and f_[Mogibacteriaceae] achieved longer PFS. The enrichment of o_Streptophyta and g_Prevotella was observed in SCLC with worse PFS. This study provided a detailed description of the characteristics of BALF microbiota in patients with NSCLC and SCLC simultaneously and provided insights into the role of the diagnosis and prognosis evaluation. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00135-9.
Collapse
Affiliation(s)
- Chen Cheng
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 Jiangsu China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, 210029 Jiangsu China
| | - Zhifeng Wang
- Department of Bioinformatics, 01Life Institute, Shenzhen, 518000 Guangdong China
| | - Chao Ding
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008 Jiangsu China
| | - Pingli Liu
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006 Jiangsu China
| | - Xiaoqiang Xu
- Department of Bioinformatics, 01Life Institute, Shenzhen, 518000 Guangdong China
| | - Yan Li
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006 Jiangsu China
| | - Yi Yan
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006 Jiangsu China
| | - Xiaocong Yin
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Bi Chen
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006 Jiangsu China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2Nd Rd, Yuexiu District, Guangzhou, 510000 Guangdong China
| |
Collapse
|
4
|
Yeo K, Li R, Wu F, Bouras G, Mai LTH, Smith E, Wormald PJ, Valentine R, Psaltis AJ, Vreugde S, Fenix K. Identification of consensus head and neck cancer-associated microbiota signatures: a systematic review and meta-analysis of 16S rRNA and The Cancer Microbiome Atlas datasets. J Med Microbiol 2024; 73. [PMID: 38299619 DOI: 10.1099/jmm.0.001799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Introduction. Multiple reports have attempted to describe the tumour microbiota in head and neck cancer (HNSC).Gap statement. However, these have failed to produce a consistent microbiota signature, which may undermine understanding the importance of bacterial-mediated effects in HNSC.Aim. The aim of this study is to consolidate these datasets and identify a consensus microbiota signature in HNSC.Methodology. We analysed 12 published HNSC 16S rRNA microbial datasets collected from cancer, cancer-adjacent and non-cancer tissues to generate a consensus microbiota signature. These signatures were then validated using The Cancer Microbiome Atlas (TCMA) database and correlated with the tumour microenvironment phenotypes and patient's clinical outcome.Results. We identified a consensus microbial signature at the genus level to differentiate between HNSC sample types, with cancer and cancer-adjacent tissues sharing more similarity than non-cancer tissues. Univariate analysis on 16S rRNA datasets identified significant differences in the abundance of 34 bacterial genera among the tissue types. Paired cancer and cancer-adjacent tissue analyses in 16S rRNA and TCMA datasets identified increased abundance in Fusobacterium in cancer tissues and decreased abundance of Atopobium, Rothia and Actinomyces in cancer-adjacent tissues. Furthermore, these bacteria were associated with different tumour microenvironment phenotypes. Notably, high Fusobacterium signature was associated with high neutrophil (r=0.37, P<0.0001), angiogenesis (r=0.38, P<0.0001) and granulocyte signatures (r=0.38, P<0.0001) and better overall patient survival [continuous: HR 0.8482, 95 % confidence interval (CI) 0.7758-0.9273, P=0.0003].Conclusion. Our meta-analysis demonstrates a consensus microbiota signature for HNSC, highlighting its potential importance in this disease.
Collapse
Affiliation(s)
- Kenny Yeo
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide SA, 5000, Australia
- Department of Surgery- Otolaryngology Head and Neck Surgery, The University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South SA, 5011, Australia
| | - Runhao Li
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide SA, 5000, Australia
- Department of Haematology and Oncology, Basil Hetzel Institute for Translational Health Research and The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South SA, 5011, Australia
| | - Fangmeinuo Wu
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide SA, 5000, Australia
- Department of Haematology and Oncology, Basil Hetzel Institute for Translational Health Research and The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South SA, 5011, Australia
| | - George Bouras
- Department of Surgery- Otolaryngology Head and Neck Surgery, The University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South SA, 5011, Australia
| | - Linh T H Mai
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide SA, 5000, Australia
- Department of Surgery- Otolaryngology Head and Neck Surgery, The University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South SA, 5011, Australia
| | - Eric Smith
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide SA, 5000, Australia
- Department of Haematology and Oncology, Basil Hetzel Institute for Translational Health Research and The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South SA, 5011, Australia
| | - Peter-John Wormald
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide SA, 5000, Australia
- Department of Surgery- Otolaryngology Head and Neck Surgery, The University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South SA, 5011, Australia
| | - Rowan Valentine
- Department of Surgery- Otolaryngology Head and Neck Surgery, The University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South SA, 5011, Australia
| | - Alkis James Psaltis
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide SA, 5000, Australia
- Department of Surgery- Otolaryngology Head and Neck Surgery, The University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South SA, 5011, Australia
| | - Sarah Vreugde
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide SA, 5000, Australia
- Department of Surgery- Otolaryngology Head and Neck Surgery, The University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South SA, 5011, Australia
| | - Kevin Fenix
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide SA, 5000, Australia
- Department of Surgery- Otolaryngology Head and Neck Surgery, The University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South SA, 5011, Australia
| |
Collapse
|
5
|
Burus T, Damgacioglu H, Huang B, Christian WJ, Hull PC, Ellis AR, Arnold SM, Deshmukh AA, Kuhs KAL. Recent and Projected Trends in Oral Tongue Cancer in the United States: A Demographic Shift in Case Burden as Early Onset Increases Among Females Subside. RESEARCH SQUARE 2023:rs.3.rs-3359293. [PMID: 37790433 PMCID: PMC10543327 DOI: 10.21203/rs.3.rs-3359293/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Background Oral tongue cancer (OTC) incidence has increased rapidly among young (< 50 years) non-Hispanic White (NHW) individuals in the United States (U.S.) over the last two decades; however, it is unknown if age-associated trajectories have persisted. Furthermore, incidence trends for all 50 U.S. states and the District of Columbia have never been investigated. Materials and methods Using U.S. Cancer Statistics data, we investigated incidence trends from 2001-2019, overall and according to age, sex, race/ethnicity, and state of residence. We used age-period-cohort analysis to explore temporal patterns among birth cohorts and to project future trends and case counts. Results OTC incidence increased across all age, sex, and racial/ethnic groups, with marked increases observed among the NHWs (2.9%/year; 95%CI, 2.2%-3.7%). Incidence among NHWs increased in most U.S. states, particularly in the Southeast. Increases were significantly greater among NHW females compared to males (3.6%/year vs 2.6%/year; P = 0.022). Increases among females aged 50-59 years were most notable and significantly outpaced increases among younger females (4.8%/year [95% CI, 4.1%-5.4%] vs. 3.3%/year [95% CI, 2.7%-3.8%]; P < .001). While both NHW male and female birth cohorts from 1925 to 1980 saw sustained increases, rates stabilized among females born after 1980. Should trends continue, the burden of new OTC cases among NHWs in the U.S. is projected to shift to older individuals (33.1% versus 49.3% aged ≥ 70) and females (86% case increase versus 62% among males). Conclusion The period of rapidly increasing OTC incidence among younger NHW females in the U.S. is tempering and giving way to greater increases among older females, suggesting that a birth cohort effect may have influenced previously observed trends. Recent increases among NHWs aged ≥ 50 of both sexes have matched or outpaced younger age groups. Continuing increases among older individuals, particularly females, will lead to a shift in the OTC patient profile over time.
Collapse
|
6
|
Zhang Y, Guo Y, Zhang C. A bibliometric study of the top 100 most cited papers on aging and cancer. Medicine (Baltimore) 2023; 102:e34428. [PMID: 37565901 PMCID: PMC10419506 DOI: 10.1097/md.0000000000034428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023] Open
Abstract
Cancer has been the major and increasing cause of premature death and years of life lost. Various studies suggested the correlation between the aging process and cancer genesis. To evaluate the performance of the articles and to identify and compare the top-cited articles on aging and cancer, a cross-sectional bibliometric analysis was performed. Top-cited articles that were indexed in the Core databases in Web of Science were utilized to identify articles published from inception to September 3, 2022. The top 100 most-cited articles on aging and cancer were evaluated for their specific characteristics. Both Microsoft Office Excel and Visual Basic for Applications were used to analyze the number of publications and scientific cooperations among authors over time. The query identified the top 100 most-cited articles from the 368,504 articles. The top cited articles accumulated 308,106 citations. The citations per article ranged from 39,141 to 1040. Thirty journals published these 100 articles, with the Ca-A Cancer Journal for Clinicians publishing the largest number. Most articles have focused on the trend analysis of incidence, survival outcomes, and prognosis of cancer from different origins. Co-authorship analysis revealed intense collaborative activity between United States authoritative academic institutions and scholars. The present study is the first to analyze most cited papers in "aging and cancer." The historical trends, current status, and future direction in the field of older patients with cancer are systematically summarized. The occurrence and development of cancer is correlated with aging.
Collapse
Affiliation(s)
- Yiran Zhang
- Department of General Practice, Tianjin First Central Hospital, Tianjin, China
- Nursing Department, Tianjin First Central Hospital, Tianjin, China
| | - Ying Guo
- Nursing Department, Tianjin First Central Hospital, Tianjin, China
| | - Chao Zhang
- The Sino-Russian Joint Research Center for Bone Metastasis in Malignant Tumor, Tianjin, China
| |
Collapse
|
7
|
Gonzalez-Bosquet J, McDonald ME, Bender DP, Smith BJ, Leslie KK, Goodheart MJ, Devor EJ. Microbial Communities in Gynecological Cancers and Their Association with Tumor Somatic Variation. Cancers (Basel) 2023; 15:3316. [PMID: 37444425 DOI: 10.3390/cancers15133316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
There are strong correlations between the microbiome and human disease, including cancer. However, very little is known about potential mechanisms associated with malignant transformation in microbiome-associated gynecological cancer, except for HPV-induced cervical cancer. Our hypothesis is that differences in bacterial communities in upper genital tract epithelium may lead to selection of specific genomic variation at the cellular level of these tissues that may predispose to their malignant transformation. We first assessed differences in the taxonomic composition of microbial communities and genomic variation between gynecologic cancers and normal samples. Then, we performed a correlation analysis to assess whether differences in microbial communities selected for specific single nucleotide variation (SNV) between normal and gynecological cancers. We validated these results in independent datasets. This is a retrospective nested case-control study that used clinical and genomic information to perform all analyses. Our present study confirms a changing landscape in microbial communities as we progress into the upper genital tract, with more diversity in lower levels of the tract. Some of the different genomic variations between cancer and controls strongly correlated with the changing microbial communities. Pathway analyses including these correlated genes may help understand the basis for how changing bacterial landscapes may lead to these cancers. However, one of the most important implications of our findings is the possibility of cancer prevention in women at risk by detecting altered bacterial communities in the upper genital tract epithelium.
Collapse
Affiliation(s)
- Jesus Gonzalez-Bosquet
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Megan E McDonald
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - David P Bender
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Brian J Smith
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA
| | - Kimberly K Leslie
- Division of Molecular Medicine, Department of Internal Medicine and Obstetrics and Gynecology, The University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Michael J Goodheart
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Eric J Devor
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Li R, Xiao L, Gong T, Liu J, Li Y, Zhou X, Li Y, Zheng X. Role of oral microbiome in oral oncogenesis, tumor progression, and metastasis. Mol Oral Microbiol 2023; 38:9-22. [PMID: 36420924 DOI: 10.1111/omi.12403] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Squamous cell carcinoma is the most common malignant tumor of the oral cavity and its adjacent sites, which endangers the physical and mental health of patients and has a complex etiology. Chronic infection is considered to be a risk factor in cancer development. Evidence suggests that periodontal pathogens, such as Porphyromonas gingivalis, Fusobacterium nucleatum, and Treponema denticola, are associated with oral squamous cell carcinoma (OSCC). They can stimulate tumorigenesis by promoting epithelial cells proliferation while inhibiting apoptosis and regulating the inflammatory microenvironment. Candida albicans promotes OSCC progression and metastasis through multiple mechanisms. Moreover, oral human papillomavirus (HPV) can induce oropharyngeal squamous cell carcinoma (OPSCC). There is evidence that HPV16 can integrate with host cells' DNA and activate oncogenes. Additionally, oral dysbiosis and synergistic effects in the oral microbial communities can promote cancer development. In this review, we will discuss the biological characteristics of oral microbiome associated with OSCC and OPSCC and then highlight the mechanisms by which oral microbiome is involved in oral oncogenesis, tumor progression, and metastasis. These findings may have positive implications for early diagnosis and treatment of oral cancer.
Collapse
Affiliation(s)
- Ruohan Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Xiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiaxin Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|