Conway MJ, Yang H, Revord LA, Novay MP, Lee RJ, Ward AS, Abel JD, Williams MR, Uzarski RL, Alm EW. Chronic shedding of a SARS-CoV-2 Alpha variant in wastewater.
BMC Genomics 2024;
25:59. [PMID:
38218804 PMCID:
PMC10787452 DOI:
10.1186/s12864-024-09977-7]
[Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND
Central Michigan University (CMU) participated in a state-wide SARS-CoV-2 wastewater monitoring program since 2021. Wastewater samples were collected from on-campus sites and nine off-campus wastewater treatment plants servicing small metropolitan and rural communities. SARS-CoV-2 genome copies were quantified using droplet digital PCR and results were reported to the health department.
RESULTS
One rural, off-campus site consistently produced higher concentrations of SARS-CoV-2 genome copies. Samples from this site were sequenced and contained predominately a derivative of Alpha variant lineage B.1.1.7, detected from fall 2021 through summer 2023. Mutational analysis of reconstructed genes revealed divergence from the Alpha variant lineage sequence over time, including numerous mutations in the Spike RBD and NTD.
CONCLUSIONS
We discuss the possibility that a chronic SARS-CoV-2 infection accumulated adaptive mutations that promoted long-term infection. This study reveals that small wastewater treatment plants can enhance resolution of rare events and facilitate reconstruction of viral genomes due to the relative lack of contaminating sequences.
Collapse