1
|
Mateescu I, Lequime S. Dengue-mediated changes in the vectorial capacity of Aedes aegypti (Diptera: Culicidae): manipulation of transmission or infection by-product? JOURNAL OF MEDICAL ENTOMOLOGY 2024:tjae134. [PMID: 39436782 DOI: 10.1093/jme/tjae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
An arthropod's vectorial capacity summarizes its disease transmission potential. Life-history traits, such as fecundity or survival, and behavioral traits, such as locomotor activity, host-seeking and feeding behavior, are important components of vectorial capacity. Studies have shown that mosquito-borne pathogens may alter important vectorial capacity traits of their mosquito vectors, thus directly impacting their transmission and epidemic potential. Here, we compile and discuss the evidence supporting dengue-mediated changes in the yellow fever mosquito Aedes aegypti (L.), its primary vector, and evaluate whether the observed effects represent an evolved trait manipulation with epidemiological implications. Dengue infection appears to manipulate essential traits that facilitate vector-host contact, such as locomotor activity, host-seeking, and feeding behavior, but the underlying mechanisms are still not understood. Conversely, life-history traits relevant to vector population dynamics, such as survival, oviposition, and fecundity, appear to be negatively impacted by dengue virus. Overall, any detrimental effects on life-history traits may be a negligible cost derived from the virulence that dengue has evolved to facilitate its transmission by manipulating Ae. aegypti behavior and feeding performance. However, methodological disparities among studies render comparisons difficult and limit the ability to reach well-supported conclusions. This highlights the need for more standardized methods for the research into changes in virus-mediated traits. Eventually, we argue that the effects on life-history traits and behavior outlined here must be considered when assessing the epidemiological impact of dengue or other arbovirus-vector-host interactions.
Collapse
Affiliation(s)
- Ioana Mateescu
- Virus Ecology and Evolution, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Research School of Behavioral and Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands
| | - Sebastian Lequime
- Virus Ecology and Evolution, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Gupta S, Sharma R, Williams AE, Sanchez-Vargas I, Rose NH, Zhang C, Crosbie-Villaseca A, Zhu Z, Dayama G, Gloria-Soria A, Brackney DE, Manning J, Wheeler SS, Caranci A, Reyes T, Sylla M, Badolo A, Akorli J, Aribodor OB, Ayala D, Liu WL, Chen CH, Vasquez C, Acosta CG, Ponlawat A, Magalhaes T, Carter B, Wesson D, Surin D, Younger MA, Costa-da-Silva AL, DeGennaro M, Bergman A, Lambrechts L, McBride CS, Olson KE, Calvo E, Lau NC. Global genomics of Aedes aegypti unveils widespread and novel infectious viruses capable of triggering a small RNA response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597482. [PMID: 38895463 PMCID: PMC11185646 DOI: 10.1101/2024.06.06.597482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The mosquito Aedes aegypti is a prominent vector for arboviruses, but the breadth of mosquito viruses that infects this specie is not fully understood. In the broadest global survey to date of over 200 Ae. aegypti small RNA samples, we detected viral small interfering RNAs (siRNAs) and Piwi interacting RNAs (piRNAs) arising from mosquito viruses. We confirmed that most academic laboratory colonies of Ae. aegypti lack persisting viruses, yet two commercial strains were infected by a novel tombus-like virus. Ae. aegypti from North to South American locations were also teeming with multiple insect viruses, with Anphevirus and a bunyavirus displaying geographical boundaries from the viral small RNA patterns. Asian Ae. aegypti small RNA patterns indicate infections by similar mosquito viruses from the Americas and reveal the first wild example of dengue virus infection generating viral small RNAs. African Ae. aegypti also contained various viral small RNAs including novel viruses only found in these African substrains. Intriguingly, viral long RNA patterns can differ from small RNA patterns, indicative of viral transcripts evading the mosquitoes' RNA interference (RNAi) machinery. To determine whether the viruses we discovered via small RNA sequencing were replicating and transmissible, we infected C6/36 and Aag2 cells with Ae. aegypti homogenates. Through blind passaging, we generated cell lines stably infected by these mosquito viruses which then generated abundant viral siRNAs and piRNAs that resemble the native mosquito viral small RNA patterns. This mosquito small RNA genomics approach augments surveillance approaches for emerging infectious diseases.
Collapse
|
3
|
Garambois C, Boulesteix M, Fablet M. Effects of Arboviral Infections on Transposable Element Transcript Levels in Aedes aegypti. Genome Biol Evol 2024; 16:evae092. [PMID: 38695057 PMCID: PMC11110940 DOI: 10.1093/gbe/evae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/23/2024] Open
Abstract
Transposable elements are mobile repeated sequences found in all genomes. Transposable elements are controlled by RNA interference pathways in most organisms, and this control involves the PIWI-interacting RNA pathway and the small interfering RNA pathway, which is also known to be the first line of antiviral defense in invertebrates. Using Drosophila, we recently showed that viral infections result in the modulation of transposable element transcript levels through modulation of the small RNA repertoire. The Aedes aegypti mosquito is of particular interest because almost half of its genome is made of transposable elements, and it is described as a major vector of viruses (such as the dengue [DENV], Zika [ZIKV], and chikungunya [CHIKV] arboviruses). Moreover, Aedes mosquitoes are unique among insects in that the PIWI-interacting RNA pathway is also involved in the somatic antiviral response, in addition to the transposable element control and PIWI-interacting RNA pathway genes expanded in the mosquito genome. For these reasons, we studied the impacts of viral infections on transposable element transcript levels in A. aegypti samples. We retrieved public datasets corresponding to RNA-seq data obtained from viral infections by DENV, ZIKV, and CHIKV in various tissues. We found that transposable element transcripts are moderately modulated following viral infection and that the direction of the modulation varies greatly across tissues and viruses. These results highlight the need for an in-depth investigation of the tightly intertwined interactions between transposable elements and viruses.
Collapse
Affiliation(s)
- Chloé Garambois
- Universite Claude Bernard Lyon 1, Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR 5558, CNRS, VAS, Villeurbanne 69622, France
| | - Matthieu Boulesteix
- Universite Claude Bernard Lyon 1, Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR 5558, CNRS, VAS, Villeurbanne 69622, France
| | - Marie Fablet
- Universite Claude Bernard Lyon 1, Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR 5558, CNRS, VAS, Villeurbanne 69622, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
4
|
Wang Y, Troutman MC, Hofmann C, Gonzalez A, Song L, Levin R, Pixley HY, Kearns K, DePhillips P, Loughney JW. Fully automated high-throughput immuno-µPlaque assay for live-attenuated tetravalent dengue vaccine development. Front Immunol 2024; 15:1356600. [PMID: 38410513 PMCID: PMC10895029 DOI: 10.3389/fimmu.2024.1356600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Dengue fever has remained a continuing global medical threat that impacts half of the world's population. Developing a highly effective dengue vaccine, with live-attenuated tetravalent vaccines as leading candidates, remains essential in preventing this disease. For the development of live virus vaccines (LVVs), potency measurements play a vital role in quantifying the active components of vaccine drug substance as well as drug product during various stages of research, development, and post-licensure evaluations. Traditional plaque-based assays are one of the most common potency test methods, but they generally take up to weeks to complete. Less labor and time-intensive potency assays are thus called for to aid in the acceleration of vaccine development, especially for multivalent LVVs. Here, we introduce a fully automated, 96-well format µPlaque assay that has been optimized as a high-throughput tool to evaluate process and formulation development of a live-attenuated tetravalent dengue vaccine. To the best of our knowledge, this is the first report of a miniaturized viral plaque method for dengue with full automation via an integrated robotic system. Compared to the traditional manual plaque assay, this newly developed method substantially reduces testing time by approximately half and allows for the evaluation of over ten times more samples per run. The fully automated workflow, from cell culture to plaque counting, significantly minimizes analyst hands-on time and improves assay repeatability. The study presents a pioneering solution for the rapid measurement of LVV viral titers, offering promising prospects for advancing vaccine development through high-throughput analytics.
Collapse
Affiliation(s)
- Yi Wang
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, United States
| | - Matthew C. Troutman
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, United States
| | - Carl Hofmann
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, United States
| | - Ariel Gonzalez
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, United States
| | - Liping Song
- Biostatistics, Merck & Co., Inc., Rahway, NJ, United States
| | - Robert Levin
- Vaccine Drug Product Development, Merck & Co., Inc, Rahway, NJ, United States
| | - Heidi Yoder Pixley
- Vaccine Drug Product Development, Merck & Co., Inc, Rahway, NJ, United States
| | - Kristine Kearns
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, United States
| | - Pete DePhillips
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, United States
| | - John W. Loughney
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, United States
| |
Collapse
|
5
|
Ma S, Shi S, Xu B, Liu M, Xie L, Su Y, Li J, Liang Q, Ye S, Wang Y. Host serine protease ACOT2 assists DENV proliferation by hydrolyzing viral polyproteins. mSystems 2024; 9:e0097323. [PMID: 38112462 PMCID: PMC10804956 DOI: 10.1128/msystems.00973-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/12/2023] [Indexed: 12/21/2023] Open
Abstract
Dengue fever is a mosquito-borne tropical disease caused by the dengue virus (DENV). The replication of DENV relies on the processing of its genome-encoded polyprotein by both viral protease NS3 (NS3pro) and host proteases. However, the impact of host proteases on DENV proliferation is not well understood. In this study, we utilized fluorophosphonate-based probes (FPs) to investigate the up-regulation of host serine proteases during DENV infection in detail. Among the identified proteases, acyl-CoA thioesterase 2 (ACOT2), an enzyme that hydrolyzes acyl-CoA molecules to generate fatty acids and free CoA, exhibited cleavage activity against DENV polypeptide substrates. Enzymatic assays and virological experiments confirmed that ACOT2 contributes to DENV propagation during the replication stage by cleaving the viral polyprotein. Docking models provided insights into the binding pocket of viral polypeptides and the catalytic mechanism of ACOT2. Notably, this study is the first to demonstrate that ACOT2 functions as a serine protease to hydrolyze protein substrates. These findings offer novel insights into DENV infection, host response, as well as the potential development of innovative antiviral strategies.IMPORTANCEDENV, one of the major pathogens of Dengue fever, remains a significant public health concern in tropical and subtropical regions worldwide. How DENV efficiently hijacks the host and accesses its life cycle with delicate interaction remains to be elucidated. Here, we deconvoluted that the host protease ACOT2 assists the DENV replication and characterized the ACOT2 as a serine protease involved in the hydrolysis of the DENV polypeptide substrate. Our results not only further the understanding of the DENV life cycle but also provide a possibility for the usage of activity-based proteomics to reveal host-virus interactions.
Collapse
Affiliation(s)
- Sen Ma
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Sai Shi
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Binghong Xu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Meijun Liu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Lei Xie
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Yang Su
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
| | - Jiachen Li
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Qinqin Liang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Yaxin Wang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
6
|
Suzuki Y, Suzuki T, Miura F, Reyes JIL, Asin ICA, Mitsunari W, Uddin MM, Sekii Y, Watanabe K. No detectable fitness cost of infection by cell-fusing agent virus in Aedes aegypti mosquitoes. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231373. [PMID: 38204783 PMCID: PMC10776230 DOI: 10.1098/rsos.231373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024]
Abstract
Aedes mosquitoes are well-known vectors of arthropod-borne viruses (arboviruses). Mosquitoes are more frequently infected with insect-specific viruses (ISVs) that cannot infect vertebrates. Some ISVs interfere with arbovirus replication in mosquito vectors, which has gained attention for potential use against arbovirus transmission. Cell-fusing agent virus (CFAV), a widespread ISV, can reduce arbovirus dissemination in Ae. aegypti. However, vectorial capacity is largely governed by other parameters than pathogen load, including mosquito survival and biting behaviour. Understanding how ISVs impact these mosquito fitness-related traits is critical to assess the potential risk of using ISVs as biological agents. Here, we examined the effects of CFAV infection on Ae. aegypti mosquito fitness. We found no significant reduction in mosquito survival, blood-feeding behaviour and reproduction, suggesting that Ae. aegypti is tolerant to CFAV. The only detectable effect was a slight increase in human attraction of CFAV-infected females in one out of eight trials. Viral tolerance is beneficial for introducing CFAV into natural mosquito populations, whereas the potential increase in biting activity must be further investigated. Our results provide the first insight into the link between ISVs and Aedes mosquito fitness and highlight the importance of considering all aspects of vectorial capacity for arbovirus control using ISVs.
Collapse
Affiliation(s)
- Yasutsugu Suzuki
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
| | - Takahiro Suzuki
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
- Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
| | - Fuminari Miura
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jerica Isabel L. Reyes
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
- Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
| | - Irish Coleen A. Asin
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
- Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
| | - Wataru Mitsunari
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
- Faculty of Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
| | - Mohammad Mosleh Uddin
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
- Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
- Department of Biochemistry and Molecular Biology (BMB), Faculty of Life Science, Mawlana Bhashani Science and Technology University (MBSTU), Santosh, Tangail, Bangladesh
| | - Yu Sekii
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
| |
Collapse
|
7
|
Yan J, Kim CH, Chesser L, Ramirez JL, Stone CM. Nutritional stress compromises mosquito fitness and antiviral immunity, while enhancing dengue virus infection susceptibility. Commun Biol 2023; 6:1123. [PMID: 37932414 PMCID: PMC10628303 DOI: 10.1038/s42003-023-05516-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
Diet-induced nutritional stress can influence pathogen transmission potential in mosquitoes by impacting life history traits, infection susceptibility, and immunity. To investigate these effects, we manipulate mosquito diets at larval and adult stages, creating two nutritional levels (low and normal), and expose adults to dengue virus (DENV). We observe that egg number is reduced by nutritional stress at both stages and viral exposure separately and jointly, while the likelihood of laying eggs is exclusively influenced by adult nutritional stress. Adult nutritional stress alone shortens survival, while any pairwise combination between both-stage stress and viral exposure have a synergistic effect. Additionally, adult nutritional stress increases susceptibility to DENV infection, while larval nutritional stress likely has a similar effect operating via smaller body size. Furthermore, adult nutritional stress negatively impacts viral titers in infected mosquitoes; however, some survive and show increased titers over time. The immune response to DENV infection is overall suppressed by larval and adult nutritional stress, with specific genes related to Toll, JAK-STAT, and Imd immune signaling pathways, and antimicrobial peptides being downregulated. Our findings underscore the importance of nutritional stress in shaping mosquito traits, infection outcomes, and immune responses, all of which impact the vectorial capacity for DENV transmission.
Collapse
Affiliation(s)
- Jiayue Yan
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| | - Chang-Hyun Kim
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Leta Chesser
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jose L Ramirez
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Research Unit, Peoria, IL, USA
| | - Chris M Stone
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|