1
|
Wu H, Ji Z, Huang X, Li L, Hang S, Yu J, Lu H, Jiang Y. Isobavachalcone Exhibits Potent Antifungal Efficacy by Inhibiting Enolase Activity and Glycolysis in Candida albicans. ACS Infect Dis 2024; 10:3059-3070. [PMID: 38995732 DOI: 10.1021/acsinfecdis.4c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Invasive fungal diseases (IFDs) are becoming increasingly acknowledged as a significant concern linked to heightened rates of morbidity and mortality. Regrettably, the available antifungal therapies for managing IFDs are constrained. Emerging evidence indicates that enolase holds promise as a potential target protein for combating IFDs; however, there is currently a deficiency in antifungal medications specifically targeting enolase. This study establishes that isobavachalcone (IBC) exhibits noteworthy antifungal efficacy both in vitro and in vivo. Moreover, our study has demonstrated that IBC effectively targets Eno1 in Candida albicans (CaEno1), resulting in the suppression of the glycolytic pathway. Additionally, our research has indicated that IBC exhibits a higher affinity for CaEno1 compared to human Eno1 (hEno1), with the presence of isoprenoid in the side chain of IBC playing a crucial role in its ability to inhibit enolase activity. These findings contribute to the comprehension of antifungal approaches that target Eno1, identifying IBC as a potential inhibitor of Eno1 in human pathogenic fungi.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Zhe Ji
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xin Huang
- Department of Dermatology, Hair Medical Center of Shanghai Tongji Hospital, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Sijin Hang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jinhua Yu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Hodges MR, Ople E, Evans P, Pantophlet AJ(A, Richardson J, Williams D, Tripathy S, Tawadrous M, Jakate A. A phase 1 open label study to assess the human mass balance and metabolite profile of 14C-fosmanogepix, a novel Gwt-1 inhibitor in healthy male participants. Antimicrob Agents Chemother 2024; 68:e0027324. [PMID: 39012090 PMCID: PMC11304685 DOI: 10.1128/aac.00273-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Fosmanogepix [FMGX; active form manogepix (MGX)], a novel antifungal, is currently being studied for the treatment of invasive fungal diseases caused by Candida spp., Aspergillus spp., and other rare molds. This Phase 1, single-dose study used 14C-radiolabeled FMGX to determine the disposition and metabolism of FMGX. Ten healthy male participants were enrolled equally into: oral cohort {FMGX 500 mg oral + 3.1 megabecquerel [MBq, 84.0 microcurie (μCi)] 14C} and intravenous (IV) cohort [FMGX 600 mg IV + 3.4 MBq (93.0 µCi) 14C]. At the end of the sampling period (456 h post-dose), 90.2% of radioactivity administered was recovered (46.4% from urine; 43.8% from feces) in oral cohort (82.3% within 240 h), and 82.4% was recovered (42.5% from urine; 39.9% from feces) in IV cohort (76.2% within 264 h), indicating that FMGX elimination occurs via renal and hepatic routes. Radioactivity transformation pathways (oral and IV) indicated multiple major routes of metabolism of FMGX, mainly via MGX, and included oxidation, oxidative deamination, and conjugation. All except one key human plasma metabolite was observed in toxicity species, but its proportion (<10%) in the human area under the curve plasma samples was not of toxicological concern. No deaths, serious, or severe adverse events (AE) were reported, and there were no AE-related withdrawals. The results of this study indicated extensive metabolism of FMGX, with similar key human plasma metabolites observed in the animal studies. The elimination of FMGX was equally through renal and hepatic routes. CLINICAL TRIALS This study is registered with ClinicalTrials.gov as NCT04804059.
Collapse
Affiliation(s)
| | - Eric Ople
- Amplyx Pharmaceuticals, Inc., San Diego, California, USA
| | - Philip Evans
- Quotient Sciences, Ruddington Fields, Nottingham, United Kingdom
| | | | | | - Dylan Williams
- Pharmaron UK Ltd., Rushden, Northamptonshire, United Kingdom
| | | | | | | |
Collapse
|
3
|
Tanwar M, Singh A, Singh TP, Sharma S, Sharma P. Comprehensive Review on the Virulence Factors and Therapeutic Strategies with the Aid of Artificial Intelligence against Mucormycosis. ACS Infect Dis 2024; 10:1431-1457. [PMID: 38682683 DOI: 10.1021/acsinfecdis.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Mucormycosis, a rare but deadly fungal infection, was an epidemic during the COVID-19 pandemic. The rise in cases (COVID-19-associated mucormycosis, CAM) is attributed to excessive steroid and antibiotic use, poor hospital hygiene, and crowded settings. Major contributing factors include diabetes and weakened immune systems. The main manifesting forms of CAM─cutaneous, pulmonary, and the deadliest, rhinocerebral─and disseminated infections elevated mortality rates to 85%. Recent focus lies on small-molecule inhibitors due to their advantages over standard treatments like surgery and liposomal amphotericin B (which carry several long-term adverse effects), offering potential central nervous system penetration, diverse targets, and simpler dosing owing to their small size, rendering the ability to traverse the blood-brain barrier via passive diffusion facilitated by the phospholipid membrane. Adaptation and versatility in mucormycosis are facilitated by a multitude of virulence factors, enabling the pathogen to dynamically respond to various environmental stressors. A comprehensive understanding of these virulence mechanisms is imperative for devising effective therapeutic interventions against this highly opportunistic pathogen that thrives in immunocompromised individuals through its angio-invasive nature. Hence, this Review delineates the principal virulence factors of mucormycosis, the mechanisms it employs to persist in challenging host environments, and the current progress in developing small-molecule inhibitors against them.
Collapse
Affiliation(s)
- Mansi Tanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Anamika Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Tej Pal Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
4
|
Hang S, Lu H, Jiang Y. Marine-Derived Metabolites Act as Promising Antifungal Agents. Mar Drugs 2024; 22:180. [PMID: 38667797 PMCID: PMC11051449 DOI: 10.3390/md22040180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
The incidence of invasive fungal diseases (IFDs) is on the rise globally, particularly among immunocompromised patients, leading to significant morbidity and mortality. Current clinical antifungal agents, such as polyenes, azoles, and echinocandins, face increasing resistance from pathogenic fungi. Therefore, there is a pressing need for the development of novel antifungal drugs. Marine-derived secondary metabolites represent valuable resources that are characterized by varied chemical structures and pharmacological activities. While numerous compounds exhibiting promising antifungal activity have been identified, a comprehensive review elucidating their specific underlying mechanisms remains lacking. In this review, we have compiled a summary of antifungal compounds derived from marine organisms, highlighting their diverse mechanisms of action targeting various fungal cellular components, including the cell wall, cell membrane, mitochondria, chromosomes, drug efflux pumps, and several biological processes, including vesicular trafficking and the growth of hyphae and biofilms. This review is helpful for the subsequent development of antifungal drugs due to its summary of the antifungal mechanisms of secondary metabolites from marine organisms.
Collapse
Affiliation(s)
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, 200092 Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, 200092 Shanghai, China
| |
Collapse
|
5
|
Xiong J, Wang L, Feng Z, Hang S, Yu J, Feng Y, Lu H, Jiang Y. Halofantrine Hydrochloride Acts as an Antioxidant Ability Inhibitor That Enhances Oxidative Stress Damage to Candida albicans. Antioxidants (Basel) 2024; 13:223. [PMID: 38397821 PMCID: PMC10886025 DOI: 10.3390/antiox13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Candida albicans, a prominent opportunistic pathogenic fungus in the human population, possesses the capacity to induce life-threatening invasive candidiasis in individuals with compromised immune systems despite the existence of antifungal medications. When faced with macrophages or neutrophils, C. albicans demonstrates its capability to endure oxidative stress through the utilization of antioxidant enzymes. Therefore, the enhancement of oxidative stress in innate immune cells against C. albicans presents a promising therapeutic approach for the treatment of invasive candidiasis. In this study, we conducted a comprehensive analysis of a library of drugs approved by the Food and Drug Administration (FDA). We discovered that halofantrine hydrochloride (HAL) can augment the antifungal properties of oxidative damage agents (plumbagin, menadione, and H2O2) by suppressing the response of C. albicans to reactive oxygen species (ROS). Furthermore, our investigation revealed that the inhibitory mechanism of HAL on the oxidative response is dependent on Cap1. In addition, the antifungal activity of HAL has been observed in the Galleria mellonella infection model. These findings provide evidence that targeting the oxidative stress response of C. albicans and augmenting the fungicidal capacity of oxidative damage agents hold promise as effective antifungal strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
6
|
Wang L, Zhang X, Li L, Bao J, Lin F, Zhu X. A key sphingolipid pathway gene, MoDES1, regulates conidiation, virulence and plasma membrane tension in Magnaporthe oryzae. Microbiol Res 2024; 279:127554. [PMID: 38056173 DOI: 10.1016/j.micres.2023.127554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Rice blast, caused by the plant pathogenic fungus Magnaporthe oryzae, is a destructive disaster all over the earth that causes enormous losses in crop production. Sphingolipid, an important biological cell membrane lipid, is an essential structural component in the plasma membrane (PM) and has several biological functions, including cell mitosis, apoptosis, stress resistance, and signal transduction. Previous studies have suggested that sphingolipid and its derivatives play essential roles in the virulence of plant pathogenic fungi. However, the functions of sphingolipid biosynthesis-related proteins are not fully understood. In this article, we identified a key sphingolipid synthesis enzyme, MoDes1, and found that it is engaged in cell development and pathogenicity in M. oryzae. Deletion of MoDES1 gave rise to pleiotropic defects in vegetative growth, conidiation, plant penetration, and pathogenicity. MoDes1 is also required for lipid homeostasis and participates in the cell wall integrity (CWI) and Osm1-MAPK pathways. Notably, our results showed that there is negative feedback in the TORC2 signaling pathway to compensate for the decreased sphingolipid level due to the knockout of MoDES1 by regulating the phosphorylated Ypk1 level and PM tension. Furthermore, protein structure building has shown that MoDes1 is a potential drug target. These findings further refine the function of Des1 and deepen our understanding of the sphingolipid biosynthesis pathway in M. oryzae, laying a foundation for developing novel and specific drugs for rice blast control.
Collapse
Affiliation(s)
- Lei Wang
- The College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Xiaozhi Zhang
- The College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiandong Bao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fucheng Lin
- The College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Xianghu Laboratory, Hangzhou, 311231, China.
| | - Xueming Zhu
- The College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
7
|
Wang Y, Xu J, Ben Abid F, Salah H, Sundararaju S, Al Ismail K, Wang K, Sara Matthew L, Taj-Aldeen S, Ibrahim EB, Tang P, Perez-Lopez A, Tsui CKM. Population genomic analyses reveal high diversity, recombination and nosocomial transmission among Candida glabrata ( Nakaseomyces glabrata) isolates causing invasive infections. Microb Genom 2024; 10:001179. [PMID: 38226964 PMCID: PMC10868614 DOI: 10.1099/mgen.0.001179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024] Open
Abstract
Candida glabrata is a commensal yeast of the gastrointestinal tract and skin of humans. However, it causes opportunistic infections in immunocompromised patients, and is the second most common Candida pathogen causing bloodstream infections. Although there are many studies on the epidemiology of C. glabrata infections, the fine- and large-scale geographical nature of C. glabrata remain incompletely understood. Here we investigated both the fine- and large-scale population structure of C. glabrata through genome sequencing of 80 clinical isolates obtained from six tertiary hospitals in Qatar and by comparing with global collections. Our fine-scale analyses revealed high genetic diversity within the Qatari population of C. glabrata and identified signatures of recombination, inbreeding and clonal expansion within and between hospitals, including evidence for nosocomial transmission among coronavirus disease 2019 (COVID-19) patients. In addition to signatures of recombination at the population level, both MATa and MATα alleles were detected in most hospitals, indicating the potential for sexual reproduction in clinical environments. Comparisons with global samples showed that the Qatari C. glabrata population was very similar to those from other parts of the world, consistent with the significant role of recent anthropogenic activities in shaping its population structure. Genome-wide association studies identified both known and novel genomic variants associated with reduced susceptibilities to fluconazole, 5-flucytosine and echinocandins. Together, our genomic analyses revealed the diversity, transmission patterns and antifungal drug resistance mechanisms of C. glabrata in Qatar as well as the relationships between Qatari isolates and those from other parts of the world.
Collapse
Affiliation(s)
- Yue Wang
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Fatma Ben Abid
- Department of Medicine, Division of Infectious Diseases, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine-Qatar, Doha, Qatar
- Communicable Disease Centre, Hamad Medical Corporation, Doha, Qatar
| | - Husam Salah
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | | | - Khalil Al Ismail
- Communicable Disease Centre, Hamad Medical Corporation, Doha, Qatar
| | - Kun Wang
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Saad Taj-Aldeen
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Emad B. Ibrahim
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Patrick Tang
- Weill Cornell Medicine-Qatar, Doha, Qatar
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Andres Perez-Lopez
- Weill Cornell Medicine-Qatar, Doha, Qatar
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Clement K. M. Tsui
- Division of Microbiology, Department of Pathology, Sidra Medicine, Doha, Qatar
- Infectious Diseases Research Laboratory, National Center for Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Rollin-Pinheiro R, de Moraes DC, Bayona-Pacheco B, Curvelo JADR, dos Santos-Freitas GMP, Xisto MIDDS, Borba-Santos LP, Rozental S, Ferreira-Pereira A, Barreto-Bergter E. Structural and Functional Alterations Caused by Aureobasidin A in Clinical Resistant Strains of Candida spp. J Fungi (Basel) 2023; 9:1115. [PMID: 37998920 PMCID: PMC10672136 DOI: 10.3390/jof9111115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Candida species are one of the most concerning causative agents of fungal infections in humans. The treatment of invasive Candida infections is based on the use of fluconazole, but the emergence of resistant isolates has been an increasing concern which has led to the study of alternative drugs with antifungal activity. Sphingolipids have been considered a promising target due to their roles in fungal growth and virulence. Inhibitors of the sphingolipid biosynthetic pathway have been described to display antifungal properties, such as myriocin and aureobasidin A, which are active against resistant Candida isolates. In the present study, aureobasidin A did not display antibiofilm activity nor synergism with amphotericin B, but its combination with fluconazole was effective against Candida biofilms and protected the host in an in vivo infection model. Alterations in treated cells revealed increased oxidative stress, reduced mitochondrial membrane potential and chitin content, as well as altered morphology, enhanced DNA leakage and a greater susceptibility to sodium dodecyl sulphate (SDS). In addition, it seems to inhibit the efflux pump CaCdr2p. All these data contribute to elucidating the role of aureobasidin A on fungal cells, especially evidencing its promising use in clinical resistant isolates of Candida species.
Collapse
Affiliation(s)
- Rodrigo Rollin-Pinheiro
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (G.M.P.d.S.-F.); (M.I.D.d.S.X.)
| | - Daniel Clemente de Moraes
- Laboratório de Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (D.C.d.M.); (B.B.-P.); (J.A.d.R.C.); (A.F.-P.)
| | - Brayan Bayona-Pacheco
- Laboratório de Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (D.C.d.M.); (B.B.-P.); (J.A.d.R.C.); (A.F.-P.)
- Departamento de Medicina, División Ciencias de la Salud, Universidad del Norte, Km 5, Vía Puerto Colombia, Área Metropolitana de Barranquilla, Barranquilla 081007, Colombia
| | - Jose Alexandre da Rocha Curvelo
- Laboratório de Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (D.C.d.M.); (B.B.-P.); (J.A.d.R.C.); (A.F.-P.)
| | - Giulia Maria Pires dos Santos-Freitas
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (G.M.P.d.S.-F.); (M.I.D.d.S.X.)
| | - Mariana Ingrid Dutra da Silva Xisto
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (G.M.P.d.S.-F.); (M.I.D.d.S.X.)
| | - Luana Pereira Borba-Santos
- Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.P.B.-S.); (S.R.)
| | - Sonia Rozental
- Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.P.B.-S.); (S.R.)
| | - Antonio Ferreira-Pereira
- Laboratório de Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (D.C.d.M.); (B.B.-P.); (J.A.d.R.C.); (A.F.-P.)
| | - Eliana Barreto-Bergter
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (G.M.P.d.S.-F.); (M.I.D.d.S.X.)
| |
Collapse
|
9
|
Rodriguez-Canales M, Medina-Romero YM, Rodriguez-Monroy MA, Nava-Solis U, Bolaños-Cruz SI, Mendoza-Romero MJ, Campos JE, Hernandez-Hernandez AB, Chirino YI, Cruz-Sanchez T, Garcia-Tovar CG, Canales-Martinez MM. Activity of propolis from Mexico on the proliferation and virulence factors of Candida albicans. BMC Microbiol 2023; 23:325. [PMID: 37924042 PMCID: PMC10625287 DOI: 10.1186/s12866-023-03064-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/14/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND This research evaluated the anti-Candida albicans effect of Mexican propolis from Chihuahua. Chemical composition of the ethanolic extract of propolis was determined by GC-MS, HPLC-DAD, and HPLC-MS. The presence of anthraquinone, aromatic acid, fatty acids, flavonoids, and carbohydrates was revealed. RESULTS The anti-Candida activity of propolis was determined. The inhibitions halos were between 10.0 to 11.8 mm; 25% minimum inhibitory concentration (0.5 mg/ml) was fungistatic, and 50% minimum inhibitory concentration (1.0 mg/ml) was fungicidal. The effect of propolis on the capability of C. albicans to change its morphology was evaluated. 25% minimum inhibitory concentration inhibited to 50% of germ tube formation. Staining with calcofluor-white and propidium iodide was performed, showing that the propolis affected the integrity of the cell membrane. INT1 gene expression was evaluated by qRT-PCR. Propolis significantly inhibited the expression of the INT1 gene encodes an adhesin (Int1p). Chihuahua propolis extract inhibited the proliferation of Candida albicans, the development of the germ tube, and the synthesis of adhesin INT1. CONCLUSIONS Given the properties demonstrated for Chihuahua propolis, we propose that it is a candidate to be considered as an ideal antifungal agent to help treat this infection since it would not have the toxic effects of conventional antifungals.
Collapse
Affiliation(s)
- Mario Rodriguez-Canales
- Pharmacognosy Laboratory, Biotechnology and Prototypes Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090, Mexico.
| | - Yoli Mariana Medina-Romero
- Pharmacognosy Laboratory, Biotechnology and Prototypes Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090, Mexico
| | - Marco Aurelio Rodriguez-Monroy
- Biomedical Research Laboratory in Natural Products, Medicine Career, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Avenida de los Barrios Numero 1, Colonia Los Reyes Iztacala, Tlalnepantla, Edo. de Mexico, C.P. 54090, Mexico
| | - Uriel Nava-Solis
- Pharmacognosy Laboratory, Biotechnology and Prototypes Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090, Mexico
| | - Sandra Isabel Bolaños-Cruz
- Pharmacognosy Laboratory, Biotechnology and Prototypes Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090, Mexico
| | - Maria Jimena Mendoza-Romero
- Pharmacognosy Laboratory, Biotechnology and Prototypes Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090, Mexico
| | - Jorge E Campos
- Molecular Biochemistry Laboratory, Biotechnology and Prototypes Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090, México
| | - Ana Bertha Hernandez-Hernandez
- Pharmacognosy Laboratory, Biotechnology and Prototypes Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090, Mexico
| | - Yolanda I Chirino
- Laboratory 10, Carcinogenesis and Toxicology, Biomedicine Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Avenida de los Barrios Numero 1, Colonia Los Reyes Iztacala, Tlalnepantla, Edo. de Mexico, C.P. 54090, Mexico
| | - Tonatiuh Cruz-Sanchez
- Propolis Analysis Service Laboratory, Faculty of Higher Studies Cuautitlan, National Autonomous University of Mexico, Av. Teoloyucan Km 2.5, San Sebastian Xhala, Cuautitlán Izcalli, Edo. de México, C.P. 54714, México
| | - Carlos Gerardo Garcia-Tovar
- Laboratory of Veterinary Morphology and Cell Biology, Faculty of Higher Studies Cuautitlan, National Autonomous University of Mexico, Av. Teoloyucan Km 2.5, San Sebastian Xhala, Cuautitlán Izcalli, Estado de México, CP 54714, México
| | - Maria Margarita Canales-Martinez
- Pharmacognosy Laboratory, Biotechnology and Prototypes Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090, Mexico.
| |
Collapse
|
10
|
Zhu XM, Li L, Bao JD, Wang JY, Daskalov A, Liu XH, Del Poeta M, Lin FC. The biological functions of sphingolipids in plant pathogenic fungi. PLoS Pathog 2023; 19:e1011733. [PMID: 37943805 PMCID: PMC10635517 DOI: 10.1371/journal.ppat.1011733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
Sphingolipids are critically significant in a range of biological processes in animals, plants, and fungi. In mammalian cells, they serve as vital components of the plasma membrane (PM) in maintaining its structure, tension, and fluidity. They also play a key role in a wide variety of biological processes, such as intracellular signal transduction, cell polarization, differentiation, and migration. In plants, sphingolipids are important for cell development and for cell response to environmental stresses. In pathogenic fungi, sphingolipids are crucial for the initiation and the development of infection processes afflicting humans. However, our knowledge on the metabolism and function of the sphingolipid metabolic pathway of pathogenic fungi affecting plants is still very limited. In this review, we discuss recent developments on sphingolipid pathways of plant pathogenic fungi, highlighting their uniqueness and similarity with plants and animals. In addition, we discuss recent advances in the research and development of fungal-targeted inhibitors of the sphingolipid pathway, to gain insights on how we can better control the infection process occurring in plants to prevent or/and to treat fungal infections in crops.
Collapse
Affiliation(s)
- Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jian-Dong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiao-Yu Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Asen Daskalov
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiao-Hong Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
- Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
- Veterans Affairs Medical Center, Northport, New York, United States of America
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Cheng J, Yin X, Wang L, Liu X, Yang F, Zhang L, Liu T. Decoding molecular mechanism of species-selective targeting of fungal versus human HSP90 using multiple replica molecular dynamics simulations and binding free energy calculations. J Biomol Struct Dyn 2023:1-11. [PMID: 37850420 DOI: 10.1080/07391102.2023.2270687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
As a highly evolutionarily conserved molecular chaperone, heat shock protein (HSP90), plays an important role in virulence traits, representing a therapeutic target for the treatment of fungal infections. The close evolutionary relationship between fungi and their human hosts poses a key challenge for the development of selective antifungal agents. In this work, molecular docking, multiple replica microsecond-based molecular dynamics (MD) simulations, and binding free energy calculations were performed to decode molecular mechanism of species-selective targeting of fungal versus human HSP90 triggered by the compound A11. MD simulations reveal that binding of compound A11 to human HSP90 nucleotide-binding domain (NBD) leads to obvious conformational changes relative to fungal HSP90 NBD. Binding free energy calculations show that the binding of compound A11 to fungal HSP90 NBD is stronger than that to human HSP90 NBD. Per residue-based free energy decomposition analysis was used to evaluate the inhibitor - residue interaction profile. The results efficiently identify the hot spot residues that play vital roles in favorable binding of compound A11 to fungal HSP90 NBD. This study is expected to provide a useful guidance for the development of selective inhibitors toward fungal HSP90.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jinying Cheng
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xue Yin
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lulu Wang
- Department of Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xianxian Liu
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fang Yang
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Liguo Zhang
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Tonggang Liu
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|
12
|
Zhou H, Yang N, Li W, Peng X, Dong J, Jiang Y, Yan L, Zhang D, Jin Y. Exploration of Baicalein-Core Derivatives as Potent Antifungal Agents: SAR and Mechanism Insights. Molecules 2023; 28:6340. [PMID: 37687172 PMCID: PMC10489750 DOI: 10.3390/molecules28176340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Baicalein (BE), the major component of Scutellaria Baicalensis, exhibited potently antifungal activity against drug-resistant Candida albicans, and strong inhibition on biofilm formation. Therefore, a series of baicalein-core derivatives were designed and synthesized to find more potent compounds and investigate structure-activity relationship (SAR) and mode of action (MoA). Results demonstrate that A4 and B5 exert a more potent antifungal effect (MIC80 = 0.125 μg/mL) than BE (MIC80 = 4 μg/mL) when used in combination with fluconazole (FLC), while the MIC80 of FLC dropped from 128 μg/mL to 1 μg/mL. SAR analysis indicates that the presence of 5-OH is crucial for synergistic antifungal activities, while o-dihydroxyls and vic-trihydroxyls are an essential pharmacophore, whether they are located on the A ring or the B ring of flavonoids. The MoA demonstrated that these compounds exhibited potent antifungal effects by inhibiting hypha formation of C. albicans. However, sterol composition assay and enzymatic assay conducted in vitro indicated minimal impact of these compounds on sterol biosynthesis and Eno1. These findings were further confirmed by the results of the in-silico assay, which assessed the stability of the complexes. Moreover, the inhibition of hypha of this kind of compound could be attributed to their effect on the catalytic subunit of 1,3-β-d-glucan synthase, 1,3-β-d-glucan-UDP glucosyltransferase and glycosyl-phosphatidylinositol protein, rather than inhibiting ergosterol biosynthesis and Eno1 activity by Induced-Fit Docking and Molecular Dynamics Simulations. This study presents potential antifungal agents with synergistic effects that can effectively inhibit hypha formation. It also provides new insights into the MoA.
Collapse
Affiliation(s)
- Heyang Zhou
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (H.Z.); (L.Y.)
| | - Niao Yang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (H.Z.); (L.Y.)
| | - Wei Li
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (H.Z.); (L.Y.)
| | - Xuemi Peng
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (H.Z.); (L.Y.)
| | - Jiaxiao Dong
- School of Pharmacy, Anhui Medical University, Hefei 230022, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China;
| | - Lan Yan
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (H.Z.); (L.Y.)
| | - Dazhi Zhang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (H.Z.); (L.Y.)
| | - Yongsheng Jin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (H.Z.); (L.Y.)
| |
Collapse
|
13
|
de Oliveira H, Bezerra BT, Rodrigues ML. Antifungal Development and the Urgency of Minimizing the Impact of Fungal Diseases on Public Health. ACS BIO & MED CHEM AU 2023; 3:137-146. [PMID: 37101810 PMCID: PMC10125384 DOI: 10.1021/acsbiomedchemau.2c00055] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 04/28/2023]
Abstract
Fungal infections are a major public health problem resulting from the lack of public policies addressing these diseases, toxic and/or expensive therapeutic tools, scarce diagnostic tests, and unavailable vaccines. In this Perspective, we discuss the need for novel antifungal alternatives, highlighting new initiatives based on drug repurposing and the development of novel antifungals.
Collapse
Affiliation(s)
| | - Bárbara T. Bezerra
- Instituto
Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba81310-020, Brazil
| | - Marcio L. Rodrigues
- Instituto
Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba81310-020, Brazil
- Instituto
de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-902, Brazil
| |
Collapse
|
14
|
Calcineurin Inhibitors Synergize with Manogepix to Kill Diverse Human Fungal Pathogens. J Fungi (Basel) 2022; 8:jof8101102. [PMID: 36294667 PMCID: PMC9605145 DOI: 10.3390/jof8101102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
Invasive fungal infections have mortality rates of 30–90%, depending on patient co-morbidities and the causative pathogen. The frequent emergence of drug resistance reduces the efficacy of currently approved treatment options, highlighting an urgent need for antifungals with new modes of action. Addressing this need, fosmanogepix (N-phosphonooxymethylene prodrug of manogepix; MGX) is the first in a new class of gepix drugs, and acts as a broad-spectrum, orally bioavailable inhibitor of the essential fungal glycosylphosphatidylinositol (GPI) acyltransferase Gwt1. MGX inhibits the growth of diverse fungal pathogens and causes accumulation of immature GPI-anchored proteins in the fungal endoplasmic reticulum. Relevant to the ongoing clinical development of fosmanogepix, we report a synergistic, fungicidal interaction between MGX and inhibitors of the protein phosphatase calcineurin against important human fungal pathogens. To investigate this synergy further, we evaluated a library of 124 conditional expression mutants covering 95% of the genes encoding proteins involved in GPI-anchor biosynthesis or proteins predicted to be GPI-anchored. Strong negative chemical-genetic interactions between the calcineurin inhibitor FK506 and eleven GPI-anchor biosynthesis genes were identified, indicating that calcineurin signalling is required for fungal tolerance to not only MGX, but to inhibition of the GPI-anchor biosynthesis pathway more broadly. Depletion of these GPI-anchor biosynthesis genes, like MGX treatment, also exposed fungal cell wall (1→3)-β-D-glucans. Taken together, these findings suggest the increased risk of invasive fungal infections associated with use of calcineurin inhibitors as immunosuppressants may be mitigated by their synergistic fungicidal interaction with (fos)manogepix and its ability to enhance exposure of immunostimulatory glucans.
Collapse
|