1
|
Liu Y, Kou C, Chen J, Li Y, Li J. The Response of the Gut Physiological Function and Microbiome of a Wild Freshwater Fish ( Megalobrama terminalis) to Alterations in Reproductive Behavior. Int J Mol Sci 2024; 25:7425. [PMID: 39000530 PMCID: PMC11242598 DOI: 10.3390/ijms25137425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
The fish gut microbiome is well known for its role in degrading nutrients to improve the host's digestion and absorption efficiency. In this study, we focused on the core physiological adaptability during the various reproductive stages of the black Amur bream (Megalobrama terminalis) to explore the interaction mechanisms among the fish host gut mucosal structure, gut enzyme activity, and gut microbial metabolism in the course of the host's reproductive cycle. Our findings showed that M. terminalis exhibited locomotion metabolic type (aids in sporting) in the reproductive stage, and a change to visceral metabolic type (aids in digestion) during non-reproductive and post-reproductive stage phases. The impact of metabolic type selection and energy demand during various reproductive stages on fish nutrition strategy and digestive function was substantial. Our resulted showed that mitochondria in intestinal epithelial cells of reproductive M. terminalis appeared autophagy phenomenon, and the digestive enzyme activities in the intestines of reproductive M. terminalis were lower than those in the non-reproductive and post-reproductive individuals. Moreover, these differences in nutrition strategy have a prominent impact on the gut microbiome of reproductive M. terminalis, compared to non-reproductive and post-reproductive samples. Our findings showed that reproductive females had lower levels of alpha diversity compared to non-reproductive and post-reproductive females. Our results also showed a greater functional variety and an increase in functional genes related to carbohydrate, lipid, amino acid, cofactors, and vitamin metabolic pathways in the NRS and PRS group. It is noteworthy that an enrichment of genes encoding putative enzymes implicated in the metabolism of taurine and hypotaurine was observed in the RS samples. Our findings illustrated that the stability and resilience of the gut bacterial community could be shaped in the wild fish host-microbiome interactions during reproductive life history.
Collapse
Affiliation(s)
- Yaqiu Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (C.K.); (Y.L.)
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou 510380, China
| | - Chunni Kou
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (C.K.); (Y.L.)
| | - Jiayue Chen
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (C.K.); (Y.L.)
| | - Yuefei Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (C.K.); (Y.L.)
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou 510380, China
| | - Jie Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (C.K.); (Y.L.)
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou 510380, China
| |
Collapse
|
2
|
Kelly LA, Yost CK, Cooke SJ. Opportunities and challenges with transitioning to non-lethal sampling of wild fish for microbiome research. JOURNAL OF FISH BIOLOGY 2024; 104:912-919. [PMID: 38226503 DOI: 10.1111/jfb.15650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024]
Abstract
The microbial communities of fish are considered an integral part of maintaining the overall health and fitness of their host. Research has shown that resident microbes reside on various mucosal surfaces, such as the gills, skin, and gastrointestinal tract, and play a key role in various host functions, including digestion, immunity, and disease resistance. A second, more transient group of microbes reside in the digesta, or feces, and are primarily influenced by environmental factors such as the host diet. The vast majority of fish microbiome research currently uses lethal sampling to analyse any one of these mucosal and/or digesta microbial communities. The present paper discusses the various opportunities that non-lethal microbiome sampling offers, as well as some inherent challenges, with the ultimate goal of creating a sound argument for future researchers to transition to non-lethal sampling of wild fish in microbiome research. Doing so will reduce animal welfare and population impacts on fish while creating novel opportunities to link host microbial communities to an individual's behavior and survival across space and time (e.g., life-stages, seasons). Current lethal sampling efforts constrain our ability to understand the mechanistic ecological consequences of variation in microbiome communities in the wild. Transitioning to non-lethal sampling will open new frontiers in ecological and microbial research.
Collapse
Affiliation(s)
- Lisa A Kelly
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Christopher K Yost
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Liu Y, Li X, Chen W, Feng G, Chen F, Li J, Zhou Q. High-throughput sequencing and fatty acid profile analyses of the Black Amur bream ( Megalobrama terminalis) reveal variation in dietary niche associated with geographic segregation. Ecol Evol 2024; 14:e11226. [PMID: 38628924 PMCID: PMC11019299 DOI: 10.1002/ece3.11226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
Fish dietary niche is a core focus, and it reflects the diversity of resources, habitats, or environments occupied by a species. However, whether geographic segregation among different populations triggers dietary diversification and concomitant fish niche shift remains unknown. In the present study, we selected the Black Amur bream (Megalobrama terminalis) is a migratory fish species that plays an important role in the material transfer and energy cycling of river ecosystems, inhabiting southern China drainage with multiple geographic populations. Here, we utilized the combined analyses of 18S rDNA high-throughput sequencing in fish gut contents and fatty acid (FA) in muscle tissues to evaluate potential spatial patterns of habitat and resource use for M. terminalis in three rivers of southern China. Our results showed that prey items of the Xijiang (XR) population (Pearl River) exhibited the highest species diversity and richness among the three geographic populations. Moreover, diet composition of M. terminalis was affected by spatial differences associated with geographic segregation. Analyses of FA biomarkers indicated that the highest levels of C16:0, C18:3n-3, and C18:2n-6c were found in Wanquan (WS) population (Wanquan River). The XR population exhibited a distinct FA profile characterized by higher amounts of arachidonic acid (ARA) and docosahexaenoic acid (DHA). The Moyang (MY) population (Moyang River) acted as the linkage between WS and XR populations and consisted of middle levels of saturated FAs (SFAs) and polyunsaturated FAs (PUFAs). The XR population displayed a greater FA niche width compared with WS population. Furthermore, we observed a close positive relationship between the niche width and α-diversity indices of dietary resources for FA proflies. Our study provides valued information to develop different conservation strategies among different populations and improve fisheries management for M. terminalis and other endemic species in local rivers.
Collapse
Affiliation(s)
- Yaqiu Liu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Areas, College of FisheriesHuazhong Agricultural UniversityWuhanChina
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic BeltMinistry of EducationWuhanChina
- Pearl River Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouChina
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and EnvironmentGuangzhouChina
| | - Xinhui Li
- Pearl River Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouChina
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and EnvironmentGuangzhouChina
| | - Weitao Chen
- Pearl River Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouChina
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and EnvironmentGuangzhouChina
| | - Guangpeng Feng
- Jiangxi Institute for Fisheries Sciences, Poyang Lake Fisheries Research Centre of Jiangxi ProvinceNanchangChina
| | - Fangchan Chen
- Guangzhou Qianjiang Water Ecology Technology Co. LtdGaungzhouChina
| | - Jie Li
- Pearl River Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouChina
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and EnvironmentGuangzhouChina
- Guangzhou Qianjiang Water Ecology Technology Co. LtdGaungzhouChina
| | - Qiong Zhou
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Areas, College of FisheriesHuazhong Agricultural UniversityWuhanChina
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic BeltMinistry of EducationWuhanChina
| |
Collapse
|
4
|
Liu Y, Kou C, Li Y, Li J, Zhu S. Fish Gut Microbiome Analysis Provides Insight into Differences in Physiology and Behavior of Invasive Nile Tilapia and Indigenous Fish in a Large Subtropical River in China. Animals (Basel) 2023; 13:2413. [PMID: 37570222 PMCID: PMC10417376 DOI: 10.3390/ani13152413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The gut microbiome is thought to play vital roles in host fitness and local adaptation to new environments, thereby facilitating the invasion of the host species. The Nile tilapia (Oreochromis niloticus) (NT) is an aggressive and omnivorous species that competes with native fishes for food resources, and it has successfully invaded much of the Pearl River basin in China. Here, we investigated the gut microbiomes of invasive Nile tilapia and indigenous black Amur bream (BA) in the same river section using high-throughput 16S rRNA gene sequencing. The results indicated that the gut microbiome of NT had several special characteristics, e.g., higher alpha diversity and greater niche breadth, compared with the bream. The gut microbiota of the small size of Nile tilapia (NTS) and small size of black Amur bream (BAS) groups were dominated by Proteobacteria, while those of the NTS and large size of Nile tilapia (NTL) and BAS and large size of black Amur bream (BAL). BAL and NTL were characterized by Firmicutes and Fusobacteriota, respectively. We found that Pseudomonas, Cetobacterium, Ralstonia, and Romboutsia were biomarkers of the NTS, NTL, BAS, and BAL groups, respectively. Moreover, the results collectively suggested that the clustering coefficients of BAL and NTL networks were greater than those of BAS and NTS networks, and BAS had the smallest network among the four groups. Positive interactions between two ASVs dominated the BAS, NTS, and NTL networks, while the proportion of negative interactions between two ASVs in the BAL network was remarkably increased. Low levels of interspecies competition in the NT gut microbiome would contribute to high diversity in the dietary niches and would also benefit the survival and local adaptation of the host. Our results identified specific biomarkers of gut microbial species in invasive Nile tilapia and provided useful information concerning how to monitor and manage invasive Nile tilapia populations.
Collapse
Affiliation(s)
- Yaqiu Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou 510380, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China
| | - Chunni Kou
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yuefei Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou 510380, China
| | - Jie Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou 510380, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, China
| | - Shuli Zhu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou 510380, China
| |
Collapse
|
5
|
Ye C, Geng S, Zhang Y, Qiu H, Zhou J, Zeng Q, Zhao Y, Wu D, Yu G, Gong H, Hu B, Hong Y. The impact of culture systems on the gut microbiota and gut metabolome of bighead carp (Hypophthalmichthys nobilis). Anim Microbiome 2023; 5:20. [PMID: 37005679 PMCID: PMC10067185 DOI: 10.1186/s42523-023-00239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/08/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND The gut microbiota of fish confers various effects on the host, including health, nutrition, metabolism, feeding behaviour, and immune response. Environment significantly impacts the community structure of fish gut microbiota. However, there is a lack of comprehensive research on the gut microbiota of bighead carp in culture systems. To demonstrate the impact of culture systems on the gut microbiome and metabolome in bighead carp and investigate a potential relationship between fish muscle quality and gut microbiota, we conducted a study using 16S ribosomal ribonucleic acid sequencing, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry techniques on bighead carp in three culture systems. RESULTS Our study revealed significant differences in gut microbial communities and metabolic profiles among the three culture systems. We also observed conspicuous changes in muscle structure. The reservoir had higher gut microbiota diversity indices than the pond and lake. We detected significant differences in phyla and genera, such as Fusobacteria, Firmicutes, and Cyanobacteria at the phylum level, Clostridium sensu stricto 1, Macellibacteroides, Blvii28 wastewater sludge group at the genus level. Multivariate statistical models, including principal component analysis and orthogonal projections to latent structures-discriminant analysis, indicated significant differences in the metabolic profiles. Key metabolites were significantly enriched in metabolic pathways involved in "arginine biosynthesis" and "glycine, serine, and threonine metabolism". Variation partitioning analysis revealed that environmental factors, such as pH, ammonium nitrogen, and dissolved oxygen, were the primary drivers of differences in microbial communities. CONCLUSIONS Our findings demonstrate that the culture system significantly impacted the gut microbiota of bighead carp, resulting in differences in community structure, abundance, and potential metabolic functions, and altered the host's gut metabolism, especially in pathways related to amino acid metabolism. These differences were influenced substantially by environmental factors. Based on our study, we discussed the potential mechanisms by which gut microbes affect muscle quality. Overall, our study contributes to our understanding of the gut microbiota of bighead carp under different culture systems.
Collapse
Affiliation(s)
- Chen Ye
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China
| | - Shiyu Geng
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China
| | - Yingyu Zhang
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China
| | - Huimin Qiu
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China
| | - Jie Zhou
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China
| | - Qi Zeng
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China
| | - Yafei Zhao
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Di Wu
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China
| | - Guilan Yu
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China
| | - Haibo Gong
- Jiangxi Provincial Aquatic Biology Protection and Rescue Center, Nanchang, 330000, China
| | - Beijuan Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China.
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China.
- Modern Agricultural Research Institute, Nanchang University, Nanchang, 330031, China.
| | - Yijiang Hong
- School of Life Science, Nanchang University, Nanchang, 330031, China.
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China.
- Modern Agricultural Research Institute, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
6
|
Liu Y, Li X, Li Y, Li J, Zhu S. Gut microbiomes of cyprinid fish exhibit host-species symbiosis along gut trait and diet. Front Microbiol 2022; 13:936601. [PMID: 36016786 PMCID: PMC9396210 DOI: 10.3389/fmicb.2022.936601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022] Open
Abstract
Teleost omnivorous fish that coexist partially sharing resources are likely to modify their gut traits and microbiome as a feedback mechanism between ecological processes and evolution. However, we do not understand how the core gut microbiome supports the metabolic capacity of the host and regulates digestive functions in specialized omnivorous fish gut traits. Therefore, we evaluated the gut microbiome of eight omnivorous fish from a single family (i.e., Cyprinidae) in the current study. We examined the correlation between host phylogeny, diet composition, and intestinal morphological traits related to the intestinal microbiome. The results indicated that cyprinid fish with similar relative gut lengths had considerable gut microbiome similarity. Notably, the SL (short relative gut length) group, as zoobenthos and zooplankton specialists, was abundant in Proteobacteria and was less abundant in Firmicutes than in the ML (medium relative gut length) and LL (long relative gut length) groups. These fish could extract nutrients from aquatic plants and algae. Additionally, we found the relative abundance of Clostridium and Romboutsia to be positively correlated with host relative gut length but negatively correlated with the relative abundance of Cetobacterium, Plesiomonas, Bacteroides, and Lactobacillus, and host-relative gut length. We also show a positive linear relationship between host gut microbiome carbohydrate metabolism and relative gut length, while the amino acid and lipid metabolism of the gut microbiome was negatively correlated with host-relative gut length. In addition, omnivorous species competing for resources improve their ecological adaptability through the specialization of gut length, which is closely related to variation in the synergy of the gut microbiome. Above all, specialized gut microbiota and associated gut morphologies enable fish to variably tolerate resource fluctuation and improve the utilization efficiency of nutrient extraction from challenging food resources.
Collapse
Affiliation(s)
- Yaqiu Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, China
| | - Xinhui Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yuefei Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, China
| | - Jie Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, China
| | - Shuli Zhu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, China
| |
Collapse
|