1
|
Sementino E, Hassan D, Bellacosa A, Testa JR. AKT and the Hallmarks of Cancer. Cancer Res 2024; 84:4126-4139. [PMID: 39437156 DOI: 10.1158/0008-5472.can-24-1846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/17/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Nearly a quarter century ago, Hanahan and Weinberg conceived six unifying principles explaining how normal cells transform into malignant tumors. Their provisional set of biological capabilities acquired during tumor development-cancer hallmarks-would evolve to 14 tenets as knowledge of cancer genomes, molecular mechanisms, and the tumor microenvironment expanded, most recently adding four emerging enabling characteristics: phenotypic plasticity, epigenetic reprogramming, polymorphic microbiomes, and senescent cells. AKT kinases are critical signaling molecules that regulate cellular physiology upon receptor tyrosine kinases and PI3K activation. The complex branching of the AKT signaling network involves several critical downstream nodes that significantly magnify its functional impact, such that nearly every organ system and cell in the body may be affected by AKT activity. Conversely, tumor-intrinsic dysregulation of AKT can have numerous adverse cellular and pathologic ramifications, particularly in oncogenesis, as multiple tumor suppressors and oncogenic proteins regulate AKT signaling. Herein, we review the mounting evidence implicating the AKT pathway in the aggregate of currently recognized hallmarks of cancer underlying the complexities of human malignant diseases. The challenges, recent successes, and likely areas for exciting future advances in targeting this complex pathway are also discussed.
Collapse
Affiliation(s)
- Eleonora Sementino
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Green GBH, Cox-Holmes AN, Potier ACE, Marlow GH, McFarland BC. Modulation of the Immune Environment in Glioblastoma by the Gut Microbiota. Biomedicines 2024; 12:2429. [PMID: 39594997 PMCID: PMC11591702 DOI: 10.3390/biomedicines12112429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Studies increasingly support the role of the gut microbiota in glioma development and treatment, although the exact mechanisms remain unclear. Research indicates that the gut microbiota can influence glioma progression, response to therapies, and the effectiveness of treatments like immunotherapy, with certain microbial compositions being linked to better outcomes. Additionally, the gut microbiota impacts the tumor microenvironment, affecting both tumor growth and the response to treatment. This review will explore glioma, the gut microbiota, and how their interaction shapes glioma development and therapy responses. Additionally, this review examines the influence of gut microbiota metabolites, such as short-chain fatty acids (SCFAs) and tryptophan, on glioma development and treatment. It also explores gut microbiome signaling via pattern recognition receptors, and the role of molecular mimicry between microbial and tumor antigens in glioblastoma, and if these interactions affect glioma development and treatment.
Collapse
Affiliation(s)
- George B. H. Green
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
| | - Alexis N. Cox-Holmes
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
| | - Anna Claire E. Potier
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
- Undergraduate Cancer Biology Program, Birmingham, AL 35294, USA
| | - Gillian H. Marlow
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
- Undergraduate Cancer Biology Program, Birmingham, AL 35294, USA
| | - Braden C. McFarland
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
| |
Collapse
|
3
|
Qin H, Liu J, Li YY, Xu YL, Yan YF. Gender-specific microbial signatures in saliva: Unveiling the association between the oral microbiome and the pathogenesis of glioma. Heliyon 2024; 10:e37284. [PMID: 39296230 PMCID: PMC11407923 DOI: 10.1016/j.heliyon.2024.e37284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
The intricate interplay between the human oral microbiome and systemic health is increasingly being recognized, particularly in the context of central nervous system pathologies such as glioblastoma. In this study, we aimed to elucidate gender-specific differences in the salivary microbiome of glioma patients by utilizing 16S rRNA sequencing data from publicly available salivary microbiome datasets. We conducted comprehensive bioinformatics analysis, encompassing quality control, noise reduction, species classification, and microbial community composition analysis at various taxonomic levels. Machine learning algorithms were employed to identify microbial signatures associated with glioma. When compared to healthy controls, our analysis revealed distinct differences in the salivary microbiota of glioma patients. Notably, the genera Leptotrichia and Atopobium exhibited significant variations in abundance between genders. Leptotrichia was prevalent in healthy females but exhibited a reduced abundance in female glioma patients. In contrast, Atopobium was more abundant in male glioma patients. These findings suggest that hormonal influences might play a role in shaping the salivary microbiome and its association with glioma. We utilized a combination of LASSO-logistic regression and random forest models for feature selection, and identified key microbial features that differentiated glioma patients from healthy controls. We developed a diagnostic model with high predictive accuracy and area under the curve and principal component analysis metrics confirmed its robustness. The analysis of microbial markers, including Atopobium and Leptotrichia, highlighted the potential of the salivary microbiota as a non-invasive biomarker for the diagnosis and prognosis of glioma. Our findings highlight significant gender-specific disparities in the salivary microbiome of patients with glioma, offering new insights into the pathogenesis of glioma and paving the way for innovative diagnostic and therapeutic strategies. The use of saliva as a diagnostic fluid, given its ease of collection and non-invasive nature, holds immense promise for monitoring systemic health and the trajectory of disease. Future research should focus on investigating the underlying mechanisms by which the salivary microbiome influences the development of glioma and identifying potential microbiome-targeted therapies to enhance the management of glioma.
Collapse
Affiliation(s)
- Hao Qin
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Liu
- Department of Medical Records, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Yang-Yang Li
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ya-Lan Xu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
| | - Yi-Fang Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| |
Collapse
|
4
|
Hagemeyer H, Hellwinkel OJC, Plata-Bello J. Zonulin as Gatekeeper in Gut-Brain Axis: Dysregulation in Glioblastoma. Biomedicines 2024; 12:1649. [PMID: 39200114 PMCID: PMC11352073 DOI: 10.3390/biomedicines12081649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Novel biomarkers and therapeutic strategies for glioblastoma, the most common malignant brain tumor with an extremely unfavorable prognosis, are urgently needed. Recent studies revealed a significant upregulation of the protein zonulin in glioblastoma, which correlates with patient survival. Originally identified as pre-haptoglobin-2, zonulin modulates both the intestinal barrier and the blood-brain barrier by disassembling tight junctions. An association of zonulin with various neuroinflammatory diseases has been observed. It can be suggested that zonulin links a putative impairment of the gut-brain barrier with glioblastoma carcinogenesis, leading to an interaction of the gut microbiome, the immune system, and glioblastoma. We therefore propose three interconnected hypotheses: (I) elevated levels of zonulin in glioblastoma contribute to its aggressiveness; (II) upregulated (serum-) zonulin increases the permeability of the microbiota-gut-brain barrier; and (III) this creates a carcinogenic and immunosuppressive microenvironment preventing the host from an effective antitumor response. The role of zonulin in glioblastoma highlights a promising field of research that could yield diagnostic and therapeutic options for glioblastoma patients and other diseases with a disturbed microbiota-gut-brain barrier.
Collapse
Affiliation(s)
- Hannah Hagemeyer
- Institut für Neuroimmunologie und Multiple Sklerose, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany;
| | - Olaf J. C. Hellwinkel
- Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Julio Plata-Bello
- Department of Neurosurgery, Hospital Universitario de Canarias, S/C de Tenerife, 38320 La Laguna, Spain
| |
Collapse
|
5
|
Zhang R, Li X, Zhang S. The Role of Bacteria in Central Nervous System Tumors: Opportunities and Challenges. Microorganisms 2024; 12:1053. [PMID: 38930435 PMCID: PMC11205425 DOI: 10.3390/microorganisms12061053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Tumors of the central nervous system (CNS) are severe and refractory diseases with poor prognosis, especially for patients with malignant glioblastoma and brain metastases. Currently, numerous studies have explored the potential role of bacteria and intestinal flora in tumor development and treatment. Bacteria can penetrate the blood-brain barrier (BBB), targeting the hypoxic microenvironment at the core of tumors, thereby eliminating tumors and activating both the innate and adaptive immune responses, rendering them promising therapeutic agents for CNS tumors. In addition, engineered bacteria and derivatives, such as bacterial membrane proteins and bacterial spores, can also be used as good candidate carriers for targeted drug delivery. Moreover, the intestinal flora can regulate CNS tumor metabolism and influence the immune microenvironment through the "gut-brain axis". Therefore, bacterial anti-tumor therapy, engineered bacterial targeted drug delivery, and intervention of the intestinal flora provide therapeutic modalities for the treatment of CNS tumors. In this paper, we performed a comprehensive review of the mechanisms and therapeutic practices of bacterial therapy for CNS tumors and discussed potential future research directions in this field.
Collapse
Affiliation(s)
| | | | - Si Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China; (R.Z.); (X.L.)
| |
Collapse
|
6
|
Han M, An J, Li S, Fan H, Wang L, Du Q, Du J, Yang Y, Song Y, Peng F. Isocucurbitacin B inhibits glioma growth through PI3K/AKT pathways and increases glioma sensitivity to TMZ by inhibiting hsa-mir-1286a. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:16. [PMID: 38835342 PMCID: PMC11149100 DOI: 10.20517/cdr.2024.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/07/2024] [Accepted: 04/24/2024] [Indexed: 06/06/2024]
Abstract
Aim: Glioma accounts for 81% of all cancers of the nervous system cancers and presents one of the most drug-resistant malignancies, resulting in a relatively high mortality rate. Despite extensive efforts, the complete treatment options for glioma remain elusive. The effect of isocucurbitacin B (isocuB), a natural compound extracted from melon pedicels, on glioma has not been investigated. This study aims to investigate the inhibitory effect of isocuB on glioma and elucidate its underlying mechanisms, with the objective of developing it as a potential therapeutic agent for glioma. Methods: We used network pharmacology and bioinformatics analysis to predict potential targets and associated pathways of isocuB in glioma. Subsequently, the inhibitory effect of isocuB on glioma and its related mechanisms were assessed through Counting Kit-8 (CCK-8), wound healing, transwell, Western blot (WB), reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and other in vitro experiments, alongside tumor formation experiments in nude mice. Results: Based on this investigation, it suggested that isocuB might inhibit the growth of gliomas through the PI3K-AKT and MAPK pathways. Additionally, we proposed that isocuB may enhance glioma drug sensitivity to temozolomide (TMZ) via modulation of hsa-mir-1286a. The CCK-8 assay revealed that isocuB exhibited inhibitory effects on U251 and U87 proliferation and outperformed TMZ. Wound healing and transwell experiments showed that isocuB inhibited the invasion and migration of U251 cells by suppressing the activity of MMP-2/9, N-cadherin, and Vimentin. The TdT-mediated dUTP-biotin nick end labeling (TUNEL) and flow cytometry (FCM) assays revealed that isocuB induced cell apoptosis through inhibition of BCL-2. Subsequently, we conducted RT-qPCR and WB experiments, which revealed that PI3K/AKT and MAPK pathways might be involved in the mechanism of the inhibition isocuB on glioma. Additionally, isocuB promoted the sensitivity of glioma U251 to TMZ by inhibiting hsa-mir-1286a. Furthermore, we constructed TMZ-resistant U251 strains and demonstrated effective inhibition by isocuB against these resistant strains. Finally, we confirmed that isocuB can inhibit tumor growth in vivo through experiments on tumors in nude mice. Conclusion: IsocuB may protect against glioma by acting on the PI3K/AKT and MAPK pathways and promote the sensitivity of glioma U251 to TMZ by inhibiting hsa-mir-1286a.
Collapse
Affiliation(s)
- Mingyu Han
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Junsha An
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Sui Li
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Integrated Traditional Chinese and Western Medicine Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, Sichuan, China
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai 214122, China
| | - Huali Fan
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
- Livzon Pharmaceutical Group Inc, Zhuhai 519090, Guangdong, China
| | - Li Wang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qing Du
- Chongqing Western Biomedical Technology Co. Ltd., Chongqing 400039, China
| | - Junrong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxin Yang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuqin Song
- Integrated Traditional Chinese and Western Medicine Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, Sichuan, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
7
|
Fan H, Wang Y, Han M, Wang L, Li X, Kuang X, Du J, Peng F. Multi-omics-based investigation of Bifidobacterium's inhibitory effect on glioma: regulation of tumor and gut microbiota, and MEK/ERK cascade. Front Microbiol 2024; 15:1344284. [PMID: 38699473 PMCID: PMC11064926 DOI: 10.3389/fmicb.2024.1344284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024] Open
Abstract
Glioma, the most prevalent primary tumor of the central nervous system, is characterized by a poor prognosis and a high recurrence rate. The interplay between microbes, such as gut and tumor microbiota, and the host has underscored the significant impact of microorganisms on disease progression. Bifidobacterium, a beneficial bacterial strain found in the human and animal intestines, exhibits inhibitory effects against various diseases. However, the existing body of evidence pertaining to the influence of Bifidobacterium on glioma remains insufficient. Here, we found that Bifidobacterium reduces tumor volume and prolongs survival time in an orthotopic mouse model of glioma. Experiments elucidated that Bifidobacterium suppresses the MEK/ERK cascade. Additionally, we noted an increase in the α-diversity of the tumor microbiota, along with an augmented relative abundance of Bifidobacterium in the gut microbiota. This rise in Bifidobacterium levels within the intestine may be attributed to a concurrent increase in Bifidobacterium within the glioma. Additionally, Bifidobacterium induced alterations in serum metabolites, particularly those comprised of organonitrogen compounds. Thus, our findings showed that Bifidobacterium can suppress glioma growth by inhibiting the MEK/ERK cascade and regulating tumor, and gut microbiota, and serum metabolites in mice, indicating the promising therapeutic prospects of Bifidobacterium against glioma.
Collapse
Affiliation(s)
- Huali Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yuhan Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Mingyu Han
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Li Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
- Jiangsu Sanshu Biotechnology Co., Ltd., Nantong, China
| | - Xue Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xi Kuang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Junrong Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Zhang Z, Li D, Xie F, Zhang H. The causal relationship between gut microbiota and neuroblastoma: a bidirectional Mendelian randomization analysis and meta-analysis. Microbiol Spectr 2024; 12:e0365623. [PMID: 38411074 PMCID: PMC10986465 DOI: 10.1128/spectrum.03656-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/07/2024] [Indexed: 02/28/2024] Open
Abstract
Neuroblastoma (NB) is a type of neuroectodermal tumor that originates from primitive sympathetic ganglion cells. Although many risk factors contributing to the occurrence of NB have been reported in recent years, the role of the gut microbiota in its development remains unclear. A bidirectional Mendelian randomization (MR) analysis was conducted to elucidate the causal relationship between the gut microbiota and NB. In the MR analysis, we employed the inverse-variance weighted (IVW) method as the primary criterion for assessing causality, while also utilizing three additional approaches, including MR-Egger, weighted median model, and weighted mode, for comprehensive evaluation. For gut microbiota that were causally associated with NB, a reverse MR was also used to assess the stability of this causal relationship. Finally, we also used external cohorts for validation and performed a meta-analysis of the results. The IVW results indicated a causal relationship between six gut microbiota and NB. Among the six gut microbiota, genus Lachnospiraceae [IVW odds ratio (OR): 2.66, 95% confidence interval (CI): 1.09-6.51, P value: 0.03] exhibited a detrimental effect against NB. On the other hand, the class Actinobacteria (IVW OR: 0.24, 95% CI: 0.07-0.77, P value: 0.02), the family Bifidobacteriaceae (IVW OR: 0.40, 95% CI: 0.17-0.96, P value: 0.04), the genus Desulfovibrio (IVW OR: 0.50, 95% CI: 0.25-0.97, P value: 0.04), the genus Bifidobacterium (IVW OR: 0.39, 95% CI: 0.16-0.92, P value: 0.03), and the genus Howardella (IVW OR: 0.55, 95% CI: 0.31-0.97, P value: 0.04) displayed a protective effect on NB. A reverse MR analysis did not reveal a causality between NB and the six gut microbiota. Meta-analysis showed that genus Bifidobacterium (meta OR: 0.41, 95% CI: 0.22-0.75, P < 0.01) and genus Lachnospiraceae (meta OR: 2.20, 95% CI: 1.01-4.79, P < 0.05) were still significant. IMPORTANCE Bidirectional Mendelian randomization was used to explore the causality between gut microbiota and neuroblastoma (NB). The results showed that there is a causal relationship between the six gut microbiota and NB, of which two gut microbiota were further confirmed in the meta-analysis. This may provide a new perspective on the prevention and treatment of NB.
Collapse
Affiliation(s)
- Zexin Zhang
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongting Li
- The Affiliated Guangzhou Hospital of TCM of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengxi Xie
- Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, China
| | - Haibo Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Key Laboratory of Clinical Research of Chinese Medicine, Guangzhou, China
- Guangdong Joint Laboratory of Guangdong, Hong Kong and Macao Chinese Medicine and Immune Diseases, Guangzhou, China
- State Key Laboratory of Wet Certificate of Chinese Medicine Jointly Built by the Province and the Ministry, Guangzhou, China
| |
Collapse
|
9
|
Yi L, Lin X, She X, Gao W, Wu M. Chronic stress as an emerging risk factor for the development and progression of glioma. Chin Med J (Engl) 2024; 137:394-407. [PMID: 38238191 PMCID: PMC10876262 DOI: 10.1097/cm9.0000000000002976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Indexed: 02/21/2024] Open
Abstract
ABSTRACT Gliomas tend to have a poor prognosis and are the most common primary malignant tumors of the central nervous system. Compared with patients with other cancers, glioma patients often suffer from increased levels of psychological stress, such as anxiety and fear. Chronic stress (CS) is thought to impact glioma profoundly. However, because of the complex mechanisms underlying CS and variability in individual tolerance, the role of CS in glioma remains unclear. This review suggests a new proposal to redivide the stress system into two parts. Neuronal activity is dominant upstream. Stress-signaling molecules produced by the neuroendocrine system are dominant downstream. We discuss the underlying molecular mechanisms by which CS impacts glioma. Potential pharmacological treatments are also summarized from the therapeutic perspective of CS.
Collapse
Affiliation(s)
- Lan Yi
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiang Lin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Xiaoling She
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wei Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Minghua Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
10
|
Wang W, Ou Z, Huang X, Wang J, Li Q, Wen M, Zheng L. Microbiota and glioma: a new perspective from association to clinical translation. Gut Microbes 2024; 16:2394166. [PMID: 39185670 DOI: 10.1080/19490976.2024.2394166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/10/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Gliomas pose a significant challenge in oncology due to their malignant nature, aggressive growth, frequent recurrence, and complications posed by the blood-brain barrier. Emerging research has revealed the critical role of gut microbiota in influencing health and disease, indicating its possible impact on glioma pathogenesis and treatment responsiveness. This review focused on existing evidence and hypotheses on the relationship between microbiota and glioma from progression to invasion. By discussing possible mechanisms through which microbiota may affect glioma biology, this paper offers new avenues for targeted therapies and precision medicine in oncology.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zihao Ou
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xixin Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyu Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qianbei Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minghui Wen
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Zhou D, Li Y. Gut microbiota and tumor-associated macrophages: potential in tumor diagnosis and treatment. Gut Microbes 2023; 15:2276314. [PMID: 37943609 PMCID: PMC10653702 DOI: 10.1080/19490976.2023.2276314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Avoiding immune destruction and polymorphic microbiomes are two key hallmarks of cancer. The tumor microenvironment (TME) is essential for the development of solid tumors, and the function of tumor-associated macrophages (TAMs) in the TME is closely linked to tumor prognosis. Therefore, research on TAMs could improve the progression and control of certain tumor patients. Additionally, the intestinal flora plays a crucial role in metabolizing substances and maintaining a symbiotic relationship with the host through a complex network of interactions. Recent experimental and clinical studies have suggested a potential link between gut microbiome and TME, particularly in regulating TAMs. Understanding this association could improve the efficacy of tumor immunotherapy. This review highlights the regulatory role of intestinal flora on TAMs, with a focus on gut microbiota and their metabolites. The implications of this association for tumor diagnosis and treatment are also discussed, providing a promising avenue for future clinical treatment strategies.
Collapse
Affiliation(s)
- Dongqin Zhou
- The Second Affliated Hospital & Yuying Children's Hospital / The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yongsheng Li
- The Second Affliated Hospital & Yuying Children's Hospital / The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
12
|
Lin B, Ye Z, Ye Z, Wang M, Cao Z, Gao R, Zhang Y. Gut microbiota in brain tumors: An emerging crucial player. CNS Neurosci Ther 2023; 29 Suppl 1:84-97. [PMID: 36627748 PMCID: PMC10314108 DOI: 10.1111/cns.14081] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
In recent decades, various roles of the gut microbiota in physiological and pathological conditions have been uncovered. Among the many interacting pathways between the host and gut flora, the gut-brain axis has drawn increasing attention and is generally considered a promising way to understand and treat brain tumors, one of the most lethal neoplasms. In this narrative review, we aimed to unveil and dissect the sophisticated mechanisms by which the gut-brain axis exerts its influence on brain tumors. Furthermore, we summarized the latest research regarding the gastrointestinal microbial landscape and the effect of gut-brain axis malfunction on different brain tumors. Finally, we outlined the ongoing developing approaches of microbial manipulation and their corresponding research related to neuro-malignancies. Collectively, we recapitulated the advances in gut microbial alterations along with their potential interactive mechanisms in brain tumors and encouraged increased efforts in this area.
Collapse
Affiliation(s)
- Ben Lin
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Zhen Ye
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Zhao Ye
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Meng Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zhan Cao
- Department of General Surgery, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Renyuan Gao
- Department of General Surgery, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yichao Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| |
Collapse
|
13
|
Lim DM, Lee H, Eom K, Kim YH, Kim S. Bioinformatic analysis of the obesity paradox and possible associated factors in colorectal cancer using TCGA cohorts. J Cancer 2023; 14:322-335. [PMID: 36860923 PMCID: PMC9969588 DOI: 10.7150/jca.80977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/07/2023] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignancy worldwide and the second leading cause of cancer-related deaths. Obesity is an important determinant of CRC incidence; however, obese patients have also shown better long-term survival than non-obese patients, suggesting that the development and progression of CRC are associated with different mechanisms. This study compares the expression of genes, tumor-infiltrating immune cells, and intestinal microbiota between high- and low-body mass index (BMI) patients at the time of CRC diagnosis. The results revealed that high-BMI patients with CRC have better prognosis, higher levels of resting CD4+ T cells, lower levels of T follicular helper cells, and different levels of intratumoral microbiota than low-BMI patients. Our study highlights that tumor-infiltrating immune cells and intratumoral microbe diversity are major features of the obesity paradox in CRC.
Collapse
Affiliation(s)
- Dong Min Lim
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Yangsan 50612, Korea
| | - Hyunsu Lee
- Department of Medical Informatics, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Kisang Eom
- Department of Physiology, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Yun Hak Kim
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea.,Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea.,✉ Corresponding authors: Shin Kim, M.D., Ph.D. Department of Immunology, School of Medicine, Keimyung University, Dalseo-gu, Daegu 42601, Republic of Korea. TEL: +82-53-258-7359; Fax: +82-53-258-7355; E-mail: ; Yun Hak Kim, M.D., Ph.D. Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea. TEL: +82-51-510-8091; Fax: +82-51-510-8049; E-mail:
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-gu, Daegu 42601, Republic of Korea.,Institute of Medical Science, Keimyung University, Dalseo-gu, Daegu 42601, Republic of Korea.,Institute for Cancer Research, Keimyung University Dongsan Medical Center, Dalseo-gu, Daegu 42601, Republic of Korea.,✉ Corresponding authors: Shin Kim, M.D., Ph.D. Department of Immunology, School of Medicine, Keimyung University, Dalseo-gu, Daegu 42601, Republic of Korea. TEL: +82-53-258-7359; Fax: +82-53-258-7355; E-mail: ; Yun Hak Kim, M.D., Ph.D. Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea. TEL: +82-51-510-8091; Fax: +82-51-510-8049; E-mail:
| |
Collapse
|
14
|
Meng Y, Sun J, Zhang G, Yu T, Piao H. Bacteria associated with glioma: a next wave in cancer treatment. Front Cell Infect Microbiol 2023; 13:1164654. [PMID: 37201117 PMCID: PMC10185885 DOI: 10.3389/fcimb.2023.1164654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/21/2023] [Indexed: 05/20/2023] Open
Abstract
Malignant gliomas occur more often in adults and may affect any part of the central nervous system (CNS). Although their results could be better, surgical excision, postoperative radiation and chemotherapy, and electric field therapy are today's mainstays of glioma care. However, bacteria can also exert anti-tumor effects via mechanisms such as immune regulation and bacterial toxins to promote apoptosis, inhibit angiogenesis, and rely on their natural characteristics to target the tumor microenvironment of hypoxia, low pH, high permeability, and immunosuppression. Tumor-targeted bacteria expressing anticancer medications will go to the cancer site, colonize the tumor, and then produce the therapeutic chemicals that kill the cancer cells. Targeting bacteria in cancer treatment has promising prospects. Rapid advances have been made in the study of bacterial treatment of tumors, including using bacterial outer membrane vesicles to load chemotherapy drugs or combine with nanomaterials to fight tumors, as well as the emergence of bacteria combined with chemotherapy, radiotherapy, and photothermal/photodynamic therapy. In this study, we look back at the previous years of research on bacteria-mediated glioma treatment and move forward to where we think it is headed.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Shenyang, China
- *Correspondence: Yiming Meng, ; Tao Yu, ; Haozhe Piao,
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Shenyang, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Shenyang, China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Shenyang, China
- *Correspondence: Yiming Meng, ; Tao Yu, ; Haozhe Piao,
| | - Haozhe Piao
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Shenyang, China
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Shenyang, China
- *Correspondence: Yiming Meng, ; Tao Yu, ; Haozhe Piao,
| |
Collapse
|
15
|
Asai T, Yoshikawa S, Ikeda Y, Taniguchi K, Sawamura H, Tsuji A, Matsuda S. Encouraging Tactics with Genetically Modified Probiotics to Improve Immunity for the Prevention of Immune-Related Diseases including Cardio-Metabolic Disorders. Biomolecules 2022; 13:biom13010010. [PMID: 36671395 PMCID: PMC9855998 DOI: 10.3390/biom13010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The PI3K/AKT/mTOR signaling pathway may play crucial roles in the pathogenesis of obesity and diabetes mellitus, as well as metabolic syndromes, which could also be risk factors for cardio-metabolic disorders. Consistently, it has been shown that beneficial effects may be convoyed by the modulation of the PI3K/AKT/mTOR pathway against the development of these diseases. Importantly, the PI3K/AKT/mTOR signaling pathway can be modulated by probiotics. Probiotics have a variety of beneficial properties, with the potential of treating specific diseases such as immune-related diseases, which are valuable to human health. In addition, an increasing body of work in the literature emphasized the contribution of genetically modified probiotics. There now seems to be a turning point in the research of probiotics. A better understanding of the interactions between microbiota, lifestyle, and host factors such as genetics and/or epigenetics might lead to a novel therapeutic approach with probiotics for these diseases. This study might provide a theoretical reference for the development of genetically modified probiotics in health products and/or in functional foods for the treatment of cardio-metabolic disorders.
Collapse
|