1
|
Zhao H, Peramuna T, Ajmal S, Wendt KL, Petrushenko ZM, Premachandra K, Cichewicz RH, Rybenkov VV. Inhibitor of Chromosome Segregation in Pseudomonas aeruginosa from Fungal Extracts. ACS Chem Biol 2024; 19:1387-1396. [PMID: 38843873 PMCID: PMC11197941 DOI: 10.1021/acschembio.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024]
Abstract
Chromosome segregation is an essential cellular process that has the potential to yield numerous targets for drug development. This pathway is presently underutilized partially due to the difficulties in the development of robust reporter assays suitable for high throughput screening. In bacteria, chromosome segregation is mediated by two partially redundant systems, condensins and ParABS. Based on the synthetic lethality of the two systems, we developed an assay suitable for screening and then screened a library of fungal extracts for potential inhibitors of the ParABS pathway, as judged by their enhanced activity on condensin-deficient cells. We found such activity in extracts of Humicola sp. Fractionation of the extract led to the discovery of four new analogues of sterigmatocystin, one of which, 4-hydroxy-sterigmatocystin (4HS), displayed antibacterial activity. 4HS induced the phenotype typical for parAB mutants including defects in chromosome segregation and cell division. Specifically, bacteria exposed to 4HS produced anucleate cells and were impaired in the assembly of the FtsZ ring. Moreover, 4HS binds to purified ParB in a ParS-modulated manner and inhibits its ParS-dependent CTPase activity. The data describe a small molecule inhibitor of ParB and expand the known spectrum of activities of sterigmatocystin to include bacterial chromosome segregation.
Collapse
Affiliation(s)
- Hang Zhao
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Thilini Peramuna
- Natural
Products Discovery Group, Institute for Natural Products Applications
and Research Technologies, Department of Chemistry & Biochemistry,
Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Sidra Ajmal
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Karen L. Wendt
- Natural
Products Discovery Group, Institute for Natural Products Applications
and Research Technologies, Department of Chemistry & Biochemistry,
Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zoya M. Petrushenko
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Kaushika Premachandra
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Robert H. Cichewicz
- Natural
Products Discovery Group, Institute for Natural Products Applications
and Research Technologies, Department of Chemistry & Biochemistry,
Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Valentin V. Rybenkov
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
2
|
Inotai K, Bata-Vidács I, Tóth Á, Kosztik J, Varga M, Szekeres A, Nagy I, Nagy I, Dobolyi C, Mörtl M, Székács A, Kukolya J. Glass bead system to study mycotoxin production of Aspergillus spp. on corn and rice starches. Appl Microbiol Biotechnol 2024; 108:348. [PMID: 38809353 PMCID: PMC11136776 DOI: 10.1007/s00253-024-13190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
Mycotoxin production by aflatoxin B1 (AFB1) -producing Aspergillus flavus Zt41 and sterigmatocystin (ST) -hyperproducer Aspergillus creber 2663 mold strains on corn and rice starch, both of high purity and nearly identical amylose-amylopectin composition, as the only source of carbon, was studied. Scanning electron microscopy revealed average starch particle sizes of 4.54 ± 0.635 µm and 10.9 ± 2.78 µm, corresponding to surface area to volume ratios of 127 1/µm for rice starch and 0.49 1/µm for corn starch. Thus, a 2.5-fold difference in particle size correlated to a larger, 259-fold difference in surface area. To allow starch, a water-absorbing powder, to be used as a sole food source for Aspergillus strains, a special glass bead system was applied. AFB1 production of A. flavus Zt41 was determined to be 437.6 ± 128.4 ng/g and 90.0 ± 44.8 ng/g on rice and corn starch, respectively, while corresponding ST production levels by A. creber 2663 were 72.8 ± 10.0 µg/g and 26.8 ± 11.6 µg/g, indicating 3-fivefold higher mycotoxin levels on rice starch than on corn starch as sole carbon and energy sources. KEY POINTS: • A glass bead system ensuring the flow of air when studying powders was developed. • AFB1 and ST production of A. flavus and A. creber on rice and corn starches were studied. • 3-fivefold higher mycotoxin levels on rice starch than on corn starch were detected.
Collapse
Affiliation(s)
- Katalin Inotai
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, 2100, Gödöllő, Hungary
| | - Ildikó Bata-Vidács
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Leányka u. 6, 3300, Eger, Hungary.
- HUN-REN-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Leányka u. 6, 3300, Eger, Hungary.
| | - Ákos Tóth
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, 1085, Budapest, Hungary
| | - Judit Kosztik
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Leányka u. 6, 3300, Eger, Hungary
- HUN-REN-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Leányka u. 6, 3300, Eger, Hungary
| | - Mónika Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - István Nagy
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Leányka u. 6, 3300, Eger, Hungary
| | - István Nagy
- Seqomics Biotechnology Ltd., Vállalkozók útja 7, 6782, Mórahalom, Hungary
- Institute of Biochemistry, Biological Research Centre, HUN-REN, Temesvári krt. 62, 6726, Szeged, Hungary
| | - Csaba Dobolyi
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, 2100, Gödöllő, Hungary
| | - Mária Mörtl
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, 2100, Gödöllő, Hungary
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, 2100, Gödöllő, Hungary
| | - József Kukolya
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Leányka u. 6, 3300, Eger, Hungary
| |
Collapse
|
3
|
StcU-2 Gene Mutation via CRISPR/Cas9 Leads to Misregulation of Spore-Cyst Formation in Ascosphaera apis. Microorganisms 2022; 10:microorganisms10102088. [PMID: 36296364 PMCID: PMC9607276 DOI: 10.3390/microorganisms10102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Ascosphaera apis is the causative agent of honey bee chalkbrood disease, and spores are the only known source of infections. Interference with sporulation is therefore a promising way to manage A. apis. The versicolorin reductase gene (StcU-2) is a ketoreductase protein related to sporulation and melanin biosynthesis. To study the StcU-2 gene in ascospore production of A. apis, CRISPR/Cas9 was used, and eight hygromycin B antibiotic-resistant transformants incorporating enhanced green fluorescent protein (EGFP) were made and analyzed. PCR amplification, gel electrophoresis, and sequence analysis were used for target gene editing analysis and verification. The CRISPR/Cas9 editing successfully knocked out the StcU-2 gene in A. apis. StcU-2 mutants had shown albino and non-functional spore-cyst development and lost effective sporulation. In conclusion, editing of StcU-2 gene has shown direct relation with sporulation and melanin biosynthesis of A. apis; this effective sporulation reduction would reduce the spread and pathogenicity of A. apis to managed honey bee. To the best of our knowledge, this is the first time CRISPR/Cas9-mediated gene editing has been efficiently performed in A. apis, a fungal honey bee brood pathogen, which offers a comprehensive set of procedural references that contributes to A. apis gene function studies and consequent control of chalkbrood disease.
Collapse
|