1
|
Shariati A, Kashi M, Chegini Z, Hosseini SM. Antibiotics-free compounds for managing carbapenem-resistant bacteria; a narrative review. Front Pharmacol 2024; 15:1467086. [PMID: 39355778 PMCID: PMC11442292 DOI: 10.3389/fphar.2024.1467086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024] Open
Abstract
Carbapenem-resistant (CR) Gram-negative bacteria have become a significant public health problem in the last decade. In recent years, the prevalence of CR bacteria has increased. The resistance to carbapenems could result from different mechanisms such as loss of porin, penicillin-binding protein alteration, carbapenemase, efflux pump, and biofilm community. Additionally, genetic variations like insertion, deletion, mutation, and post-transcriptional modification of corresponding coding genes could decrease the susceptibility of bacteria to carbapenems. In this regard, scientists are looking for new approaches to inhibit CR bacteria. Using bacteriophages, natural products, nanoparticles, disulfiram, N-acetylcysteine, and antimicrobial peptides showed promising inhibitory effects against CR bacteria. Additionally, the mentioned compounds could destroy the biofilm community of CR bacteria. Using them in combination with conventional antibiotics increases the efficacy of antibiotics, decreases their dosage and toxicity, and resensitizes CR bacteria to antibiotics. Therefore, in the present review article, we have discussed different aspects of non-antibiotic approaches for managing and inhibiting the CR bacteria and various methods and procedures used as an alternative for carbapenems against these bacteria.
Collapse
Affiliation(s)
- Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| | - Milad Kashi
- Student research committee, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Chegini
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Mostafa Hosseini
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
2
|
Ferrando N, Pino-Otín MR, Terrado E, Ballestero D, Langa E. Bioactivity of Eugenol: A Potential Antibiotic Adjuvant with Minimal Ecotoxicological Impact. Int J Mol Sci 2024; 25:7069. [PMID: 39000177 PMCID: PMC11241589 DOI: 10.3390/ijms25137069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Combining commercial antibiotics with adjuvants to lower their minimum inhibitory concentration (MIC) is vital in combating antimicrobial resistance. Evaluating the ecotoxicity of such compounds is crucial due to environmental and health risks. Here, eugenol was assessed as an adjuvant for 7 commercial antibiotics against 14 pathogenic bacteria in vitro, also examining its acute ecotoxicity on various soil and water organisms (microbiota, Vibrio fischeri, Daphnia magna, Eisenia foetida, and Allium cepa). Using microdilution methods, checkerboard assays, and kinetic studies, the MICs for eugenol were determined together with the nature of its combinations with antibiotics against bacteria, some unexposed to eugenol previously. The lethal dose for the non-target organisms was also determined, as well as the Average Well Color Development and the Community-Level Physiological Profiling for soil and water microbiota. Our findings indicate that eugenol significantly reduces MICs by 75 to 98%, which means that it could be a potent adjuvant. Ecotoxicological assessments showed eugenol to be less harmful to water and soil microbiota compared to studied antibiotics. While Vibrio fischeri and Daphnia magna were susceptible, Allium cepa and Eisenia foetida were minimally affected. Given that only 0.1% of eugenol is excreted by humans without metabolism, its environmental risk when used with antibiotics appears minimal.
Collapse
Affiliation(s)
- Natalia Ferrando
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autovía Mudéjar, km. 299, 50830 Villanueva de Gállego, Spain; (N.F.); (M.R.P.-O.); (D.B.)
| | - María Rosa Pino-Otín
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autovía Mudéjar, km. 299, 50830 Villanueva de Gállego, Spain; (N.F.); (M.R.P.-O.); (D.B.)
| | - Eva Terrado
- Facultad de Educación, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain;
| | - Diego Ballestero
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autovía Mudéjar, km. 299, 50830 Villanueva de Gállego, Spain; (N.F.); (M.R.P.-O.); (D.B.)
| | - Elisa Langa
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autovía Mudéjar, km. 299, 50830 Villanueva de Gállego, Spain; (N.F.); (M.R.P.-O.); (D.B.)
| |
Collapse
|
3
|
Rivera-Galindo MA, Aguirre-Garrido F, Garza-Ramos U, Villavicencio-Pulido JG, Fernández Perrino FJ, López-Pérez M. Relevance of the Adjuvant Effect between Cellular Homeostasis and Resistance to Antibiotics in Gram-Negative Bacteria with Pathogenic Capacity: A Study of Klebsiella pneumoniae. Antibiotics (Basel) 2024; 13:490. [PMID: 38927157 PMCID: PMC11200652 DOI: 10.3390/antibiotics13060490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Antibiotic resistance has become a global issue. The most significant risk is the acquisition of these mechanisms by pathogenic bacteria, which can have a severe clinical impact and pose a public health risk. This problem assumes that bacterial fitness is a constant phenomenon and should be approached from an evolutionary perspective to develop the most appropriate and effective strategies to contain the emergence of strains with pathogenic potential. Resistance mechanisms can be understood as adaptive processes to stressful conditions. This review examines the relevance of homeostatic regulatory mechanisms in antimicrobial resistance mechanisms. We focus on the interactions in the cellular physiology of pathogenic bacteria, particularly Gram-negative bacteria, and specifically Klebsiella pneumoniae. From a clinical research perspective, understanding these interactions is crucial for comprehensively understanding the phenomenon of resistance and developing more effective drugs and treatments to limit or attenuate bacterial sepsis, since the most conserved adjuvant phenomena in bacterial physiology has turned out to be more optimized and, therefore, more susceptible to alterations due to pharmacological action.
Collapse
Affiliation(s)
- Mildred Azucena Rivera-Galindo
- Doctorado en Ciencias Biológicas y de la Salud Universidad Autónoma Metropolitana, Ciudad de México, México Universidad Autónoma Metropolitana-Unidad Xochimilco Calz, del Hueso 1100, Coapa, Villa Quietud, Coyoacán CP 04960, Mexico;
| | - Félix Aguirre-Garrido
- Environmental Sciences Department, Division of Biological and Health Sciences, Autonomous Metropolitan University (Lerma Unit), Av. de las Garzas N◦ 10, Col. El Panteón, Lerma de Villada CP 52005, Mexico; (F.A.-G.); (J.G.V.-P.)
| | - Ulises Garza-Ramos
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Cuernavaca CP 62100, Mexico;
| | - José Geiser Villavicencio-Pulido
- Environmental Sciences Department, Division of Biological and Health Sciences, Autonomous Metropolitan University (Lerma Unit), Av. de las Garzas N◦ 10, Col. El Panteón, Lerma de Villada CP 52005, Mexico; (F.A.-G.); (J.G.V.-P.)
| | - Francisco José Fernández Perrino
- Department of Biotechnology, Division of Biological and Health Sciences, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Av. San Rafael Atlixco 186, Leyes de Reforma, México City CP 09340, Mexico;
| | - Marcos López-Pérez
- Environmental Sciences Department, Division of Biological and Health Sciences, Autonomous Metropolitan University (Lerma Unit), Av. de las Garzas N◦ 10, Col. El Panteón, Lerma de Villada CP 52005, Mexico; (F.A.-G.); (J.G.V.-P.)
| |
Collapse
|
4
|
Saifi S, Ashraf A, Hasan GM, Shamsi A, Hassan MI. Insights into the preventive actions of natural compounds against Klebsiella pneumoniae infections and drug resistance. Fitoterapia 2024; 173:105811. [PMID: 38168570 DOI: 10.1016/j.fitote.2023.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Klebsiella pneumoniae is a type of Gram-negative bacteria that causes a variety of infections, including pneumonia, bloodstream infections, wound infections, and meningitis. The treatment of K. pneumoniae infection depends on the type of infection and the severity of the symptoms. Antibiotics are generally used to treat K. pneumoniae infections. However, some strains of K. pneumoniae have become resistant to antibiotics. This comprehensive review examines the potential of natural compounds as effective strategies against K. pneumonia infections. The alarming rise in antibiotic resistance underscores the urgent need for alternative therapies. This article represents current research on the effects of diverse natural compounds, highlighting their anti-microbial and antibiofilm properties against K. pneumonia. Notably, compounds such as andrographolide, artemisinin, baicalin, berberine, curcumin, epigallocatechin gallate, eugenol, mangiferin, piperine, quercetin, resveratrol, and thymol have been extensively investigated. These compounds exhibit multifaceted mechanisms, including disruption of bacterial biofilms, interference with virulence factors, and augmentation of antibiotic effectiveness. Mechanistic insights into their actions include membrane perturbation, oxidative stress induction, and altered gene expression. While promising, challenges such as limited bioavailability and varied efficacy across bacterial strains are addressed. This review further discusses the potential of natural compounds as better alternatives in combating K. pneumonia infection and emphasizes the need for continued research to harness their full therapeutic potential. As antibiotic resistance persists, these natural compounds offer a promising avenue in the fight against K. pneumonia and other multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Sana Saifi
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
5
|
Li L, Gao X, Li M, Liu Y, Ma J, Wang X, Yu Z, Cheng W, Zhang W, Sun H, Song X, Wang Z. Relationship between biofilm formation and antibiotic resistance of Klebsiella pneumoniae and updates on antibiofilm therapeutic strategies. Front Cell Infect Microbiol 2024; 14:1324895. [PMID: 38465230 PMCID: PMC10920351 DOI: 10.3389/fcimb.2024.1324895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/02/2024] [Indexed: 03/12/2024] Open
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium within the Enterobacteriaceae family that can cause multiple systemic infections, such as respiratory, blood, liver abscesses and urinary systems. Antibiotic resistance is a global health threat and K. pneumoniae warrants special attention due to its resistance to most modern day antibiotics. Biofilm formation is a critical obstruction that enhances the antibiotic resistance of K. pneumoniae. However, knowledge on the molecular mechanisms of biofilm formation and its relation with antibiotic resistance in K. pneumoniae is limited. Understanding the molecular mechanisms of biofilm formation and its correlation with antibiotic resistance is crucial for providing insight for the design of new drugs to control and treat biofilm-related infections. In this review, we summarize recent advances in genes contributing to the biofilm formation of K. pneumoniae, new progress on the relationship between biofilm formation and antibiotic resistance, and new therapeutic strategies targeting biofilms. Finally, we discuss future research directions that target biofilm formation and antibiotic resistance of this priority pathogen.
Collapse
Affiliation(s)
- Lifeng Li
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xueyan Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Mingchao Li
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Yuchun Liu
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Jiayue Ma
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Zhidan Yu
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Weyland Cheng
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Wancun Zhang
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Huiqing Sun
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Xiaorui Song
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Zhaobao Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
6
|
Wang M, Zheng Y, Yin C, Dai S, Fan X, Jiang Y, Liu X, Fang J, Yi B, Zhou Q, Wang T. Recent Progress in antibacterial hydrogel coatings for targeting biofilm to prevent orthopedic implant-associated infections. Front Microbiol 2023; 14:1343202. [PMID: 38188584 PMCID: PMC10768665 DOI: 10.3389/fmicb.2023.1343202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
The application of orthopedic implants for bone tissue reconstruction and functional restoration is crucial for patients with severe bone fractures and defects. However, the abiotic nature of orthopedic implants allows bacterial adhesion and colonization, leading to the formation of bacterial biofilms on the implant surface. This can result in implant failure and severe complications such as osteomyelitis and septic arthritis. The emergence of antibiotic-resistant bacteria and the limited efficacy of drugs against biofilms have increased the risk of orthopedic implant-associated infections (OIAI), necessitating the development of alternative therapeutics. In this regard, antibacterial hydrogels based on bacteria repelling, contact killing, drug delivery, or external assistance strategies have been extensively investigated for coating orthopedic implants through surface modification, offering a promising approach to target biofilm formation and prevent OIAI. This review provides an overview of recent advancements in the application of antibacterial hydrogel coatings for preventing OIAI by targeting biofilm formation. The topics covered include: (1) the mechanisms underlying OIAI occurrence and the role of biofilms in exacerbating OIAI development; (2) current strategies to impart anti-biofilm properties to hydrogel coatings and the mechanisms involved in treating OIAI. This article aims to summarize the progress in antibacterial hydrogel coatings for OIAI prevention, providing valuable insights and facilitating the development of prognostic markers for the design of effective antibacterial orthopedic implants.
Collapse
Affiliation(s)
- Mengxuan Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yawen Zheng
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuqiang Yin
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shiyou Dai
- Department of Bone Joint and Sports Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Xiao Fan
- Department of Bone Joint and Sports Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Ying Jiang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuequan Liu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junqiang Fang
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Bingcheng Yi
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Qihui Zhou
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing and Finishing, Wuhan Textile University, Wuhan, China
| | - Ting Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Zhong X, Deng K, Yang X, Song X, Zou Y, Zhou X, Tang H, Li L, Fu Y, Yin Z, Wan H, Zhao X. Brevicidine acts as an effective sensitizer of outer membrane-impermeable conventional antibiotics for Acinetobacter baumannii treatment. Front Microbiol 2023; 14:1304198. [PMID: 38173680 PMCID: PMC10762313 DOI: 10.3389/fmicb.2023.1304198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
The antibiotic resistance of Acinetobacter baumannii poses a significant threat to global public health, especially those strains that are resistant to carbapenems. Therefore, novel strategies are desperately needed for the treatment of infections caused by antibiotic-resistant A. baumannii. In this study, we report that brevicidine, a bacterial non-ribosomally produced cyclic lipopeptide, shows synergistic effects with multiple outer membrane-impermeable conventional antibiotics against A. baumannii. In particular, brevicidine, at a concentration of 1 μM, lowered the minimum inhibitory concentration of erythromycin, azithromycin, and rifampicin against A. baumannii strains by 32-128-fold. Furthermore, mechanistic studies were performed by employing erythromycin as an example of an outer membrane-impermeable conventional antibiotic, which showed the best synergistic effects with brevicidine against the tested A. baumannii strains in the present study. The results demonstrate that brevicidine disrupted the outer membrane of A. baumannii at a concentration range of 0.125-4 μM in a dose-dependent manner. This capacity of brevicidine could help the tested outer membrane-impermeable antibiotics enter A. baumannii cells and thereafter exert their antimicrobial activity. In addition, the results show that brevicidine-erythromycin combination exerted strong A. baumannii killing capacity by the enhanced inhibition of adenosine triphosphate biosynthesis and accumulation of reactive oxygen species, which are the main mechanisms causing the death of bacteria. Interestingly, brevicidine and erythromycin combination showed good therapeutic effects on A. baumannii-induced mouse peritonitis-sepsis models. These findings demonstrate that brevicidine is a promising sensitizer candidate of outer membrane-impermeable conventional antibiotics for treating A. baumannii infections in the post-antibiotic age.
Collapse
Affiliation(s)
- Xinyi Zhong
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, China
| | - Kai Deng
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiuhan Yang
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, China
| | - Xun Zhou
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, China
| | - Yuping Fu
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, China
| | - Hongping Wan
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinghong Zhao
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|