1
|
Akhlaghi E, Salari E, Mansouri M, Shafiei M, Kalantar-Neyestanaki D, Aghassi H, Fasihi Harandi M. Identification and comparison of intestinal microbial diversity in patients at different stages of hepatic cystic echinococcosis. Sci Rep 2024; 14:18912. [PMID: 39143364 PMCID: PMC11324937 DOI: 10.1038/s41598-024-70005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024] Open
Abstract
There is a significant focus on the role of the host microbiome in different outcomes of human parasitic diseases, including cystic echinococcosis (CE). This study was conducted to identify the intestinal microbiome of patients with CE at different stages of hydatid cyst compared to healthy individuals. Stool samples from CE patients as well as healthy individuals were collected. The samples were divided into three groups representing various stages of hepatic hydatid cyst: active (CE1 and CE2), transitional (CE3), and inactive (CE4 and CE5). One family member from each group was selected to serve as a control. The gut microbiome of patients with different stages of hydatid cysts was investigated using metagenomic next-generation amplicon sequencing of the V3-V4 region of the 16S rRNA gene. In this study, we identified 4862 Operational Taxonomic Units from three stages of hydatid cysts in CE patients and healthy individuals with a combined frequency of 2,955,291. The most abundant genera observed in all the subjects were Blautia, Agathobacter, Faecalibacterium, Bacteroides, Bifidobacterium, and Prevotella. The highest microbial frequency was related to inactive forms of CE, and the lowest frequency was observed in the group with active forms. However, the lowest OTU diversity was found in patients with inactive cysts compared with those with active and transitional cyst stages. The genus Agatobacter had the highest OTU frequency. Pseudomonas, Gemella, and Ligilactobacillus showed significant differences among the patients with different stages of hydatid cysts. Additionally, Anaerostipes and Candidatus showed significantly different reads in CE patients compared to healthy individuals. Our findings indicate that several bacterial genera can play a role in the fate of hydatid cysts in patients at different stages of the disease.
Collapse
Affiliation(s)
- Elham Akhlaghi
- Research Center for Hydatid Disease in Iran, Department of Medical Parasitology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Salari
- Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mehdi Mansouri
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Shafiei
- Research Center for Hydatid Disease in Iran, Department of Surgery, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Kalantar-Neyestanaki
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Aghassi
- Research Center for Hydatid Disease in Iran, Department of Medical Parasitology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Department of Medical Parasitology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Ammar A, Singh V, Ilic S, Samiksha F, Marsh A, Rodriguez-Palacios A. Rodent Gut Bacteria Coexisting with an Insect Gut Virus in Tapeworm Parasitic Cysts: Metagenomic Evidence of Microbial Selection in Extra-Intestinal Clinical Niches. Microorganisms 2024; 12:1130. [PMID: 38930512 PMCID: PMC11205618 DOI: 10.3390/microorganisms12061130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
In medicine, parasitic cysts (e.g., brain cysticerci) are believed to be sterile, and are primarily treated with antiparasitic medications, not antibiotics, which could prevent abscess formation and localized inflammation. This study quantified the microbial composition of parasitic cysts in a wild rodent, using multi-kingdom metagenomics to comprehensively assess if parasitic cysts are sterile, and further understand gut microbial translocation and adaptation in wildlife confined environments, outside the gut. Analysis was conducted on DNA from two hepatic parasitic cysts from a feline tapeworm, Hydatigera (Taenia) taeniaeformis, affecting a wild vole mouse (Microtus pennsylvanicus), and from feces, liver and peritoneal fluid of this and two other concurrent individual wild voles trapped during pest control in one of our university research vegetable gardens. Bacterial metagenomics revealed the presence of gut commensal/opportunistic species, Parabacteroides distasonis, Bacteroides (Bacteroidota); Klebsiella variicola, E. coli (Enterobacteriaceae); Enterococcus faecium and Lactobacillus acidophilus (Bacillota) inhabiting the cysts, and peritoneal fluid. Remarkably, viral metagenomics revealed various murine viral species, and unexpectedly, a virus from the insect armyworm moth (Pseudaletia/Mythimna unipuncta), known as Mythimna unipuncta granulovirus A (MyunGV-A), in both cysts, and in one fecal and one peritoneal sample from the other non-cyst voles, indicating the survival and adaption potential of the insect virus in voles. Metagenomics also revealed a significantly lower probability of fungal detection in cysts compared to that in peritoneal fluid/feces (p < 0.05), with single taxon detection in each cyst (Malassezia and Pseudophaeomoniella oleicola). The peritoneal fluid had the highest probability for fungi. In conclusion, metagenomics revealed that bacteria/viruses/fungi coexist within parasitic cysts supporting the potential therapeutic benefits of antibiotics in cystic diseases, and in inflammatory microniches of chronic diseases, such as Crohn's disease gut wall cavitating micropathologies, from which we recently isolated similar synergistic pathogenic Bacteroidota and Enterobacteriaceae, and Bacillota.
Collapse
Affiliation(s)
- Amro Ammar
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (A.A.); (V.S.)
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Vaidhvi Singh
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (A.A.); (V.S.)
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Sanja Ilic
- Department of Human Sciences, Human Nutrition and Food Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | - Fnu Samiksha
- Department of Cancer Biology, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA;
| | - Antoinette Marsh
- The Veterinary Medical Center Diagnostic Parasitology, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Alexander Rodriguez-Palacios
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (A.A.); (V.S.)
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Ammar A, Singh V, Ilic S, Samiksha F, Marsh A, Rodriguez-Palacios A. Rodent Gut Bacteria Coexisting with an Insect Gut Virus in Parasitic Cysts: Metagenomic Evidence of Microbial Translocation and Co-adaptation in Spatially-Confined Niches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.585885. [PMID: 38562820 PMCID: PMC10983908 DOI: 10.1101/2024.03.22.585885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In medicine, parasitic cysts or cysticerci (fluid-filled cysts, larval stage of tapeworms) are believed to be sterile (no bacteria), and therein, the treatment of cysticerci infestations of deep extra-intestinal tissues (e.g., brain) relies almost exclusively on the use of antiparasitic medications, and rarely antibiotics. To date, however, it is unclear why common post-treatment complications include abscessation. This study quantified the microbial composition of parasitic cyst contents in a higher-order rodent host, using multi-kingdom shotgun metagenomics, to improve our understanding of gut microbial translocation and adaptation strategies in wild environments. Analysis was conducted on DNA from two hepatic parasitic cysts (Hydatigera (Taeenia) taeniaeformis) in an adult vole mouse (Microtus arvalis), and from feces, liver, and peritoneal fluid of three other vole family members living in a vegetable garden in Ohio, USA. Bacterial metagenomics revealed the presence of gut commensal/opportunistic species, including Parabacteroides distasonis, Klebsiella variicola, Enterococcus faecium, and Lactobacillus acidophilus, inhabiting the cysts. Parabacteroides distasonis and other species were also present outside the cyst in the peritoneal fluid. Remarkably, viral metagenomics revealed various murine viral species, but unexpectedly, it detected an insect-origin virus from the army moth (Pseudaletia/Mythimna unipuncta) known as Mythimna unipuncta granulovirus A (MyunGV-A) in both cysts, and in one fecal and one peritoneal sample from two different voles, indicating survival of the insect virus and adaption in voles. Metagenomics also revealed a significantly lower probability of fungal detection in the cysts compared to other samples (peritoneal fluid, p<0.05; and feces p<0.05), with single taxon detection in each cyst for Malassezia and Pseudophaeomoniella oleicola. The samples with a higher probability of fungi were the peritoneal fluid. In conclusion, commensal/pathobiont bacterial species can inhabit parasitic tapeworm cysts, which needs to be considered during therapeutic decisions of cysticerci or other chronic disease scenarios where immune privileged and spatially restricted ecosystems with limited nutrients and minimal presence of immune cells could facilitate microbial adaptation, such as within gut wall cavitating micropathologies in Crohn's disease.
Collapse
Affiliation(s)
- Amro Ammar
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Vaidhvi Singh
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Sanja Ilic
- Department of Human Sciences, Human Nutrition and Food Microbiology, Ohio State University, Columbus, OH, USA
| | - Fnu Samiksha
- Department of Cancer Biology, Learner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Antoinette Marsh
- The Veterinary Medical Center Diagnostic Parasitology, The Ohio State University College of Veterinary Medicine Department of Veterinary Preventive Medicine, Columbus, OH, USA
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Zhu M, Wang C, Yang S, Du X, Zhu Y, Zhang T, Lv Y, Zhao W. Alterations in Gut Microbiota Profiles of Mice Infected with Echinococcus granulosus sensu lato Microbiota Profiles of Mice Infected with E. granulosus s.l. Acta Parasitol 2022; 67:1594-1602. [PMID: 36048399 PMCID: PMC9705484 DOI: 10.1007/s11686-022-00613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/17/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVE Cystic echinococcosis is a kind of parasitic disease that seriously endangers human and animal health. At present, its prevention and treatment still do not achieve the desired results. The aims of this study were to explore the effect of CE on intestinal microflora in mice. METHODS In this study, 16S rRNA metagenome sequencing and bioinformatics were used to analyze the intestinal flora of mice infected with E. granulosus s.l. Changes in intestinal microbial community abundance were investigated and the differences in microbial populations of mice infected with E. granulosus s.l. were screened. RESULTS Our results show that at the phylum level, nine abundant taxa were identified, the relative abundance of Firmicutes and Proteobacteria were enriched in infected mice, whereas Bacteroidetes and Patescibacteria were enriched in control mice (P < 0.01). At the class level, 13 abundant taxa were identified, the relative abundance of Bacilli was enriched in control mice, but decreased in infected mice (P < 0.01). At the order level, 15 abundant taxa were identified, the relative abundance of Lactobacillales was enriched in control mice, but decreased in infected mice (P < 0.01). At the family level, 28 abundant taxa were identified, enriched bacteria in the infected mice was Streptococcaceae, while the enriched bacteria in the control group was Lactobacillaceae (P < 0.01). At the genus level, 79 abundant taxa were identified, enriched bacteria in the infected mice was Streptococcus, while the enriched bacteria in the control group was uncultured_bacterium_f_Eggerthellaceae (P < 0.01). At the species level, 80 abundant taxa were identified, enriched bacteria in the infected mice was uncultured_bacterium_g_Streptococcus, while the enriched bacteria in the control group was uncultured_bacterium_f_Eggerthellaceae (P < 0.01). 39 KEGG pathways were identified that were differentially enriched between the infected and control mice. CONCLUSION This study comprehensively demonstrates the differential intestinal microbiota of infected mice and analyzes the metabolic pathways related to the specific microbiota. This could provide new targets and research direction for the treatment and prevention of diseases caused by E. granulosus s.l.
Collapse
Affiliation(s)
- Mingxing Zhu
- Center of Scientific Technology of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia , Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Chan Wang
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia , Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Songhao Yang
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia , Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Xiancai Du
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia , Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Yazhou Zhu
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia , Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Tingrui Zhang
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia , Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Yongxue Lv
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia , Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Wei Zhao
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia , Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China.
| |
Collapse
|