1
|
Ghezzi D, Salvi L, Costantini PE, Firrincieli A, Iorio M, Lopo E, Sosio M, Elbanna AH, Khalil ZG, Capon RJ, De Waele J, Vergara F, Sauro F, Cappelletti M. Ancient and remote quartzite caves as a novel source of culturable microbes with biotechnological potential. Microbiol Res 2024; 286:127793. [PMID: 38901277 DOI: 10.1016/j.micres.2024.127793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024]
Abstract
Quartzite caves located on table-top mountains (tepuis) in the Guyana Shield, are ancient, remote, and pristine subterranean environments where microbes have evolved peculiar metabolic strategies to thrive in silica-rich, slightly acidic and oligotrophic conditions. In this study, we explored the culturable fraction of the microbiota inhabiting the (ortho)quartzite cave systems in Venezuelan tepui (remote table-top mountains) and we investigated their metabolic and enzymatic activities in relation with silica solubilization and extracellular hydrolytic activities as well as the capacity to produce antimicrobial compounds. Eighty microbial strains were isolated with a range of different enzymatic capabilities. More than half of the isolated strains performed at least three enzymatic activities and four bacterial strains displayed antimicrobial activities. The antimicrobial producers Paraburkholderia bryophila CMB_CA002 and Sphingomonas sp. MEM_CA187, were further analyzed by conducting chemotaxonomy, phylogenomics, and phenomics. While the isolate MEM_CA187 represents a novel species of the genus Sphingomonas, for which the name Sphingomonas imawarii sp. nov. is proposed, P. bryophila CMB_CA002 is affiliated with a few strains of the same species that are antimicrobial producers. Chemical analyses demonstrated that CMB_CA002 produces ditropolonyl sulfide that has a broad range of activity and a possibly novel siderophore. Although the antimicrobial compounds produced by MEM_CA187 could not be identified through HPLC-MS analysis due to the absence of reference compounds, it represents the first soil-associated Sphingomonas strain with the capacity to produce antimicrobials. This work provides first insights into the metabolic potential present in quartzite cave systems pointing out that these environments are a novel and still understudied source of microbial strains with biotechnological potential.
Collapse
Affiliation(s)
- Daniele Ghezzi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Luca Salvi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Paolo E Costantini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Andrea Firrincieli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy; Department for Innovation in Biological, Agro-Food and Forest systems, University of Tuscia, Viterbo 01100, Italy
| | | | - Ettore Lopo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | | | - Ahmed H Elbanna
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Department of Pharmacognosy, Cairo University, Cairo 11562, Egypt
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jo De Waele
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna 40126, Italy; La Venta Geographic Explorations Association, Treviso 31100, Italy
| | - Freddy Vergara
- La Venta Geographic Explorations Association, Treviso 31100, Italy; Teraphosa Exploring Team, Puerto Ordaz, Venezuela
| | - Francesco Sauro
- La Venta Geographic Explorations Association, Treviso 31100, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy; La Venta Geographic Explorations Association, Treviso 31100, Italy.
| |
Collapse
|
2
|
Gutierrez‐Patricio S, Osman JR, Gonzalez‐Pimentel JL, Jurado V, Laiz L, Concepción AL, Saiz‐Jimenez C, Miller AZ. Microbiological exploration of the Cueva del Viento lava tube system in Tenerife, Canary Islands. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13245. [PMID: 38643985 PMCID: PMC11033209 DOI: 10.1111/1758-2229.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/15/2024] [Indexed: 04/23/2024]
Abstract
Cueva del Viento, located in the Canary Islands, Spain, is the Earth's sixth-longest lava tube, spanning 18,500 m, and was formed approximately 27,000 years ago. This complex volcanic cave system is characterized by a unique geomorphology, featuring an intricate network of galleries. Despite its geological significance, the geomicrobiology of Cueva del Viento remains largely unexplored. This study employed a combination of culture-dependent techniques and metabarcoding data analysis to gain a comprehensive understanding of the cave's microbial diversity. The 16S rRNA gene metabarcoding approach revealed that the coloured microbial mats (yellow, red and white) coating the cave walls are dominated by the phyla Actinomycetota, Pseudomonadota and Acidobacteriota. Of particular interest is the high relative abundance of the genus Crossiella, which is involved in urease-mediated biomineralization processes, along with the presence of genera associated with nitrogen cycling, such as Nitrospira. Culture-dependent techniques provided insights into the morphological characteristics of the isolated species and their potential metabolic activities, particularly for the strains Streptomyces spp., Paenarthrobacter sp. and Pseudomonas spp. Our findings underscore the potential of Cueva del Viento as an ideal environment for studying microbial diversity and for the isolation and characterization of novel bacterial species of biotechnological interest.
Collapse
Affiliation(s)
| | - Jorge R. Osman
- Instituto de Geología Económica Aplicada (GEA)Universidad de ConcepciónConcepciónChile
| | - José Luis Gonzalez‐Pimentel
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS‐CSIC)SevillaSpain
- Laboratorio HERCULESUniversidade de ÉvoraÉvoraPortugal
| | - Valme Jurado
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS‐CSIC)SevillaSpain
| | - Leonila Laiz
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS‐CSIC)SevillaSpain
| | | | - Cesareo Saiz‐Jimenez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS‐CSIC)SevillaSpain
| | - Ana Zélia Miller
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS‐CSIC)SevillaSpain
- Laboratorio HERCULESUniversidade de ÉvoraÉvoraPortugal
| |
Collapse
|
3
|
Turrini P, Chebbi A, Riggio FP, Visca P. The geomicrobiology of limestone, sulfuric acid speleogenetic, and volcanic caves: basic concepts and future perspectives. Front Microbiol 2024; 15:1370520. [PMID: 38572233 PMCID: PMC10987966 DOI: 10.3389/fmicb.2024.1370520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Caves are ubiquitous subterranean voids, accounting for a still largely unexplored surface of the Earth underground. Due to the absence of sunlight and physical segregation, caves are naturally colonized by microorganisms that have developed distinctive capabilities to thrive under extreme conditions of darkness and oligotrophy. Here, the microbiomes colonizing three frequently studied cave types, i.e., limestone, sulfuric acid speleogenetic (SAS), and lava tubes among volcanic caves, have comparatively been reviewed. Geological configurations, nutrient availability, and energy flows in caves are key ecological drivers shaping cave microbiomes through photic, twilight, transient, and deep cave zones. Chemoheterotrophic microbial communities, whose sustenance depends on nutrients supplied from outside, are prevalent in limestone and volcanic caves, while elevated inorganic chemical energy is available in SAS caves, enabling primary production through chemolithoautotrophy. The 16S rRNA-based metataxonomic profiles of cave microbiomes were retrieved from previous studies employing the Illumina platform for sequencing the prokaryotic V3-V4 hypervariable region to compare the microbial community structures from different cave systems and environmental samples. Limestone caves and lava tubes are colonized by largely overlapping bacterial phyla, with the prevalence of Pseudomonadota and Actinomycetota, whereas the co-dominance of Pseudomonadota and Campylobacterota members characterizes SAS caves. Most of the metataxonomic profiling data have so far been collected from the twilight and transient zones, while deep cave zones remain elusive, deserving further exploration. Integrative approaches for future geomicrobiology studies are suggested to gain comprehensive insights into the different cave types and zones. This review also poses novel research questions for unveiling the metabolic and genomic capabilities of cave microorganisms, paving the way for their potential biotechnological applications.
Collapse
Affiliation(s)
- Paolo Turrini
- Department of Science, Roma Tre University, Rome, Italy
| | - Alif Chebbi
- Department of Science, Roma Tre University, Rome, Italy
| | | | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
4
|
Prescott RD, Chan YL, Tong EJ, Bunn F, Onouye CT, Handel C, Lo CC, Davenport K, Johnson S, Flynn M, Saito JA, Lee H, Wong K, Lawson BN, Hiura K, Sager K, Sadones M, Hill EC, Esibill D, Cockell CS, Santomartino R, Chain PS, Decho AW, Donachie SP. Bridging Place-Based Astrobiology Education with Genomics, Including Descriptions of Three Novel Bacterial Species Isolated from Mars Analog Sites of Cultural Relevance. ASTROBIOLOGY 2023; 23:1348-1367. [PMID: 38079228 PMCID: PMC10750312 DOI: 10.1089/ast.2023.0072] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/27/2023] [Indexed: 12/22/2023]
Abstract
Democratizing genomic data science, including bioinformatics, can diversify the STEM workforce and may, in turn, bring new perspectives into the space sciences. In this respect, the development of education and research programs that bridge genome science with "place" and world-views specific to a given region are valuable for Indigenous students and educators. Through a multi-institutional collaboration, we developed an ongoing education program and model that includes Illumina and Oxford Nanopore sequencing, free bioinformatic platforms, and teacher training workshops to address our research and education goals through a place-based science education lens. High school students and researchers cultivated, sequenced, assembled, and annotated the genomes of 13 bacteria from Mars analog sites with cultural relevance, 10 of which were novel species. Students, teachers, and community members assisted with the discovery of new, potentially chemolithotrophic bacteria relevant to astrobiology. This joint education-research program also led to the discovery of species from Mars analog sites capable of producing N-acyl homoserine lactones, which are quorum-sensing molecules used in bacterial communication. Whole genome sequencing was completed in high school classrooms, and connected students to funded space research, increased research output, and provided culturally relevant, place-based science education, with participants naming three novel species described here. Students at St. Andrew's School (Honolulu, Hawai'i) proposed the name Bradyrhizobium prioritasuperba for the type strain, BL16AT, of the new species (DSM 112479T = NCTC 14602T). The nonprofit organization Kauluakalana proposed the name Brenneria ulupoensis for the type strain, K61T, of the new species (DSM 116657T = LMG = 33184T), and Hawai'i Baptist Academy students proposed the name Paraflavitalea speifideiaquila for the type strain, BL16ET, of the new species (DSM 112478T = NCTC 14603T).
Collapse
Affiliation(s)
- Rebecca D. Prescott
- Department of Biology, University of Mississippi, University, Mississippi, USA
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
- National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas, USA
| | - Yvonne L. Chan
- Office of Community Science, ‘Iolani School, Honolulu, Hawai‘i, USA
| | - Eric J. Tong
- Office of Community Science, ‘Iolani School, Honolulu, Hawai‘i, USA
| | - Fiona Bunn
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, United Kingdom
| | - Chiyoko T. Onouye
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Christy Handel
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Chien-Chi Lo
- Los Alamos National Laboratory, Biosciences Division, Los Alamos, New Mexico, USA
| | - Karen Davenport
- Los Alamos National Laboratory, Biosciences Division, Los Alamos, New Mexico, USA
| | - Shannon Johnson
- Los Alamos National Laboratory, Biosciences Division, Los Alamos, New Mexico, USA
| | - Mark Flynn
- Los Alamos National Laboratory, Biosciences Division, Los Alamos, New Mexico, USA
| | - Jennifer A. Saito
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Herb Lee
- Pacific American Foundation, Kailua, Hawai‘i, USA
| | | | - Brittany N. Lawson
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Kayla Hiura
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Kailey Sager
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Mia Sadones
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Ethan C. Hill
- Office of Community Science, ‘Iolani School, Honolulu, Hawai‘i, USA
| | | | - Charles S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, United Kingdom
| | - Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, United Kingdom
| | - Patrick S.G. Chain
- Los Alamos National Laboratory, Biosciences Division, Los Alamos, New Mexico, USA
| | - Alan W. Decho
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Stuart P. Donachie
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| |
Collapse
|
5
|
Rakić N, Šušteršič V, Gordić D, Jovičić N, Bošković G, Bogdanović I. Characteristics of Biogas Production and Synergistic Effect of Primary Sludge and Food Waste Co-Digestion. BIOENERGY RESEARCH 2023:1-14. [PMID: 37359289 PMCID: PMC10241376 DOI: 10.1007/s12155-023-10620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
Co-digestion implementation in wastewater treatment plants enhances biogas yield, so this research investigated the optimal ratio of biodegradable waste and sewage sludge. The increase in biogas production was investigated through batch tests using basic BMP equipment, while synergistic effects were evaluated by chemical oxygen demand (COD) balance. Analyses were performed in four volume basis ratios (3/1, 1/1, 1/3, 1/0) of primary sludge and food waste with added low food waste: 3.375%, 4.675%, and 5.35%, respectively. The best proportion was found to be 1/3 with the maximum biogas production (618.7 mL/g VS added) and the organic removal of 52.8% COD elimination. The highest enhancement rate was observed among co-digs 3/1 and 1/1 (105.72 mL/g VS). A positive correlation between biogas yield and COD removal is noticed while microbial flux required an optimal pH, value of 8 significantly decreased daily production rate. COD reductions further supported the synergistic impact; specifically, an additional 7.1%, 12.8%, and 17% of COD were converted into biogas during the co-digestions 1, 2, and 3, respectively. Three mathematical models were applied to estimate the kinetic parameters and check the accuracy of the experiment. The first-order model with a hydrolysis rate of 0.23-0.27 indicated rapidly biodegradable co-/substrates, modified Gompertz confirmed immediate commencement of co-digs through zero lag phase, while the Cone model had the best fit of over 99% for all trials. Finally, the study points out that the COD method based on linear dependence can be used for developing relatively accurate model for biogas potential estimation in anaerobic digestors. Supplementary Information The online version contains supplementary material available at 10.1007/s12155-023-10620-8.
Collapse
Affiliation(s)
- Nikola Rakić
- Department for Energy and Process Engineering, Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Vanja Šušteršič
- Department for Energy and Process Engineering, Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dušan Gordić
- Department for Energy and Process Engineering, Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nebojša Jovičić
- Department for Energy and Process Engineering, Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Goran Bošković
- Department for Energy and Process Engineering, Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivan Bogdanović
- Public Utility Company “Water Supply and Sewerage” Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
6
|
Pipite A, Lockhart PJ, McLenachan PA, Christi K, Kumar D, Prasad S, Subramani R. Isolation, antibacterial screening, and identification of bioactive cave dwelling bacteria in Fiji. Front Microbiol 2022; 13:1012867. [PMID: 36605510 PMCID: PMC9807670 DOI: 10.3389/fmicb.2022.1012867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
Bacteria are well known producers of bioactive secondary metabolites, including some of the most effective antibiotics in use today. While the caves of Oceania are still largely under-explored, they form oligotrophic and extreme environments that are a promising source for identifying novel species of bacteria with biologically active compounds. By using selective media that mimicked a cave environment, and pretreatments that suppressed the growth of fast-growing bacteria, we have cultured genetically diverse bacteria from a limestone cave in Fiji. Partial 16S rRNA gene sequences from isolates were determined and compared with 16S rRNA gene sequences in EzBioCloud and SILVA data bases. Fifty-five isolates purified from culture had Actinomycete-like morphologies and these were investigated for antibacterial activity. Initial screening using a cross streak test with pathogenic bacteria indicated that 34 of the isolates had antibacterial properties. The best matches for the isolates are bacteria with potential uses in the manufacture of antibiotics and pesticides, in bioremediation of toxic waste, in biomining, in producing bioplastics, and in plant growth promotion. Nineteen bacteria were confirmed as Actinomycetes. Thirteen were from the genus Streptomyces and six from genera considered to be rare Actinomycetes from Pseudonocardia, Kocuria, Micromonospora, Nonomuraea. Ten isolates were Firmicutes from the genera Bacillus, Lysinbacillus, Psychrobacillus and Fontibacillus. Two were Proteobacteria from the genera Mesorhizobium and Cupriavidus. Our findings identify a potentially rich source of microbes for applications in biotechnologies.
Collapse
Affiliation(s)
- Atanas Pipite
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Suva, Fiji,*Correspondence: Atanas Pipite,
| | - Peter J. Lockhart
- School of Natural Sciences, Massey University, Palmerston North, New Zealand,Peter J. Lockhart,
| | | | - Ketan Christi
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Suva, Fiji
| | - Dinesh Kumar
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Suva, Fiji
| | - Surendra Prasad
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Suva, Fiji
| | - Ramesh Subramani
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Suva, Fiji
| |
Collapse
|