1
|
Dogra K, Kumar M, Deoli Bahukhandi K, Zang J. Traversing the prevalence of microplastics in soil-agro ecosystems: Origin, occurrence, and pollutants synergies. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104398. [PMID: 39032427 DOI: 10.1016/j.jconhyd.2024.104398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
The ubiquity of plastics in modern life has made them a significant environmental concern and a marker of the Anthropocene era. The degradation of plastics results in the formation of microplastics (MPs), which measure 5 mm or less. The coexistence of MPs with other pollutants found in sludge, water treatment plant effluents, surface water, and groundwater, shapes the environmental landscape together. Despite extensive investigation, the long-term implications of MPs in soils remain uncertain, underscoring the importance of delving into their transportation and interactions with soil biota and other contaminants. The present article provides a comprehensive overview of MPs contamination in soil, encompassing its sources, prevalence, features, and interactions with soil flora and fauna, heavy metals, and organic compounds. The sources of MPs in soil agroecosystems are mulching, composting, littering, sewage sludge, irrigation water, and fertilizer application. The concentration of MPs reported in plastic mulch, littering, and sewage sludge is 503 ± 2760 items per kg-1, 4483 ± 2315 MPs/kg, and 11,100 ± 570 per/kg. The transport of MPs in soil agroecosystems is due to their horizontal and vertical migration including biotic and abiotic mobility. The article also highlighted the analytical process, which includes sampling planning, collection, purification, extraction, and identification techniques of MPs in soil agroecosystems. The mechanism in the interaction of MPs and organic pollutants includes surface adsorption or adhesion cation bridging, hydrogen bonding, charge transfer, ligand exchange, van der Waals interactions, and ion exchange.
Collapse
Affiliation(s)
- Kanika Dogra
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India; Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo León, Mexico.
| | - Kanchan Deoli Bahukhandi
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Jian Zang
- Joint International Research Laboratory of Green Buildings and Built Environments, School of Civil Engineering, Chongqing University, Chongqing, China
| |
Collapse
|
2
|
Sharmin S, Wang Q, Islam MR, Wang W, Enyoh CE. Microplastic Contamination of Non-Mulched Agricultural Soils in Bangladesh: Detection, Characterization, Source Apportionment and Probabilistic Health Risk Assessment. J Xenobiot 2024; 14:812-826. [PMID: 38921655 PMCID: PMC11204539 DOI: 10.3390/jox14020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Microplastic contamination in agricultural soil is an emerging problem worldwide as it contaminates the food chain. Therefore, this research investigated the distribution of microplastics (MPs) in agricultural soils without mulch at various depths (0-5, 5-10, and 10-15 cm) across different zones: rural, local market, industrial, coastal, and research areas. The detection of MP types and morphology was conducted using FTIR and fluorescence microscopy, respectively. Eight types of MPs were identified, including high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyvinyl fluoride (PVF), polyvinyl alcohol (PVA), and polytetrafluoroethylene (PTFE), with concentrations ranging from 0.6 ± 0.21 to 3.71 ± 2.36 MPs/g of soil. The study found no significant trends in MP concentration, with ranges of 0-2.1 ± 0.38, 0-2.87 ± 0.55, and 0-2.0 ± 0.34 MPs/g of soil at depths of 0-5 cm, 5-10 cm, and 10-15 cm, respectively. The highest MP quantity was recorded at 8.67 in coastal area, while the lowest was 6.44 in the local market area. Various MP shapes, e.g., fiber, film, pellet, fragment, and irregular, were observed across all layers. PCA suggested irrigation and organic manure as potential sources of MPs. The estimated concentrations of MPs possessed low non-carcinogenic and carcinogenic risks to the farming community of Bangladesh.
Collapse
Affiliation(s)
- Sumaya Sharmin
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan; (M.R.I.); (W.W.); (C.E.E.)
- Department of Agricultural Extension, Khamarbari, Dhaka 1215, Bangladesh
| | - Qingyue Wang
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan; (M.R.I.); (W.W.); (C.E.E.)
| | - Md. Rezwanul Islam
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan; (M.R.I.); (W.W.); (C.E.E.)
- Department of Agricultural Extension, Khamarbari, Dhaka 1215, Bangladesh
| | - Weiqian Wang
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan; (M.R.I.); (W.W.); (C.E.E.)
| | - Christian Ebere Enyoh
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan; (M.R.I.); (W.W.); (C.E.E.)
| |
Collapse
|
3
|
Mishra S, Ren Y, Sun X, Lian Y, Singh AK, Sharma N. Microplastics pollution in the Asian water tower: Source, environmental distribution and proposed mitigation strategy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124247. [PMID: 38838812 DOI: 10.1016/j.envpol.2024.124247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/28/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024]
Abstract
Microplastics generated from fragmentation of leftover plastics and industrial waste has reached in the remotely located Asian water tower (AWT) region, the 3rd pole of earth and origin site of several freshwater rivers. The accumulation of microplastics in AWT ecosystem has potential to alter the climatic condition contributing in global warming and disturbing the biodiversity structural dynamics. The present paper provides a comprehensive critical discussion over quantitative assessment of microplastics in different ecosystems (i.e. river, lakes, sediment and snow or glacier) of AWT. The hydrodynamic fate and transport of microplastics and their ecological impact on hydromorphology and biodiversity of AWT has been exemplified. Furthermore, key challenges, perspectives and research directions are identified to mitigate microplastics associated problems. During survey, the coloured polyethylene and polyurethane fibers are the predominant microplastics found in most areas of AWT. These bio-accumulated MPs alter the rhizospheric community structure and deteriorate nitrogen fixation process in plants. Significance in climate change, MPs pollution is enhancing the emissions of greenhouse gases (NH3 by ∼34% and CH4 by ∼9%), contributing in global warming. Considering the seriousness of MPs pollution, this review study can enlighten the pathways to investigate the effect of MPs and to develop monitoring tools and sustainable remediation technologies with feasible regulatory strategies maintaining the natural significance of AWT region.
Collapse
Affiliation(s)
- Saurabh Mishra
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yuling Ren
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Xiaonan Sun
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yanqing Lian
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, Jiangsu, China.
| | - Anurag Kumar Singh
- University School of Chemical Technology, Guru Govind Singh Indraprastha University, Sector 16c Dwarka, New Delhi, 110078, India
| | - Niraj Sharma
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| |
Collapse
|
4
|
Palansooriya KN, Zhou Y, An Z, Cai Y, Chang SX. Microplastics affect the ecological stoichiometry of plant, soil and microbes in a greenhouse vegetable system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171602. [PMID: 38461987 DOI: 10.1016/j.scitotenv.2024.171602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Microplastic (MP) pollution is a growing global issue due to its potential threat to ecosystem and human health. Low-density polyethylene (LDPE) MP is the most common type of plastics polluting agricultural soils, negatively affecting soil-microbial-plant systems. However, the effects of LDPE MPs on the carbon (C): nitrogen (N): phosphorus (P) of soil-microbial-plant systems have not been well elucidated. Thus, we conducted a pot experiment with varying LDPE MP concentrations (w/w) (control without MPs; 0.2 % MPs (PE1); 5 % MPs (PE2); and 10 % MPs (PE3)) to study their effects on soil-microbial-plant C-N-P stoichiometry. Soil C:N ratio increased 2.3 and 3.4 times in PE2 and PE3, respectively. Soil C:P ratio increased 2.2 and 3.6 times in PE2 and PE3, respectively. Soil microbial C:N ratios decreased by 46.2 % in PE1, while C:P ratios decreased by 59.2, 38.6, and 67.9 % in PE1, PE2, and PE3, respectively. Soil microbial N:P ratio decreased in PE1 (17.2) and PE3 (59.1 %). MPs increased shoot C content and C:N ratios, particularly at the 5 % MP addition rate. MP addition altered dissolved organic C, N, and P concentrations, depending on the MP addition rate. Microbial community responses to MP exposure were complex, leading to variable effects on different microbial groups at different MP addition rates. Structural equation modeling showed that MP addition had a direct positive effect (β = 0.96) on soil C-N-P stoichiometry and a direct negative effect (β = -1.34) on microbial C-N-P stoichiometry. These findings demonstrate the complex interactions between MPs, soil microorganisms, and nutrient dynamics, highlighting the need for further research to better understand the ecological implications of MP pollution in terrestrial ecosystems.
Collapse
Affiliation(s)
- Kumuduni Niroshika Palansooriya
- State Key Laboratory of Subtropical Silviculture, College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China; Department of Renewable Resources, University of Alberta, Edmonton T6G 2E3, Canada
| | - Ying Zhou
- State Key Laboratory of Subtropical Silviculture, College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengfeng An
- Department of Renewable Resources, University of Alberta, Edmonton T6G 2E3, Canada
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China.
| | - Scott X Chang
- State Key Laboratory of Subtropical Silviculture, College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China; Department of Renewable Resources, University of Alberta, Edmonton T6G 2E3, Canada.
| |
Collapse
|
5
|
Balabantaray SR, Singh PK, Pandey AK, Chaturvedi BK, Sharma AK. Forecasting global plastic production and microplastic emission using advanced optimised discrete grey model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123039-123054. [PMID: 37980320 DOI: 10.1007/s11356-023-30799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/27/2023] [Indexed: 11/20/2023]
Abstract
Plastic pollution has become a prominent and pressing environmental concern within the realm of pollution. In recent times, microplastics have entered our ecosystem, especially in freshwater. In the contemporary global landscape, there exists a mounting apprehension surrounding the manifold environmental and public health issues that have emerged as a result of the substantial accumulation of microplastics. The objective of the current study is to employ an enhanced grey prediction model in order to forecast global plastic production and microplastic emissions. This study compared the accuracy level of the four grey prediction models, namely, EGM (1,1, α, θ), DGM (1,1), EGM (1,1), and DGM (1,1, α) models, to evaluate the accuracy levels. As per the estimation of the study, DGM (1,1, α) was found to be more suitable with higher accuracy levels to predict microplastic emission. The EGM (1,1, α, θ) model has slightly better accuracy than the DGM (1,1, α) model in predicting global plastic production. Various accuracy measurement tools (MAPE and RMSE) were used to determine the model's efficiency. There has been a gradual growth in both plastic production and microplastic emission. The current study using the DGM (1,1, α) model predicted that microplastic emission would be 1,084,018 by 2030. The present study aims to provide valuable insights for policymakers in formulating effective strategies to address the complex issues arising from the release of microplastics into the environment and the continuous production of plastic materials.
Collapse
Affiliation(s)
| | | | - Alok Kumar Pandey
- Centre for Integrated Rural Development, Banaras Hindu University, Varanasi, India
| | | | - Aditya Kumar Sharma
- School of Liberal Arts and Management, DIT University, Makka Wala, Uttarakhand, India
| |
Collapse
|