1
|
Liu Z, Bai P, Wang L, Zhu L, Zhu Z, Jiang L. Clostridium tyrobutyricum in Combination with Chito-oligosaccharides Modulate Inflammation and Gut Microbiota for Inflammatory Bowel Disease Treatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18497-18506. [PMID: 39099138 DOI: 10.1021/acs.jafc.4c03486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Synbiotics, the combination of probiotics and prebiotics, are thought to be a pragmatic approach for the treatment of various diseases, including inflammatory bowel disease (IBD). The synergistic therapeutic effects of probiotics and prebiotics remain underexplored. Clostridium tyrobutyricum, a short-chain fatty acid (SCFA) producer, has been recognized as a promising probiotic candidate that can offer health benefits. In this study, the treatment effects of synbiotics containing C. tyrobutyricum and chitooligosaccharides (COSs) on IBD were evaluated. The results indicated that the synbiotic supplement effectively relieved inflammation and restored intestinal barrier function. Additionally, the synbiotic supplement could contribute to the elimination of reactive oxygen species (ROS) and improve the production of SCFAs through the SCFAs-producer of C. tyrobutyricum. Furthermore, such the synbiotic could also regulate the composition of gut microbiota. These findings underscore the potential of C. tyrobutyricum and COSs as valuable living biotherapeutics for the treatment of intestinal-related diseases.
Collapse
Affiliation(s)
- Zhenlei Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Pengfei Bai
- Nanjing Foreign Language School, Nanjing 210008, China
| | - Lefei Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhengming Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
2
|
Gulnaz A, Lew LC, Park YH, Sabir JSM, Albiheyri R, Rather IA, Hor YY. Efficacy of Probiotic Strains Lactobacillus sakei Probio65 and Lactobacillus plantarum Probio-093 in Management of Obesity: An In Vitro and In Vivo Analysis. Pharmaceuticals (Basel) 2024; 17:676. [PMID: 38931347 PMCID: PMC11206994 DOI: 10.3390/ph17060676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of obesity, characterized by an excessive accumulation of adipose tissue and adipocyte hypertrophy, presents a major public health challenge. This study investigates the therapeutic potential of two probiotic strains, Lactobacillus sakei Probio65 and Lactobacillus plantarum Probio-093, in the context of obesity. Utilizing 3T3-L1 cell-derived human adipocytes, we assessed Probio65's and Probio-093's capacity to mitigate triglyceride accumulation and influence adipocytokine production in vitro. Subsequently, an in vivo trial with male C57BL/6J mice examined the effects of both probiotic strains on adipose tissue characteristics, body weight, fat mass, and obesity-related gene expression. This study employed both live and ethanol-extracted bacterial cells. The results demonstrated significant reductions in the triglyceride deposition, body weight, and adipose tissue mass in the treated groups (p < 0.05). Furthermore, both strains modulated adipokine profiles by downregulating proinflammatory markers such as PAI-1, leptin, TNF-α, STAMP2, F4/80, resistin, and MCP-1, and upregulating the insulin-sensitive transporter GLUT4 and the anti-inflammatory adiponectin (p < 0.05). Our findings suggest that Lactobacillus sakei Probio65 and Lactobacillus plantarum Probio-093 are promising agents for microbiome-targeted anti-obesity therapies, offering the effective mitigation of obesity and improvement in adipocyte function in a murine model.
Collapse
Affiliation(s)
- Aneela Gulnaz
- Department of Biotechnology, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Lee-Ching Lew
- Probionic Corp., Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si 38541, Jeollabuk-do, Republic of Korea
| | - Yong-Ha Park
- Department of Biotechnology, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
- Probionic Corp., Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si 38541, Jeollabuk-do, Republic of Korea
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yan-Yan Hor
- Department of Biotechnology, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
- Probionic Corp., Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si 38541, Jeollabuk-do, Republic of Korea
| |
Collapse
|
3
|
Wang H, Chen Y, Yang Z, Deng H, Liu Y, Wei P, Zhu Z, Jiang L. Metabolic and Bioprocess Engineering of Clostridium tyrobutyricum for Butyl Butyrate Production on Xylose and Shrimp Shell Waste. Foods 2024; 13:1009. [PMID: 38611315 PMCID: PMC11011809 DOI: 10.3390/foods13071009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Microbial conversion of agri-food waste to valuable compounds offers a sustainable route to develop the bioeconomy and contribute to sustainable biorefinery. Clostridium tyrobutyricum displays a series of native traits suitable for high productivity conversion of agri-food waste, which make it a promising host for the production of various compounds, such as the short-chain fatty acids and their derivative esters products. In this study, a butanol synthetic pathway was constructed in C. tyrobutyricum, and then efficient butyl butyrate production through in situ esterification was achieved by the supplementation of lipase into the fermentation. The butyryl-CoA/acyl-CoA transferase (cat1) was overexpressed to balance the ratio between precursors butyrate and butanol. Then, a suitable fermentation medium for butyl butyrate production was obtained with xylose as the sole carbon source and shrimp shell waste as the sole nitrogen source. Ultimately, 5.9 g/L of butyl butyrate with a selectivity of 100%, and a productivity of 0.03 g/L·h was achieved under xylose and shrimp shell waste with batch fermentation in a 5 L bioreactor. Transcriptome analyses exhibited an increase in the expression of genes related to the xylose metabolism, nitrogen metabolism, and amino acid metabolism and transport, which reveal the mechanism for the synergistic utilization of xylose and shrimp shell waste. This study presents a novel approach for utilizing xylose and shrimp shell waste to produce butyl butyrate by using an anaerobic fermentative platform based on C. tyrobutyricum. This innovative fermentation medium could save the cost of nitrogen sources (~97%) and open up possibilities for converting agri-food waste into other high-value products.
Collapse
Affiliation(s)
- Hao Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; (H.W.); (Y.C.); (Z.Y.); (P.W.)
| | - Yingli Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; (H.W.); (Y.C.); (Z.Y.); (P.W.)
| | - Zhihan Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; (H.W.); (Y.C.); (Z.Y.); (P.W.)
| | - Haijun Deng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (H.D.); (Y.L.)
| | - Yiran Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (H.D.); (Y.L.)
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; (H.W.); (Y.C.); (Z.Y.); (P.W.)
| | - Zhengming Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (H.D.); (Y.L.)
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (H.D.); (Y.L.)
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Li X, Li M, Shi W, Li X, Xiang Z, Su L. Clostridium lamae sp. nov., a novel bacterium isolated from the fresh feces of alpaca. Antonie Van Leeuwenhoek 2024; 117:36. [PMID: 38367205 DOI: 10.1007/s10482-024-01931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/21/2024] [Indexed: 02/19/2024]
Abstract
A novel Gram-positive, anaerobic, nonspore-forming, rod-shaped bacterium, designated strain NGMCC 1.200840 T, was isolated from the alpacas fresh feces. The taxonomic position of the novel strain was determined using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed strain NGMCC 1.200840 T was a member of the genus Clostridium and closely related to Clostridium tertium DSM 2485 T (98.16% sequence similarity). Between strains NGMCC 1.200840 T and C. tertium DSM 2485 T, the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) were 79.91% and 23.50%, respectively. Genomic DNA G + C content is 28.44 mol%. The strain can utilise D-glucose, D-mannitol, D-lactose, D-saccharose, D-maltose, D-xylose, L-arabinose, D-cellobiose, D-mannose, D-melezitose, D-raffinose, D-sorbitol, L-rhamnose, D-trehalose, D-galactose and Arbutin to produce acid. The optimal growth pH was 7, the temperature was 37 °C, and the salt concentration was 0-0.5% (w/v). The major cellular fatty acids (> 10%) included iso-C15:0, anteiso-C15:0 and iso-C17:0 3-OH. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unidentified phospholipids and two unidentified aminolipids. Based on phenotypic, phylogenetic and chemotaxonomic characteristics, NGMCC 1.200840 T represents a novel species within the genus Clostridium, for which the named Clostridium lamae sp. nov. is proposed. The type strain is NGMCC 1.200840 T (= CGMCC 1.18014 T = JCM 35704 T).
Collapse
Affiliation(s)
- Xue Li
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100021, China
- Changping National Laboratory (CPNL), Beijing, 102299, China
| | - Ming Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Technology Support Platform, Beijing, 100193, China
| | - Weixiong Shi
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100021, China
- Changping National Laboratory (CPNL), Beijing, 102299, China
| | - Xia Li
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100021, China
- Changping National Laboratory (CPNL), Beijing, 102299, China
| | - Zhiguang Xiang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100021, China
- Changping National Laboratory (CPNL), Beijing, 102299, China
| | - Lei Su
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100021, China.
- Changping National Laboratory (CPNL), Beijing, 102299, China.
| |
Collapse
|
5
|
Prinčič L, Burtscher J, Sacken P, Krajnc T, Domig KJ. Clostridium strain FAM25158, a unique endospore-forming bacterium related to Clostridium tyrobutyricum and isolated from Emmental cheese shows low tolerance to salt. Front Microbiol 2024; 15:1353321. [PMID: 38414773 PMCID: PMC10897056 DOI: 10.3389/fmicb.2024.1353321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
The genus Clostridium is a large and diverse group of species that can cause food spoilage, including late blowing defect (LBD) in cheese. In this study, we investigated the taxonomic status of strain FAM25158 isolated from Emmental cheese with LBD using a polyphasic taxonomic and comparative genomic approach. A 16S rRNA gene sequence phylogeny suggested affiliation to the Clostridium sensu stricto cluster, with Clostridium tyrobutyricum DSM 2637T being the closest related type strain (99.16% sequence similarity). Average Nucleotide Identity (ANI) analysis revealed that strain FAM25158 is at the species threshold with C. tyrobutyricum, with ANI values ranging from 94.70 to 95.26%, while the digital DNA-DNA hybridization values were below the recommended threshold, suggesting that FAM25158 is significantly different from C. tyrobutyricum at the genomic level. Moreover, comparative genomic analysis between FAM25158 and its four closest C. tyrobutyricum relatives revealed a diversity of metabolic pathways, with FAM25158 differing from other C. tyrobutyricum strains by the presence of genes such as scrA, srcB, and scrK, responsible for sucrose utilization, and the absence of many important functional genes associated with cold and osmolality adaptation, which was further supported by phenotypic analyses. Surprisingly, strain FAM25158 exhibited unique physiologic traits, such as an optimal growth temperature of 30°C, in contrast to its closest relatives, C. tyrobutyricum species with an optimal growth temperature of 37°C. Additionally, the growth of FAM25158 was inhibited at NaCl concentrations higher than 0.5%, a remarkable observation considering its origin from cheese. While the results of this study provide novel information on the genetic content of strain FAM25158, the relationship between its genetic content and the observed phenotype remains a topic requiring further investigation.
Collapse
Affiliation(s)
- Lucija Prinčič
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Johanna Burtscher
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Paul Sacken
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Tina Krajnc
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Konrad J Domig
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| |
Collapse
|
6
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cocconcelli PS, Fernández Escámez PS, Prieto Maradona M, Querol A, Sijtsma L, Suarez JE, Sundh I, Barizzone F, Correia S, Herman L. Update of the list of qualified presumption of safety (QPS) recommended microbiological agents intentionally added to food or feed as notified to EFSA 19: Suitability of taxonomic units notified to EFSA until September 2023. EFSA J 2024; 22:e8517. [PMID: 38213415 PMCID: PMC10782250 DOI: 10.2903/j.efsa.2024.8517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
The qualified presumption of safety (QPS) process was developed to provide a safety assessment approach for microorganisms intended for use in food or feed chains. The QPS approach is based on an assessment of published data for each taxonomic unit (TU), with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns identified for a TU are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this Statement, no new information was found that would change the status of previously recommended QPS TUs. Of 71 microorganisms notified to EFSA between April and September 2023 (30 as feed additives, 22 as food enzymes or additives, 7 as novel foods and 12 from plant protection products [PPP]), 61 were not evaluated because: 26 were filamentous fungi, 1 was Enterococcus faecium, 5 were Escherichia coli, 1 was a bacteriophage (all excluded from the QPS evaluation) and 28 were TUs that already have a QPS status. The other 10 notifications belonged to 9 TUs which were evaluated for a possible QPS status: Ensifer adhaerens and Heyndrickxia faecalis did not get the QPS recommendation due to the limited body of knowledge about their occurrence in the food and/or feed chains and Burkholderia ubonensis also due to its ability to generate biologically active compounds with antimicrobial activity; Klebsiella pneumoniae, Serratia marcescens and Pseudomonas putida due to safety concerns. K. pneumoniae is excluded from future QPS evaluations. Chlamydomonas reinhardtii is recommended for QPS status with the qualification 'for production purposes only'; Clostridium tyrobutyricum is recommended for QPS status with the qualification 'absence of genetic determinants for toxigenic activity'; Candida oleophila has been added as a synonym of Yarrowia lipolytica. The Panel clarifies the extension of the QPS status for genetically modified strains.
Collapse
|
7
|
Yang L, Yang Z, Liu J, Liu Z, Liu Y, Zhu L, Zhu Z, Jiang L. Deciphering the contribution of PerR to oxidative stress defense system in
Clostridium tyrobutyricum. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Lei Yang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing China
| | - Zhihan Yang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing China
| | - Jiayu Liu
- College of Food Science and Light Industry Nanjing Tech University Nanjing China
| | - Zilong Liu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing China
| | - Yuxin Liu
- College of Food Science and Light Industry Nanjing Tech University Nanjing China
| | - Liying Zhu
- College of Chemical and Molecular Engineering Nanjing Tech University Nanjing China
| | - Zhengming Zhu
- College of Food Science and Light Industry Nanjing Tech University Nanjing China
| | - Ling Jiang
- College of Food Science and Light Industry Nanjing Tech University Nanjing China
- State Key Laboratory of Materials‐Oriented Chemical Engineering Nanjing Tech University Nanjing China
| |
Collapse
|
8
|
The Biotics Family: Current Knowledge and Future Perspectives in Metabolic Diseases. Life (Basel) 2022; 12:life12081263. [PMID: 36013442 PMCID: PMC9410396 DOI: 10.3390/life12081263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/30/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Globally, metabolic diseases such as obesity, type 2 diabetes mellitus and non-alcoholic fatty liver disease pose a major public health threat. Many studies have confirmed the causal relationship between risk factors and the etiopathogenesis of these diseases. Despite this, traditional therapeutic management methods such as physical education and diet have proven insufficient. Recently, researchers have focused on other potential pathways for explaining the pathophysiological variability of metabolic diseases, such as the involvement of the intestinal microbiota. An understanding of the relationship between the microbiome and metabolic diseases is a first step towards developing future therapeutic strategies. Currently, much attention is given to the use of biotics family members such as prebiotics (lactolose, soy oligosaccharides, galactooligosaccharides, xylooligosaccharides or inulin) and probiotics (genera Lactobacillus, Bifidobacterium, Lactococcus, Streptococcus or Enterococcus). They can be used both separately and together as synbiotics. Due to their direct influence on the composition of the intestinal microbiota, they have shown favorable results in the evolution of metabolic diseases. The expansion of the research area in the biotics family has led to the discovery of new members, like postbiotics. In the age of personalized medicine, their use as therapeutic options is of great interest to our study.
Collapse
|