1
|
Tullius MV, Bowen RA, Back PS, Masleša-Galić S, Nava S, Horwitz MA. LVS Δ capB-vectored multiantigenic melioidosis vaccines protect against lethal respiratory Burkholderia pseudomallei challenge in highly sensitive BALB/c mice. mBio 2024; 15:e0018624. [PMID: 38511933 PMCID: PMC11005352 DOI: 10.1128/mbio.00186-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 03/22/2024] Open
Abstract
Melioidosis, caused by the intracellular bacterial pathogen and Tier 1 select agent Burkholderia pseudomallei (Bp), is a highly fatal disease endemic in tropical areas. No licensed vaccine against melioidosis exists. In preclinical vaccine studies, demonstrating protection against respiratory infection in the highly sensitive BALB/c mouse has been especially challenging. To address this challenge, we have used a safe yet potent live attenuated platform vector, LVS ΔcapB, previously used successfully to develop vaccines against the Tier 1 select agents of tularemia, anthrax, and plague, to develop a melioidosis vaccine. We have engineered melioidosis vaccines (rLVS ΔcapB/Bp) expressing multiple immunoprotective Bp antigens among type VI secretion system proteins Hcp1, Hcp2, and Hcp6, and membrane protein LolC. Administered intradermally, rLVS ΔcapB/Bp vaccines strongly protect highly sensitive BALB/c mice against lethal respiratory Bp challenge, but protection is overwhelmed at very high challenge doses. In contrast, administered intranasally, rLVS ΔcapB/Bp vaccines remain strongly protective against even very high challenge doses. Under some conditions, the LVS ΔcapB vector itself provides significant protection against Bp challenge, and consistent with this, both the vector and vaccines induce humoral immune responses to Bp antigens. Three-antigen vaccines expressing Hcp6-Hcp1-Hcp2 or Hcp6-Hcp1-LolC are among the most potent and provide long-term protection and protection even with a single intranasal immunization. Protection via the intranasal route was either comparable to or statistically significantly better than the single-deletional Bp mutant Bp82, which served as a positive control. Thus, rLVS ΔcapB/Bp vaccines are exceptionally promising safe and potent melioidosis vaccines. IMPORTANCE Melioidosis, a major neglected disease caused by the intracellular bacterial pathogen Burkholderia pseudomallei, is endemic in many tropical areas of the world and causes an estimated 165,000 cases and 89,000 deaths in humans annually. Moreover, B. pseudomallei is categorized as a Tier 1 select agent of bioterrorism, largely because inhalation of low doses can cause rapidly fatal pneumonia. No licensed vaccine is available to prevent melioidosis. Here, we describe a safe and potent melioidosis vaccine that protects against lethal respiratory challenge with B. pseudomallei in a highly sensitive small animal model-even a single immunization is highly protective, and the vaccine gives long-term protection. The vaccine utilizes a highly attenuated replicating intracellular bacterium as a vector to express multiple key proteins of B. pseudomallei; this vector platform has previously been used successfully to develop potent vaccines against other Tier 1 select agent diseases including tularemia, anthrax, and plague.
Collapse
Affiliation(s)
- Michael V. Tullius
- Division of Infectious Diseases, Department of Medicine, Center for Health Sciences, School of Medicine, University of California, Los Angeles, California, USA
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Peter S. Back
- Division of Infectious Diseases, Department of Medicine, Center for Health Sciences, School of Medicine, University of California, Los Angeles, California, USA
| | - Saša Masleša-Galić
- Division of Infectious Diseases, Department of Medicine, Center for Health Sciences, School of Medicine, University of California, Los Angeles, California, USA
| | - Susana Nava
- Division of Infectious Diseases, Department of Medicine, Center for Health Sciences, School of Medicine, University of California, Los Angeles, California, USA
| | - Marcus A. Horwitz
- Division of Infectious Diseases, Department of Medicine, Center for Health Sciences, School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
2
|
Badten AJ, Torres AG. Burkholderia pseudomallei Complex Subunit and Glycoconjugate Vaccines and Their Potential to Elicit Cross-Protection to Burkholderia cepacia Complex. Vaccines (Basel) 2024; 12:313. [PMID: 38543947 PMCID: PMC10975474 DOI: 10.3390/vaccines12030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Burkholderia are a group of Gram-negative bacteria that can cause a variety of diseases in at-risk populations. B. pseudomallei and B. mallei, the etiological agents of melioidosis and glanders, respectively, are the two clinically relevant members of the B. pseudomallei complex (Bpc). The development of vaccines against Bpc species has been accelerated in recent years, resulting in numerous promising subunits and glycoconjugate vaccines incorporating a variety of antigens. However, a second group of pathogenic Burkholderia species exists known as the Burkholderia cepacia complex (Bcc), a group of opportunistic bacteria which tend to affect individuals with weakened immunity or cystic fibrosis. To date, there have been few attempts to develop vaccines to Bcc species. Therefore, the primary goal of this review is to provide a broad overview of the various subunit antigens that have been tested in Bpc species, their protective efficacy, study limitations, and known or suspected mechanisms of protection. Then, we assess the reviewed Bpc antigens for their amino acid sequence conservation to homologous proteins found in Bcc species. We propose that protective Bpc antigens with a high degree of Bpc-to-Bcc sequence conservation could serve as components of a pan-Burkholderia vaccine capable of protecting against both disease-causing groups.
Collapse
Affiliation(s)
- Alexander J. Badten
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alfredo G. Torres
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
3
|
Barnes KB, Brett P, Burtnick M, Vente A, Bentley C, Richards MI, Flick-Smith HC, Burgess G, Thwaite JE, Laws TR, Maishman TC, Nelson M, Harding SV. Layering vaccination with antibiotic therapy results in protection and clearance of Burkholderia pseudomallei in Balb/c mice. Infect Immun 2024; 92:e0045523. [PMID: 38289122 DOI: 10.1128/iai.00455-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/09/2024] [Indexed: 03/13/2024] Open
Abstract
Melioidosis is a disease that is difficult to treat due to the causative organism, Burkholderia pseudomallei being inherently antibiotic resistant and it having the ability to invade, survive, and replicate in an intracellular environment. Combination therapy approaches are routinely being evaluated in animal models with the aim of improving the level of protection and clearance of colonizing bacteria detected. In this study, a subunit vaccine layered with the antibiotic finafloxacin was evaluated in vivo against an inhalational infection with B. pseudomallei in Balb/c mice. Groups of mice vaccinated, infected, and euthanized at antibiotic initiation had a reduced bacterial load compared to those that had not been immunized. In addition, the subunit vaccine provided a synergistic effect when it was delivered with a CpG ODN and finafloxacin was initiated at 48 h post-challenge. Vaccination was also shown to improve the outcome, in a composite measure of survival and clearance. In summary, layering a subunit vaccine with the antibiotic finafloxacin is a promising therapeutic alternative for use in the treatment of B. pseudomallei infections.
Collapse
Affiliation(s)
- Kay B Barnes
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Paul Brett
- University of Nevada, Reno School of Medicine, Reno, Nevada, USA
- Mahidol University, Bangkok, Thailand
| | - Mary Burtnick
- University of Nevada, Reno School of Medicine, Reno, Nevada, USA
- Mahidol University, Bangkok, Thailand
| | | | | | - Mark I Richards
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Helen C Flick-Smith
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Gary Burgess
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Joanne E Thwaite
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Thomas R Laws
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Thomas C Maishman
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Michelle Nelson
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Sarah V Harding
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
- University of Leicester, Leicester, United Kingdom
| |
Collapse
|
4
|
Burtnick MN, Dance DAB, Vongsouvath M, Newton PN, Dittrich S, Sendouangphachanh A, Woods K, Davong V, Kenna DTD, Saiprom N, Sengyee S, Hantrakun V, Wuthiekanun V, Limmathurotsakul D, Chantratita N, Brett PJ. Identification of Burkholderia cepacia strains that express a Burkholderia pseudomallei-like capsular polysaccharide. Microbiol Spectr 2024; 12:e0332123. [PMID: 38299821 PMCID: PMC10913486 DOI: 10.1128/spectrum.03321-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/10/2023] [Indexed: 02/02/2024] Open
Abstract
Burkholderia pseudomallei and Burkholderia cepacia are Gram-negative, soil-dwelling bacteria that are found in a wide variety of environmental niches. While B. pseudomallei is the causative agent of melioidosis in humans and animals, members of the B. cepacia complex typically only cause disease in immunocompromised hosts. In this study, we report the identification of B. cepacia strains isolated from either patients or soil in Laos and Thailand that express a B. pseudomallei-like 6-deoxyheptan capsular polysaccharide (CPS). These B. cepacia strains were initially identified based on their positive reactivity in a latex agglutination assay that uses the CPS-specific monoclonal antibody (mAb) 4B11. Mass spectrometry and recA sequencing confirmed the identity of these isolates as B. cepacia (formerly genomovar I). Total carbohydrates extracted from B. cepacia cell pellets reacted with B. pseudomallei CPS-specific mAbs MCA147, 3C5, and 4C4, but did not react with the B. pseudomallei lipopolysaccharide-specific mAb Pp-PS-W. Whole genome sequencing of the B. cepacia isolates revealed the presence of genes demonstrating significant homology to those comprising the B. pseudomallei CPS biosynthetic gene cluster. Collectively, our results provide compelling evidence that B. cepacia strains expressing the same CPS as B. pseudomallei co-exist in the environment alongside B. pseudomallei. Since CPS is a target that is often used for presumptive identification of B. pseudomallei, it is possible that the occurrence of these unique B. cepacia strains may complicate the diagnosis of melioidosis.IMPORTANCEBurkholderia pseudomallei, the etiologic agent of melioidosis, is an important cause of morbidity and mortality in tropical and subtropical regions worldwide. The 6-deoxyheptan capsular polysaccharide (CPS) expressed by this bacterial pathogen is a promising target antigen that is useful for rapidly diagnosing melioidosis. Using assays incorporating CPS-specific monoclonal antibodies, we identified both clinical and environmental isolates of Burkholderia cepacia that express the same CPS antigen as B. pseudomallei. Because of this, it is important that staff working in melioidosis-endemic areas are aware that these strains co-exist in the same niches as B. pseudomallei and do not solely rely on CPS-based assays such as latex-agglutination, AMD Plus Rapid Tests, or immunofluorescence tests for the definitive identification of B. pseudomallei isolates.
Collapse
Affiliation(s)
- Mary N. Burtnick
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - David A. B. Dance
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - Paul N. Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Sabine Dittrich
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Deggendorf Institut of Technology, European Campus Rottal Inn, Pfarrkirchen, Germany
| | - Amphone Sendouangphachanh
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - Kate Woods
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - Viengmon Davong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - Dervla T. D. Kenna
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, Public Health Microbiology Division, Specialised Microbiology & Laboratories Directorate, UK Health Security Agency, London, United Kingdom
| | - Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sineenart Sengyee
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Viriya Hantrakun
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Direk Limmathurotsakul
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Paul J. Brett
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Tomás-Cortázar J, Quinn C, Corcoran N, Blanco A, Christensen D, McClean S. BpOmpW antigen administered with CAF01 adjuvant stimulates comparable T cell responses to Sigma adjuvant system. Vaccine X 2024; 17:100438. [PMID: 38303776 PMCID: PMC10831100 DOI: 10.1016/j.jvacx.2024.100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
There are no licensed vaccines to protect vulnerable populations from the potentially fatal tropical infection, melioidosis, despite its causative agent, Burkholderia pseudomallei, being endemic in tropical and subtropical regions. A promising vaccine candidate, BpOmpW protected mice from melioidosis infection for up to 81 days and stimulated robust interferon gamma responses in CD4+, CD8+, NK and NKT cells. In order to progress to human studies, selection of an adjuvant with an acceptable human safety profile that stimulates appropriate correlates of protection is essential. Here we demonstrate that the CAF01 vaccine adjuvant elicits optimal immune correlates of protection when administered with our BpOmpW vaccine. Specifically, we demonstrate that CAF01 administered with BpOmpW elicits robust Th1 responses, with potent IFN-γ responses in CD4+ and CD8+ T cells and NKT cells, in addition to Th17 and Th2 responses. This formulation will be particularly effective in protecting susceptible populations including people with type 2 diabetes from melioidosis.
Collapse
Affiliation(s)
- Julen Tomás-Cortázar
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Conor Quinn
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Niamh Corcoran
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Alfonso Blanco
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen S, Denmark
| | - Siobhán McClean
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Urbano-Munoz F, Orne CE, Burtnick MN, Brett PJ. Use of Reductive Amination to Produce Capsular Polysaccharide-Based Glycoconjugates. Methods Mol Biol 2024; 2762:139-148. [PMID: 38315364 DOI: 10.1007/978-1-0716-3666-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Reductive amination is a relatively simple and convenient strategy for coupling purified polysaccharides to carrier proteins. Following their synthesis, glycoconjugates can be used to assess the protective capacity of specific microbial polysaccharides in animal models of infection and/or to produce polyclonal antiserum and monoclonal antibodies for a variety of immune assays. Here, we describe a reproducible method for chemically activating the 6-deoxyheptan capsular polysaccharide (CPS) from Burkholderia pseudomallei and covalently linking it to recombinant CRM197 diphtheria toxin mutant (CRM197) to produce the glycoconjugate, CPS-CRM197. Similar approaches can also be used to couple other types of polysaccharides to CRM197 with little to no modification of the protocol.
Collapse
Affiliation(s)
- Federico Urbano-Munoz
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Caitlyn E Orne
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Mary N Burtnick
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, USA
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paul J Brett
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
7
|
Grund M, Choi SJ, Powell L, Lukomski S. Intranasal immunization with a Bucl8-based vaccine ameliorates bacterial burden and pathological inflammation, and promotes an IgG2a/b dominant response in an outbred mouse model of Burkholderia infection. Front Immunol 2023; 14:1177650. [PMID: 37545515 PMCID: PMC10399622 DOI: 10.3389/fimmu.2023.1177650] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Burkholderia pseudomallei is a gram-negative bacterium that is the etiological agent of the tropical disease melioidosis. Currently, there is no licensed vaccine for melioidosis, but numerous candidates are being tested for protective efficacy and characterization of the elicited immune response. Our lab has previously reported the immunogenicity of a Bucl8-protein-based peptide antigen, designated L1-CRM197 (Cross-reacting material 197). When given subcutaneously, this vaccine formulation promoted a strong Th2 (IgG1) antibody response, however immunization did not protect from death. In this study, we hypothesized that an intranasally administered L1-CRM197 vaccine would induce protective mucosal immunity. To evaluate vaccine efficacy, we developed a surrogate Burkholderia infection model that employs outbred CD-1 mice which imitates the immunogenetic diversity of humans. Mice were immunized with either L1-CRM197 adjuvanted with fluorinated cyclic diguanosine monophosphate (FCDG) or with FCDG-only control. These mice were then challenged intranasally with an infectious dose of a luminescent strain of B. thailandensis E264 two weeks post-immunization, and correlates of protection were assessed in euthanized mice on days 1, 2, 3, and 7 post-infection. Overall, intranasal vaccination, compared to subcutaneous administration, induced a stronger Th1 (IgG2a/2b) to Th2 (IgG1) antibody response and promoted anti-L1 nasal, pulmonary, and systemic IgA. Additionally, sera IgG from L1-CRM197-vaccinated mice recognized whole-cell B. thailandensis and B. pseudomallei, a select agent exempt strain Bp82. Vaccination ameliorated disease indicators, including luminescent signal and bacterial cell counts, weight and temperature loss, and organ weight, which negatively correlated with IgG2a antibody levels and mucosa-stimulating cytokines IL-13 and IL-9. L1-CRM197-vaccinated mice also had earlier resolution of inflammatory and tissue-damaging cytokines compared to the FCDG-only controls. These results suggest a balanced humoral and cell-mediated response, along with mucosa-based immunity are beneficial for protection. Future efforts should further assess mucosal cellular and humoral mechanisms of protection and test such protection, using aerosolized B. pseudomallei select agent strain(s).
Collapse
Affiliation(s)
| | | | | | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
8
|
Thom RE, Williamson ED, Casulli J, Butcher WA, Burgess G, Laws TR, Huxley P, Ashfield R, Travis MA, D’Elia RV. Assessment of CD200R Activation in Combination with Doxycycline in a Model of Melioidosis. Microbiol Spectr 2023; 11:e0401622. [PMID: 37199641 PMCID: PMC10269878 DOI: 10.1128/spectrum.04016-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/17/2023] [Indexed: 05/19/2023] Open
Abstract
Antimicrobial resistance continues to be a global issue. Pathogens, such as Burkholderia pseudomallei, have evolved mechanisms to efflux certain antibiotics and manipulate the host response. New treatment strategies are therefore required, such as a layered defense approach. Here, we demonstrate, using biosafety level 2 (BSL-2) and BSL-3 in vivo murine models, that combining the antibiotic doxycycline with an immunomodulatory drug that targets the CD200 axis is superior to antibiotic treatment in combination with an isotype control. CD200-Fc treatment alone significantly reduces bacterial burden in lung tissue in both the BSL-2 and BSL-3 models. When CD200-Fc treatment is combined with doxycycline to treat the acute BSL-3 model of melioidosis, there is a 50% increase in survival compared with relevant controls. This benefit is not due to increasing the area under the concentration-time curve (AUC) of the antibiotic, suggesting the immunomodulatory nature of CD200-Fc treatment is playing an important role by potentially controlling the overactive immune response seen with many lethal bacterial infections. IMPORTANCE Traditional treatments for infectious disease have focused on the use of antimicrobial compounds (e.g. antibiotics) that target the infecting organism. However, timely diagnosis and administration of antibiotics remain crucial to ensure efficacy of these treatments especially for the highly virulent biothreat organisms. The need for early antibiotic treatment, combined with the increasing emergence of antibiotic resistant bacteria, means that new therapeutic strategies are required for organisms that cause rapid, acute infections. Here, we show that a layered defense approach, where an immunomodulatory compound is combined with an antibiotic, is better than an antibiotic combined with a relevant isotype control following infection with the biothreat agent Burkholderia pseudomallei. This approach has the potential to be truly broad spectrum and since the strategy includes manipulation of the host response it's application could be used in the treatment of a wide range of diseases.
Collapse
Affiliation(s)
- R. E. Thom
- CBR Division Defence Science and Technology Laboratory Porton Down, Salisbury, United Kingdom
| | - E. D. Williamson
- CBR Division Defence Science and Technology Laboratory Porton Down, Salisbury, United Kingdom
| | - J. Casulli
- Lydia Becker Institute for Immunology and Inflammation, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - W. A. Butcher
- CBR Division Defence Science and Technology Laboratory Porton Down, Salisbury, United Kingdom
| | - G. Burgess
- CBR Division Defence Science and Technology Laboratory Porton Down, Salisbury, United Kingdom
| | - T. R. Laws
- CBR Division Defence Science and Technology Laboratory Porton Down, Salisbury, United Kingdom
| | - P. Huxley
- Ducentis BioTherapeutics Ltd., Oxford, Oxfordshire, United Kingdom
| | - R. Ashfield
- Ducentis BioTherapeutics Ltd., Oxford, Oxfordshire, United Kingdom
| | - M. A. Travis
- Lydia Becker Institute for Immunology and Inflammation, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - R. V. D’Elia
- CBR Division Defence Science and Technology Laboratory Porton Down, Salisbury, United Kingdom
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|