1
|
Warrell DL, Zarrella TM, Machalek C, Khare A. Interspecies surfactants serve as public goods enabling surface motility in Pseudomonas aeruginosa. J Bacteriol 2024; 206:e0028124. [PMID: 39235232 PMCID: PMC11500613 DOI: 10.1128/jb.00281-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024] Open
Abstract
In most natural environments, bacteria live in polymicrobial communities where secreted molecules from neighboring species alter bacterial behaviors, including motility, but such interactions are understudied. Pseudomonas aeruginosa is a motile opportunistic pathogen that exists in diverse multispecies environments, such as the soil, and is frequently found in human wound and respiratory tract co-infections with other bacteria, including Staphylococcus aureus. Here, we show that P. aeruginosa can co-opt secreted surfactants from other species for flagellar-based surface motility. We found that exogenous surfactants from S. aureus, other bacteria, and interkingdom species enabled P. aeruginosa to switch from swarming to an alternative surface spreading motility on semi-solid surfaces and allowed for the emergence of surface motility on hard agar where P. aeruginosa was otherwise unable to move. Although active flagellar function was required for surface spreading, known motility regulators were not essential, indicating that surface spreading may be regulated by an as yet unknown mechanism. This motility was distinct from the response of most other motile bacterial species in the presence of exogenous surfactants. Mutant analysis indicated that this P. aeruginosa motility was similar to a previously described mucin-based motility, "surfing," albeit with divergent regulation. Thus, our study demonstrates that secreted surfactants from the host as well as neighboring bacterial and interkingdom species act as public goods facilitating P. aeruginosa flagella-mediated surfing-like surface motility, thereby allowing it to access different environmental niches. IMPORTANCE Bacterial motility is an important determinant of bacterial fitness and pathogenesis, allowing expansion and invasion to access nutrients and adapt to new environments. Here, we demonstrate that secreted surfactants from a variety of foreign species, including other bacterial species, infection hosts, fungi, and plants, facilitate surface spreading motility in the opportunistic pathogen Pseudomonas aeruginosa that is distinct from established motility phenotypes. This response to foreign surfactants also occurs in Pseudomonas putida, but not in more distantly related bacterial species. Our systematic characterization of surfactant-based surface spreading shows that these interspecies surfactants serve as public goods to enable P. aeruginosa to move and explore environmental conditions when it would be otherwise immotile.
Collapse
Affiliation(s)
- Delayna L. Warrell
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tiffany M. Zarrella
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Christopher Machalek
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Zheng L, Cai X, Tang J, Qin H, Li J. Bioelectrochemical technologies for soil and sediment remediation: Recent advances and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122602. [PMID: 39316876 DOI: 10.1016/j.jenvman.2024.122602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/31/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Soil and sediment serve as the ultimate repositories of pollutants, presenting a significant environmental concern on a global scale. However, there is no effective measure due to the low mobility, high resistance and high cost of contaminated soil or sediment. The bioelectrochemical systems (BESs) combine microbial and electrochemical technology to achieve efficient and rapid degradation of pollutants by enriching electroactive microbial membranes with electrodes. Specifically, BESs offer an ideal solution for in-situ remediation, eliminating the secondary pollution and high energy consumption issues associated with traditional technologies. However, in soil or sediment bioelectrochemical systems (SBESs), further summarization and improvement are required to address the influencing factors during the process of pollutant remediation, given the fragility of complex geographical and natural environments. This paper provides a comprehensive overview and analysis of the removal mechanisms of organic pollutants, heavy metals and emerging contaminants within contaminated soil or sediment, elucidating the influential factors and strategies aimed at enhancing pollutant removal processes within SBESs. The current emerging problems and limitations of microbial electrochemical remediation technology are summarized, and it is suggested that future development should focus on microorganisms, reactors and practical applications.
Collapse
Affiliation(s)
- Linlan Zheng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xixi Cai
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China.
| | - Hongjie Qin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
3
|
Bagheri AM, Mirzahashemi M, Salarpour S, Dehghnnoudeh Y, Banat IM, Ohadi M, Dehghannoudeh G. Potential anti-aging applications of microbial-derived surfactantsin cosmetic formulations. Crit Rev Biotechnol 2024:1-22. [PMID: 39294002 DOI: 10.1080/07388551.2024.2393420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 09/20/2024]
Abstract
The skin aging process is a complex interaction of genetic, epigenetic, and environmental factors, such as chemical pollution and UV radiation. There is growing evidence that biosurfactants, especially those of microbial origin, have distinct age-supportive effects through different mechanisms, such as stimulation of fibroblast growth, high antioxidant capacities, and favorable anti-inflammatory properties. With a growing financial contribution of more than 15 m€per year, microbial surfactants (MSs) display unique biological effects on the skin including improved cell mobility, better nutrient access, and facilitated cellular growth under harsh conditions. Their biodegradable nature, unusual surface activity, good safety profile and tolerance to high temperature and pH variations widen their potential spectrum in biomedical and pharmaceutical applications. MSs typically have lower critical micelle concentration (CMC) levels than chemical surfactants enhancing their effectiveness. As natural surfactants, MSs are considered possible "green" alternatives to synthetic surfactants with better biodegradability, sustainability, and beneficial functional properties. This review therefore aims to explore the potential impacts of MSs as anti-aging ingredients.
Collapse
Affiliation(s)
- Amir Mohammad Bagheri
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Mirzahashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Soodeh Salarpour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasmin Dehghnnoudeh
- Departeman of Biology, Faculty of Science, York University, Toronto, Ontario, Canada
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life & Health Sciences, Ulster University, Coleraine, N. Ireland, UK
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Akimbekov N, Digel I, Zhubanova A, Tastambek KT, Tepecik A, Sherelkhan D. Biotechnological potentials of surfactants in coal utilization: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55099-55118. [PMID: 39243327 DOI: 10.1007/s11356-024-34892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
The quest for scientifically advanced and sustainable solutions is driven by growing environmental and economic issues associated with coal mining, processing, and utilization. Consequently, within the coal industry, there is a growing recognition of the potential of microbial applications in fostering innovative technologies. Microbial-based coal solubilization, coal beneficiation, and coal dust suppression are green alternatives to traditional thermochemical and leaching technologies and better meet the need for ecologically sound and economically viable choices. Surfactant-mediated approaches have emerged as powerful tools for modeling, simulation, and optimization of coal-microbial systems and continue to gain prominence in clean coal fuel production, particularly in microbiological co-processing, conversion, and beneficiation. Surfactants (surface-active agents) are amphiphilic compounds that can reduce surface tension and enhance the solubility of hydrophobic molecules. A wide range of surfactant properties can be achieved by either directly influencing microbial growth factors, stimulants, and substrates or indirectly serving as frothers, collectors, and modifiers in the processing and utilization of coal. This review highlights the significant biotechnological potential of surfactants by providing a thorough overview of their involvement in coal biodegradation, bioprocessing, and biobeneficiation, acknowledging their importance as crucial steps in coal consumption.
Collapse
Affiliation(s)
- Nuraly Akimbekov
- Scientific-Practical Center, West Kazakhstan Marat Ospanov Medical University, Maresyev str. 68, Aktobe, 030019, Kazakhstan
- Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Al-Farabi ave. 71, Almaty, 050040, Kazakhstan
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Sattarhanov str. 29, Turkistan, 161200, Kazakhstan
| | - Ilya Digel
- Institute for Bioengineering, Aachen University of Applied Sciences, Heinrich-Mussmann-Straße 1, Jülich, 52428, Germany.
| | - Azhar Zhubanova
- Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Al-Farabi ave. 71, Almaty, 050040, Kazakhstan
| | - Kuanysh T Tastambek
- Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Al-Farabi ave. 71, Almaty, 050040, Kazakhstan
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Sattarhanov str. 29, Turkistan, 161200, Kazakhstan
| | - Atakan Tepecik
- Institute for Bioengineering, Aachen University of Applied Sciences, Heinrich-Mussmann-Straße 1, Jülich, 52428, Germany
| | - Dinara Sherelkhan
- Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Al-Farabi ave. 71, Almaty, 050040, Kazakhstan
| |
Collapse
|
5
|
Bastos CG, Livio DF, de Oliveira MA, Meira HGR, Tarabal VS, Colares HC, Parreira AG, Chagas RCR, Speziali MG, da Silva JA, Granjeiro JM, Millán RDS, Gonçalves DB, Granjeiro PA. Exploring the biofilm inhibitory potential of Candida sp. UFSJ7A glycolipid on siliconized latex catheters. Braz J Microbiol 2024; 55:2119-2130. [PMID: 38954220 PMCID: PMC11405650 DOI: 10.1007/s42770-024-01431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
Biosurfactants, sustainable alternatives to petrochemical surfactants, are gaining attention for their potential in medical applications. This study focuses on producing, purifying, and characterizing a glycolipid biosurfactant from Candida sp. UFSJ7A, particularly for its application in biofilm prevention on siliconized latex catheter surfaces. The glycolipid was extracted and characterized, revealing a critical micellar concentration (CMC) of 0.98 mg/mL, indicating its efficiency at low concentrations. Its composition, confirmed through Fourier transform infrared spectroscopy (FT-IR) and thin layer chromatography (TLC), identified it as an anionic biosurfactant with a significant ionic charge of -14.8 mV. This anionic nature contributes to its biofilm prevention capabilities. The glycolipid showed a high emulsification index (E24) for toluene, gasoline, and soy oil and maintained stability under various pH and temperature conditions. Notably, its anti-adhesion activity against biofilms formed by Escherichia coli, Enterococcus faecalis, and Candida albicans was substantial. When siliconized latex catheter surfaces were preconditioned with 2 mg/mL of the glycolipid, biofilm formation was reduced by up to 97% for E. coli and C. albicans and 57% for E. faecalis. These results are particularly significant when compared to the efficacy of conventional surfactants like SDS, especially for E. coli and C. albicans. This study highlights glycolipids' potential as a biotechnological tool in reducing biofilm-associated infections on medical devices, demonstrating their promising applicability in healthcare settings.
Collapse
Affiliation(s)
- Cibele Garcia Bastos
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Diego Fernandes Livio
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Maria Auxiliadora de Oliveira
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Hiure Gomes Ramos Meira
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Vinícius Souza Tarabal
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Heloísa Carneiro Colares
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Adriano Guimarães Parreira
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Rafael César Russo Chagas
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Marcelo Gomes Speziali
- Chemistry Department, Federal University of Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | - José Antônio da Silva
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - José Mauro Granjeiro
- National Institute of Metrology, Quality, and Technology, Duque de Caxias, RJ, 25250-020, Brazil
| | | | - Daniel Bonoto Gonçalves
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Paulo Afonso Granjeiro
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil.
| |
Collapse
|
6
|
Markam SS, Raj A, Kumar A, Khan ML. Microbial biosurfactants: Green alternatives and sustainable solution for augmenting pesticide remediation and management of organic waste. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100266. [PMID: 39257939 PMCID: PMC11385824 DOI: 10.1016/j.crmicr.2024.100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Pesticide pollution remains a significant environmental challenge, necessitating the exploration of sustainable alternatives. Biosurfactants are a class of unconventional surface-active chemicals that are produced by microorganisms. Biosurfactants have many applications in treating oil spills, emulsifiers, pharmaceuticals, and agriculture. Compared to chemical surfactants, they have benefits such as biodegradability, less toxicity, and a greener option because they are derived from microbes. Biosurfactants have recently been shown to have the potential to speed up pesticide cleanup. Biosurfactants are used in pesticide remediation because of their exceptional foaming ability, high selectivity, and wide range of pH, salinity, and temperature operating windows. Microbial biosurfactants emerged as potential agents for the treatment of organic waste and agricultural residue. This review unfolds the promising realm of microbial biosurfactants as green solutions for environmental sustainability, particularly in agricultural practices, with special reference to pesticide remediation. This article highlights the escalating need for eco-friendly alternatives, paving the way for discussing biosurfactants. Moreover, the articles discuss in detail various advancements in the field of rapid screening of biosurfactants, either using a conventional approach or via advanced instruments such as GC-MS, HPLC, NMR, FTIR, etc. Furthermore, the article unveils the molecular mechanisms and the microbial genes driving biosurfactant synthesis, offering insights into enhancing production efficiency. Moreover, the article explores diverse applications of microbial biosurfactants in sustainable agriculture, ranging from soil remediation to crop protection. The article also highlights the various functions of microbial biosurfactants for enhancing the decomposition and recycling of organic waste and agricultural residues, emphasizing their potential for sustainable waste management strategies. Overall, the review underscores the pivotal role of microbial biosurfactants as green alternatives for addressing pesticide pollution and advancing environmental sustainability.
Collapse
Affiliation(s)
- Shiv Shankar Markam
- Forest Ecology and Ecosystems Laboratory, Department of Botany, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Aman Raj
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, Madhya Pradesh, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, University of Allahabad (A Central University), Prayagraj, 211002, Uttar Pradesh, India
| | - Mohammed Latif Khan
- Forest Ecology and Ecosystems Laboratory, Department of Botany, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| |
Collapse
|
7
|
Bamba T, Aoki R, Hori Y, Ishikawa S, Yoshida KI, Taoka N, Kobayashi S, Yasueda H, Kondo A, Hasunuma T. High-throughput evaluation of hemolytic activity through precise measurement of colony and hemolytic zone sizes of engineered Bacillus subtilis on blood agar. Biol Methods Protoc 2024; 9:bpae044. [PMID: 38962661 PMCID: PMC11219306 DOI: 10.1093/biomethods/bpae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/20/2024] [Indexed: 07/05/2024] Open
Abstract
Biosurfactants have remarkable characteristics, such as environmental friendliness, high safety, and excellent biodegradability. Surfactin is one of the best-known biosurfactants produced by Bacillus subtilis. Because the biosynthetic pathways of biosurfactants, such as surfactin, are complex, mutagenesis is a useful alternative to typical metabolic engineering approaches for developing high-yield strains. Therefore, there is a need for high-throughput and accurate screening methods for high-yield strains derived from mutant libraries. The blood agar lysis method, which takes advantage of the hemolytic activity of biosurfactants, is one way of determining their concentration. This method includes inoculating microbial cells onto blood-containing agar plates, and biosurfactant production is assessed based on the size of the hemolytic zone formed around each colony. Challenges with the blood agar lysis method include low experimental reproducibility and a lack of established protocols for high-throughput screening. Therefore, in this study, we investigated the effects of the inoculation procedure and media composition on the formation of hemolytic zones. We also developed a workflow to evaluate the number of colonies using robotics. The results revealed that by arranging colonies at appropriate intervals and measuring the areas of colonies and hemolytic rings using image analysis software, it was possible to accurately compare the hemolytic activity among several colonies. Although the use of the blood agar lysis method for screening is limited to surfactants exhibiting hemolytic activity, it is believed that by considering the insights gained from this study, it can contribute to the accurate screening of strains with high productivity.
Collapse
Affiliation(s)
- Takahiro Bamba
- Engineering Biology Research Center, Kobe University, Kobe, 657-8501, Japan
| | - Rina Aoki
- Food Production Support Strategic Unit, Kaneka Corporation, Takasago, 676-8688, Japan
| | - Yoshimi Hori
- Engineering Biology Research Center, Kobe University, Kobe, 657-8501, Japan
| | - Shu Ishikawa
- Engineering Biology Research Center, Kobe University, Kobe, 657-8501, Japan
| | - Ken-ichi Yoshida
- Engineering Biology Research Center, Kobe University, Kobe, 657-8501, Japan
| | - Naoaki Taoka
- Food Production Support Strategic Unit, Kaneka Corporation, Takasago, 676-8688, Japan
| | - Shingo Kobayashi
- Food Production Support Strategic Unit, Kaneka Corporation, Takasago, 676-8688, Japan
| | - Hisashi Yasueda
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, 657-8501, Japan
- Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, 305-8550, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, Kobe, 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, 657-8501, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, Kobe, 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, 657-8501, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| |
Collapse
|
8
|
Pitocchi R, Cicatiello P, Illiano A, Fontanarosa C, Spina F, Varese GC, Amoresano A, Piscitelli A, Giardina P. The essential role of aggregation for the emulsifying ability of a fungal CYS-rich protein. Appl Microbiol Biotechnol 2024; 108:358. [PMID: 38829381 PMCID: PMC11147851 DOI: 10.1007/s00253-024-13182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
Biosurfactants are in demand by the global market as natural commodities suitable for incorporation into commercial products or utilization in environmental applications. Fungi are promising producers of these molecules and have garnered interest also for their metabolic capabilities in efficiently utilizing recalcitrant and complex substrates, like hydrocarbons, plastic, etc. Within this framework, biosurfactants produced by two Fusarium solani fungal strains, isolated from plastic waste-contaminated landfill soils, were analyzed. Mycelia of these fungi were grown in the presence of 5% olive oil to drive biosurfactant production. The characterization of the emulsifying and surfactant capacity of these extracts highlighted that two different components are involved. A protein was purified and identified as a CFEM (common in fungal extracellular membrane) containing domain, revealing a good propensity to stabilize emulsions only in its aggregate form. On the other hand, an unidentified cationic smaller molecule exhibits the ability to reduce surface tension. Based on the 3D structural model of the protein, a plausible mechanism for the formation of very stable aggregates, endowed with the emulsifying ability, is proposed. KEY POINTS: • Two Fusarium solani strains are analyzed for their surfactant production. • A cationic surfactant is produced, exhibiting the ability to remarkably reduce surface tension. • An identified protein reveals a good propensity to stabilize emulsions only in its aggregate form.
Collapse
Affiliation(s)
- Rossana Pitocchi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, Naples, 80126, Italy
| | - Paola Cicatiello
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, Naples, 80126, Italy.
| | - Anna Illiano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, Naples, 80126, Italy
| | - Carolina Fontanarosa
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, Naples, 80126, Italy
| | - Federica Spina
- Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, Turin, 10125, Italy
| | - Giovanna Cristina Varese
- Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, Turin, 10125, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, Naples, 80126, Italy
| | - Alessandra Piscitelli
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, Naples, 80126, Italy
| | - Paola Giardina
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, Naples, 80126, Italy
| |
Collapse
|
9
|
Warrell DL, Zarrella TM, Machalek C, Khare A. Interspecies surfactants serve as public goods enabling surface motility in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.573969. [PMID: 38260674 PMCID: PMC10802355 DOI: 10.1101/2024.01.03.573969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In most natural environments, bacteria live in polymicrobial communities where secreted molecules from neighboring species alter bacterial behaviors including motility, but such interactions are understudied. Pseudomonas aeruginosa is a motile opportunistic pathogen that exists in diverse multispecies environments such as the soil and is frequently found in human wound and respiratory tract co-infections with other bacteria including Staphylococcus aureus. Here we show that P. aeruginosa can co-opt secreted surfactants from other species for flagellar-based surface motility. We found that exogenous surfactants from S. aureus, other bacteria, and interkingdom species enabled P. aeruginosa to switch from swarming to an alternative surface spreading motility on semi-solid surfaces and allowed for the emergence of surface motility on hard agar where P. aeruginosa was otherwise unable to move. This motility was distinct from the response of other motile bacteria in the presence of exogenous surfactants. Mutant analysis indicated that this P. aeruginosa motility was similar to a previously described mucin-based motility, 'surfing', albeit with divergent regulation. Thus, our study demonstrates that secreted surfactants from the host as well as neighboring bacterial and interkingdom species act as public goods facilitating P. aeruginosa flagella-mediated surfing-like surface motility, thereby allowing it to access different environmental niches.
Collapse
Affiliation(s)
- Delayna L. Warrell
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiffany M. Zarrella
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, USA
- Current address: Department of Biology, Georgetown University, Washington, DC, USA
| | - Christopher Machalek
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Mukadam H, Gaikwad SV, Kutty NN, Gaikwad VD. Bioformulation of Bacillus proteolyticus MITWPUB1 and its biosurfactant to control the growth of phytopathogen Sclerotium rolfsii for the crop Brassica juncea var local, as a sustainable approach. Front Bioeng Biotechnol 2024; 12:1362679. [PMID: 38707507 PMCID: PMC11066288 DOI: 10.3389/fbioe.2024.1362679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/13/2024] [Indexed: 05/07/2024] Open
Abstract
Bacillus proteolyticus MITWPUB1 is a potential producer of biosurfactants (BSs), and the organism is also found to be a producer of plant growth promoting traits, such as hydrogen cyanide and indole acetic acid (IAA), and a solubilizer of phosphate. The BSs were reportedly a blend of two classes, namely glycolipids and lipopeptides, as found by thin layer chromatography and Fourier-transform infrared spectroscopy analysis. Furthermore, semi-targeted metabolite profiling via liquid chromatography mass spectroscopy revealed the presence of phospholipids, lipopeptides, polyamines, IAA derivatives, and carotenoids. The BS showed dose-dependent antagonistic activity against Sclerotium rolfsii; scanning electron microscopy showed the effects of the BS on S. rolfsii in terms of mycelial deformations and reduced branching patterns. In vitro studies showed that the application of B. proteolyticus MITWPUB1 and its biosurfactant to seeds of Brassica juncea var local enhanced the seed germination rate. However, sawdust-carrier-based bioformulation with B. proteolyticus MITWPUB1 and its BS showed increased growth parameters for B. juncea var L. This study highlights a unique bioformulation combination that controls the growth of the phytopathogen S. rolfsii and enhances the plant growth of B. juncea var L. Bacillus proteolyticus MITWPUB1 was also shown for the first time to be a prominent BS producer with the ability to control the growth of the phytopathogen S. rolfsii.
Collapse
Affiliation(s)
- Humaira Mukadam
- Department of Biosciences and Technology, School of Science and Environment Studies, Faculty of Science and Health Science, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, India
| | - Shikha V. Gaikwad
- Department of Biosciences and Technology, School of Science and Environment Studies, Faculty of Science and Health Science, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, India
| | - Nithya N. Kutty
- Department of Biosciences and Technology, School of Science and Environment Studies, Faculty of Science and Health Science, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, India
| | - Vikrant D. Gaikwad
- Department of Chemical Engineering, School of Engineering and Technology, Faculty of Engineering, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, India
| |
Collapse
|
11
|
Eras-Muñoz E, Gea T, Font X. Carbon and nitrogen optimization in solid-state fermentation for sustainable sophorolipid production using industrial waste. Front Bioeng Biotechnol 2024; 11:1252733. [PMID: 38249797 PMCID: PMC10797751 DOI: 10.3389/fbioe.2023.1252733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024] Open
Abstract
The use of alternative feedstocks such as industrial or food waste is being explored for the sustainable production of sophorolipids (SLs). Microbial biosurfactants are mainly produced via submerged fermentation (SmF); however, solid-state fermentation (SSF) seems to be a promising alternative for using solid waste or byproducts that could not be exploited by SmF. Applying the advantages that SSF offers and with the aim of revalorizing industrial organic waste, the impact of carbon and nitrogen sources on the relationship between yeast growth and SL production was analyzed. The laboratory-scale system used winterization oil cake as the solid waste for a hydrophobic carbon source. Pure hydrophilic carbon (glucose) and nitrogen (urea) sources were used in a Box-Behnken statistical design of experiments at different ratios by applying the response surface methodology. Optimal conditions to maximize the production and productivity of diacetylated lactonic C18:1 were a glucose:nitrogen ratio of 181.7:1.43 (w w-1 based on the initial dry matter) at a fermentation time of 100 h, reaching 0.54 total gram of diacetylated lactonic C18:1 with a yield of 0.047 g per gram of initial dry mass. Moreover, time course fermentation under optimized conditions increased the SL crude extract and diacetylated lactonic C8:1 production by 22% and 30%, respectively, when compared to reference conditions. After optimization, industrial wastes were used to substitute pure substrates. Different industrial sludges, OFMSW hydrolysate, and sweet candy industry wastewater provided nitrogen, hydrophilic carbon, and micronutrients, respectively, allowing their use as alternative feedstocks. Sweet candy industry wastewater and cosmetic sludge are potential hydrophilic carbon and nitrogen sources, respectively, for sophorolipid production, achieving yields of approximately 70% when compared to the control group.
Collapse
Affiliation(s)
| | - Teresa Gea
- Department of Chemical, Biological and Environmental Engineering, Escola d’Enginyeria, Composting Research Group (GICOM), Universitat Autònoma de Barcelona, Barcelona, Spain
| | | |
Collapse
|
12
|
Sar P, Kundu S, Ghosh A, Saha B. Natural surfactant mediated bioremediation approaches for contaminated soil. RSC Adv 2023; 13:30586-30605. [PMID: 37859781 PMCID: PMC10583161 DOI: 10.1039/d3ra05062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
The treatment of environmental pollution by employing microorganisms is a promising technology, termed bioremediation, which has several advantages over the other established conventional remediation techniques. Consequently, there is an urgent inevitability to develop pragmatic techniques for bioremediation, accompanied by the potency of detoxifying soil environments completely. The bioremediation of contaminated soils has been shown to be an alternative that could be an economically viable way to restore polluted soil. The soil environments have long been extremely polluted by a number of contaminants, like agrochemicals, polyaromatic hydrocarbons, heavy metals, emerging pollutants, etc. In order to achieve a quick remediation overcoming several difficulties the utility of biosurfactants became an excellent advancement and that is why, nowadays, the biosurfactant mediated recovery of soil is a focus of interest to the researcher of the environmental science field specifically. This review provides an outline of the present scenario of soil bioremediation by employing a microbial biosurfactant. In addition to this, a brief account of the pollutants is highlighted along with how they contaminate the soil. Finally, we address the future outlook for bioremediation technologies that can be executed with a superior efficiency to restore a polluted area, even though its practical applicability has been cultivated tremendously over the few decades.
Collapse
Affiliation(s)
- Pintu Sar
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur - 741246 West Bengal India
| | - Sandip Kundu
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
| | - Aniruddha Ghosh
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
| | - Bidyut Saha
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
| |
Collapse
|
13
|
Tambone E, Ceresa C, Marchetti A, Chiera S, Anesi A, Nollo G, Caola I, Bosetti M, Fracchia L, Ghensi P, Tessarolo F. Rhamnolipid 89 Biosurfactant Is Effective against Streptococcus oralis Biofilm and Preserves Osteoblast Behavior: Perspectives in Dental Implantology. Int J Mol Sci 2023; 24:14014. [PMID: 37762317 PMCID: PMC10530769 DOI: 10.3390/ijms241814014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Biofilm-related peri-implant diseases represent the major complication for osteointegrated dental implants, requiring complex treatments or implant removal. Microbial biosurfactants emerged as new antibiofilm coating agents for implantable devices thanks to their high biocompatibility. This study aimed to assess the efficacy of the rhamnolipid 89 biosurfactant (R89BS) in limiting Streptococcus oralis biofilm formation and dislodging sessile cells from medical grade titanium, but preserving adhesion and proliferation of human osteoblasts. The inhibitory activity of a R89BS coating on S. oralis biofilm formation was assayed by quantifying biofilm biomass and microbial cells on titanium discs incubated up to 72 h. R89BS dispersal activity was addressed by measuring residual biomass of pre-formed biofilms after rhamnolipid treatment up to 24 h. Adhesion and proliferation of human primary osteoblasts on R89BS-coated titanium were evaluated by cell count and adenosine-triphosphate quantification, while cell differentiation was studied by measuring alkaline phosphatase activity and observing mineral deposition. Results showed that R89BS coating inhibited S. oralis biofilm formation by 80% at 72 h and dislodged 63-86% of pre-formed biofilms in 24 h according to concentration. No change in the adhesion of human osteoblasts was observed, whereas proliferation was reduced accompanied by an increase in cell differentiation. R89BS effectively counteracts S. oralis biofilm formation on titanium and preserves overall osteoblasts behavior representing a promising preventive strategy against biofilm-related peri-implant diseases.
Collapse
Affiliation(s)
- Erica Tambone
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (S.C.); (G.N.); (F.T.)
| | - Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (M.B.); (L.F.)
| | - Alice Marchetti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (M.B.); (L.F.)
| | - Silvia Chiera
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (S.C.); (G.N.); (F.T.)
| | - Adriano Anesi
- Department of Laboratory Medicine, Azienda Provinciale per i Servizi Sanitari, 38122 Trento, Italy; (A.A.); (I.C.)
| | - Giandomenico Nollo
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (S.C.); (G.N.); (F.T.)
| | - Iole Caola
- Department of Laboratory Medicine, Azienda Provinciale per i Servizi Sanitari, 38122 Trento, Italy; (A.A.); (I.C.)
| | - Michela Bosetti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (M.B.); (L.F.)
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (M.B.); (L.F.)
| | - Paolo Ghensi
- Department CIBIO, University of Trento, 38123 Trento, Italy;
| | - Francesco Tessarolo
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (S.C.); (G.N.); (F.T.)
| |
Collapse
|
14
|
Elsaygh YA, Gouda MK, Elbahloul Y, Hakim MA, El Halfawy NM. Production and structural characterization of eco-friendly bioemulsifier SC04 from Saccharomyces cerevisiae strain MYN04 with potential applications. Microb Cell Fact 2023; 22:176. [PMID: 37679768 PMCID: PMC10485968 DOI: 10.1186/s12934-023-02186-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Bioemulsifiers are natural or microbial-based products with the ability to emulsify hydrophobic compounds in water. These compounds are biodegradable, eco-friendly, and find applications in various industries. RESULTS Thirteen yeasts were isolated from different sources in Alexandria, Egypt, and evaluated for their potential to produce intracellular bioemulsifiers. One yeast, isolated from a local market in Egypt, showed the highest emulsification index (EI24) value. Through 26S rRNA sequencing, this yeast was identified as Saccharomyces cerevisiae strain MYN04. The growth kinetics of the isolate were studied, and after 36 h of incubation, the highest yield of cell dry weight (CDW) was obtained at 3.17 g/L, with an EI24 of 55.6%. Experimental designs were used to investigate the effects of culture parameters on maximizing bioemulsifier SC04 production and CDW. The study achieved a maximum EI24 of 79.0 ± 2.0%. Furthermore, the crude bioemulsifier was precipitated with 50% ethanol and purified using Sephadex G-75 gel filtration chromatography. Bioemulsifier SC04 was found to consist of 27.1% carbohydrates and 72.9% proteins. Structural determination of purified bioemulsifier SC04 was carried out using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), high-performance liquid chromatography (HPLC), and nuclear magnetic resonance spectroscopy (NMR). FTIR spectroscopy revealed characteristic bands associated with carboxyl and hydroxyl groups of carbohydrates, as well as amine groups of proteins. HPLC analysis of monosaccharide composition detected the presence of mannose, galactose, and glucose. Physicochemical characterization of the fraction after gel filtration indicated that bioemulsifier SC04 is a high molecular weight protein-oligosaccharide complex. This bioemulsifier demonstrated stability at different pH values, temperatures, and salinities. At a concentration of 0.5 mg/mL, it exhibited 51.8% scavenging of DPPH radicals. Furthermore, in vitro cytotoxicity evaluation using the MTT assay revealed a noncytotoxic effect of SC04 against normal epithelial kidney cell lines. CONCLUSIONS This study presents a new eco-friendly bioemulsifier, named SC04, which exhibits significant emulsifying ability, antioxidant and anticancer properties, and stabilizing properties. These findings suggest that SC04 is a promising candidate for applications in the food, pharmaceutical, and industrial sectors.
Collapse
Affiliation(s)
- Yasmina A Elsaygh
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Moharam Bek, Alexandria, 21511, Egypt
| | - Mona K Gouda
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Moharam Bek, Alexandria, 21511, Egypt
| | - Yasser Elbahloul
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Moharam Bek, Alexandria, 21511, Egypt
| | | | - Nancy M El Halfawy
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Moharam Bek, Alexandria, 21511, Egypt.
| |
Collapse
|
15
|
Flores P, McBride SA, Galazka JM, Varanasi KK, Zea L. Biofilm formation of Pseudomonas aeruginosa in spaceflight is minimized on lubricant impregnated surfaces. NPJ Microgravity 2023; 9:66. [PMID: 37587131 PMCID: PMC10432549 DOI: 10.1038/s41526-023-00316-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/02/2023] [Indexed: 08/18/2023] Open
Abstract
The undesirable, yet inevitable, presence of bacterial biofilms in spacecraft poses a risk to the proper functioning of systems and to astronauts' health. To mitigate the risks that arise from them, it is important to understand biofilms' behavior in microgravity. As part of the Space Biofilms project, biofilms of Pseudomonas aeruginosa were grown in spaceflight over material surfaces. Stainless Steel 316 (SS316) and passivated SS316 were tested for their relevance as spaceflight hardware components, while a lubricant impregnated surface (LIS) was tested as potential biofilm control strategy. The morphology and gene expression of biofilms were characterized. Biofilms in microgravity are less robust than on Earth. LIS strongly inhibits biofilm formation compared to SS. Furthermore, this effect is even greater in spaceflight than on Earth, making LIS a promising option for spacecraft use. Transcriptomic profiles for the different conditions are presented, and potential mechanisms of biofilm reduction on LIS are discussed.
Collapse
Affiliation(s)
- Pamela Flores
- BioServe Space Technologies, Aerospace Engineering Sciences Department, University of Colorado Boulder, Boulder, CO, 80309, USA.
- Molecular, Cellular, and Developmental Biology Department, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | | | - Jonathan M Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Kripa K Varanasi
- Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
| | - Luis Zea
- BioServe Space Technologies, Aerospace Engineering Sciences Department, University of Colorado Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
16
|
Moya-Ramírez I, Pegalajar-Robles ME, Debiasi Alberton M, Rufián-Henares JA, Fernández-Arteaga A, Garcia-Roman M, Altmajer-Vaz D. Spent coffee grounds as feedstock for the production of biosurfactants and the improved recovery of melanoidins. World J Microbiol Biotechnol 2023; 39:254. [PMID: 37462834 PMCID: PMC10353961 DOI: 10.1007/s11274-023-03698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Spent coffee grounds (SCG) are wastes generated in high amounts worldwide. Their composition makes them a promising feedstock for biotechnological processes. Here we show that the production of the biosurfactant surfactin by submerged culture of a Bacillus subtilis strain growing on SCG is possible, reaching concentrations up to 8.8 mg/L when using SCG at 8.3 g/L in the medium. In addition, we report a synergy between the production of surfactin and the recovery of melanoidins, an added-value compound already present in SCG. More specifically, the concentration of melanoidins in the culture medium increased between 2.1 and 2.5 times thanks to the presence of the B. subtilis in the culture. Furthermore, we have observed a strong interaction between surfactin and melanoidin aggregates through dynamic light scattering measurements, and that both of them can be co-purified with an acid precipitation. We have also characterized the interfacial and antioxidant properties of the cell-free supernatant and surfactin extract, as well as the distribution of the congeners of the biosurfactant. Altogether, this work describes a promising approach to obtain biosurfactants and antioxidant molecules in a single operation, which can be used to design several new formulations of interest for bioremediation, amendment of soils, food and cosmetics.
Collapse
Affiliation(s)
- Ignacio Moya-Ramírez
- Departamento de Ingeniería Química, Universidad de Granada, Avda. Fuentenueva s.n, Granada, 18071, Spain.
| | | | | | - José A Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica and Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Granada, 18100, Spain
| | | | - Miguel Garcia-Roman
- Departamento de Ingeniería Química, Universidad de Granada, Avda. Fuentenueva s.n, Granada, 18071, Spain
| | - Deisi Altmajer-Vaz
- Departamento de Ingeniería Química, Universidad de Granada, Avda. Fuentenueva s.n, Granada, 18071, Spain
| |
Collapse
|
17
|
Rhamnolipid Self-Aggregation in Aqueous Media: A Long Journey toward the Definition of Structure–Property Relationships. Int J Mol Sci 2023; 24:ijms24065395. [PMID: 36982468 PMCID: PMC10048978 DOI: 10.3390/ijms24065395] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
The need to protect human and environmental health and avoid the widespread use of substances obtained from nonrenewable sources is steering research toward the discovery and development of new molecules characterized by high biocompatibility and biodegradability. Due to their very widespread use, a class of substances for which this need is particularly urgent is that of surfactants. In this respect, an attractive and promising alternative to commonly used synthetic surfactants is represented by so-called biosurfactants, amphiphiles naturally derived from microorganisms. One of the best-known families of biosurfactants is that of rhamnolipids, which are glycolipids with a headgroup formed by one or two rhamnose units. Great scientific and technological effort has been devoted to optimization of their production processes, as well as their physicochemical characterization. However, a conclusive structure–function relationship is far from being defined. In this review, we aim to move a step forward in this direction, by presenting a comprehensive and unified discussion of physicochemical properties of rhamnolipids as a function of solution conditions and rhamnolipid structure. We also discuss still unresolved issues that deserve further investigation in the future, to allow the replacement of conventional surfactants with rhamnolipids.
Collapse
|
18
|
Pal S, Chatterjee N, Das AK, McClements DJ, Dhar P. Sophorolipids: A comprehensive review on properties and applications. Adv Colloid Interface Sci 2023; 313:102856. [PMID: 36827914 DOI: 10.1016/j.cis.2023.102856] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Sophorolipids are surface-active glycolipids produced by several non-pathogenic yeast species and are widely used as biosurfactants in several industrial applications. Sophorolipids provide a plethora of benefits over chemically synthesized surfactants for certain applications like bioremediation, oil recovery, and pharmaceuticals. They are, for instance less toxic, more benign and environment friendly in nature, biodegradable, freely adsorb to different surfaces, self-assembly in hydrated solutions, robustness for industrial applications etc. These miraculous properties result in valuable physicochemical attributes such as low critical micelle concentrations (CMCs), reduced interfacial surface tension, and capacity to dissolve non-polar components. Moreover, they exhibit a diverse range of physicochemical, functional, and biological attributes due to their unique molecular composition and structure. In this article, we highlight the physico-chemical properties of sophorolipids, how these properties are exploited by the human community for extensive benefits and the conditions which lead to their unique tailor-made structures and how they entail their interfacial behavior. Besides, we discuss the advantages and disadvantages associated with the use of these sophorolipids. We also review their physiological and functional attributes, along with their potential commercial applications, in real-world scenario. Biosurfactants are compared to their man-made equivalents to show the variations in structure-property correlations and possible benefits. Those attempting to manufacture purported natural or green surfactant with innovative and valuable qualities can benefit from an understanding of biosurfactant features structured along the same principles. The uniqueness of this review article is the detailed physico-chemical study of the sophorolipid biosurfactant and how these properties helps in their usage and detailed explicit study of their applications in the current scenario and also covering their pros and cons.
Collapse
Affiliation(s)
- Srija Pal
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India; Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India
| | - Arun K Das
- Eastern Regional Station, ICAR-IVRI, 37 Belgachia Road, Kolkata 700037, West Bengal, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India; Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India.
| |
Collapse
|
19
|
Devale A, Sawant R, Pardesi K, Perveen K, Khanam MNI, Shouche Y, Mujumdar S. Production and characterization of bioemulsifier by Parapedobacter indicus. Front Microbiol 2023; 14:1111135. [PMID: 36876100 PMCID: PMC9978354 DOI: 10.3389/fmicb.2023.1111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/09/2023] [Indexed: 02/18/2023] Open
Abstract
The current study evaluated Parapedobacter indicus MCC 2546 for its potential to produce a bioemulsifier (BE). Screening methods performed for BE production by P. indicus MCC 2546 showed good lipase activity, positive drop collapse test, and oil-spreading activity. Furthermore, it showed maximum emulsification activity (225 EU/ml) and emulsification index (E24 50%) at 37°C in Luria Bertani broth at 72 h with olive oil as a substrate. The optimal pH and NaCl concentration for maximum emulsification activity were 7 and 1%, respectively. P. indicus MCC 2546 lowered the surface tension of the culture medium from 59.65 to 50.42 ± 0.78 mN/m. BE produced was composed of 70% protein and 30% carbohydrate, which showed the protein-polysaccharide nature of the BE. Furthermore, Fourier transform infrared spectroscopy analysis confirmed the same. P. indicus MCC 2546 showed a catecholate type of siderophore production. This is the first report on BE and siderophore production by the genus Parapedobacter.
Collapse
Affiliation(s)
- Anushka Devale
- Department of Microbiology, P.E.S. Modern College of Arts, Science and Commerce (Autonomous), Pune, India
| | - Rupali Sawant
- Department of Microbiology, P.E.S. Modern College of Arts, Science and Commerce (Autonomous), Pune, India
| | - Karishma Pardesi
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Kahkashan Perveen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mehrun NIsha Khanam
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yogesh Shouche
- School of Arts and Sciences, Azim Premji University, Bengaluru, India
| | - Shilpa Mujumdar
- Department of Microbiology, P.E.S. Modern College of Arts, Science and Commerce (Autonomous), Pune, India
| |
Collapse
|
20
|
Mgbechidinma CL, Akan OD, Zhang C, Huang M, Linus N, Zhu H, Wakil SM. Integration of green economy concepts for sustainable biosurfactant production - A review. BIORESOURCE TECHNOLOGY 2022; 364:128021. [PMID: 36167175 DOI: 10.1016/j.biortech.2022.128021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The link between increasing global population, food demand, industrialization, and agricultural waste is strong. Decomposing by-products from food cycles can introduce harmful toxic heavy metals, active degrading microbes, and enzymes to the environment. Additionally, high greenhouse gas emissions from the decomposing wastes contribute to global change and a high carbon economy. The bioeconomy and circular economy of biosurfactant production utilize these cheap feedstocks and promote waste to valuable product initiatives. Waste reduction, reuse, and recycling in an integrating green economy bioprocess ensure the sustainability of novel, cost-effective, safe, and renewable health-grade biosurfactants. This work reviews green economy concepts integration with sustainable biosurfactant production and its application in health-related industries. Benefits from recent advances in the production, characterization, and health-wise classification of biosurfactants were further discussed, including its limitations, techno-economic assessment, market evaluations, possible roadblocks, and future directions.
Collapse
Affiliation(s)
- Chiamaka Linda Mgbechidinma
- Integrated Life Sciences, University of Georgia, Athens, GA 30602, USA; Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State 200243, Nigeria
| | - Otobong Donald Akan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Hunan 41004, China; Microbiology Department, Akwa-Ibom State University, Akwa-Ibom State, Nigeria
| | - Chunfang Zhang
- Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Mengzhen Huang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Hunan 41004, China
| | - Nsemeke Linus
- Biochemistry Department, University of Uyo, Uyo, Nigeria
| | - He Zhu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Hunan 41004, China; College of Food Science and Engineering, Shandong Agriculture and Engineering University, Shandong, China
| | | |
Collapse
|
21
|
Guergouri I, Guergouri M, Khouni S, Benhizia Y. Identification of cultivable bacterial strains producing biosurfactants/bioemulsifiers isolated from an Algerian oil refinery. Arch Microbiol 2022; 204:649. [PMID: 36171503 DOI: 10.1007/s00203-022-03265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022]
Abstract
Algerian petrochemical industrial areas are usually running spills and leakages of hydrocarbons, which constitutes a major source of toxic compounds in soil such as aromatic hydrocarbons. In this paper, samples of crude oil-polluted soil were collected from Skikda's oil refinery and were subjected to mono and polyaromatic hydrocarbons threshold assessment. Soil physicochemical parameters were determined for each sample to examine their response to pollution. Amid 34 isolated bacteria, eleven strains were selected as best Biosurfactants (Bs)/Bioemulsifiers (Be) producers and were assigned to Firmicutes and Proteobacteria phyla based on molecular identification. Phylogenetic analysis of partial 16S rDNA gene sequences allowed the construction of evolutionary trees by means of the maximum likelihood method. Accordingly, strains were similar to Bacillus spp., Priesta spp., Pseudomonas spp., Enterobacter spp. and Kosakonia spp. with more than 95% similarity. These strains could be qualified candidates for an efficient bioremediation process of severally polluted soils.
Collapse
Affiliation(s)
- Ibtissem Guergouri
- Laboratory of Molecular and Cellular Biology, Department of Microbiology, Faculty of Nature and Life Sciences, Mentouri Brothers Constantine 1 University, Constantine, Algeria.
| | - Mounia Guergouri
- Laboratory of Materials Chemistry, Faculty of Exact Sciences, Department of Chemistry, Mentouri Brothers Constantine 1 University, Constantine, Algeria
| | - Sabra Khouni
- Laboratory of Molecular and Cellular Biology, Department of Microbiology, Faculty of Nature and Life Sciences, Mentouri Brothers Constantine 1 University, Constantine, Algeria
| | - Yacine Benhizia
- Laboratory of Molecular and Cellular Biology, Department of Microbiology, Faculty of Nature and Life Sciences, Mentouri Brothers Constantine 1 University, Constantine, Algeria
| |
Collapse
|