1
|
Scales BS, Hassenrück C, Moldaenke L, Hassa J, Rückert-Reed C, Rummel C, Völkner C, Rynek R, Busche T, Kalinowski J, Jahnke A, Schmitt-Jansen M, Wendt-Potthoff K, Oberbeckmann S. Hunting for pigments in bacterial settlers of the Great Pacific Garbage Patch. Environ Microbiol 2024; 26:e16639. [PMID: 38899733 DOI: 10.1111/1462-2920.16639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
The Great Pacific Garbage Patch, a significant collection of plastic introduced by human activities, provides an ideal environment to study bacterial lifestyles on plastic substrates. We proposed that bacteria colonizing the floating plastic debris would develop strategies to deal with the ultraviolet-exposed substrate, such as the production of antioxidant pigments. We observed a variety of pigmentation in 67 strains that were directly cultivated from plastic pieces sampled from the Garbage Patch. The genomic analysis of four representative strains, each distinct in taxonomy, revealed multiple pathways for carotenoid production. These pathways include those that produce less common carotenoids and a cluster of photosynthetic genes. This cluster appears to originate from a potentially new species of the Rhodobacteraceae family. This represents the first report of an aerobic anoxygenic photoheterotrophic bacterium from plastic biofilms. Spectral analysis showed that the bacteria actively produce carotenoids, such as beta-carotene and beta-cryptoxanthin, and bacteriochlorophyll a. Furthermore, we discovered that the genetic ability to synthesize carotenoids is more common in plastic biofilms than in the surrounding water communities. Our findings suggest that plastic biofilms could be an overlooked source of bacteria-produced carotenoids, including rare forms. It also suggests that photoreactive molecules might play a crucial role in bacterial biofilm communities in surface water.
Collapse
Affiliation(s)
- Brittan S Scales
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Christiane Hassenrück
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Lynn Moldaenke
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Julia Hassa
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | | | - Christoph Rummel
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Corinna Völkner
- Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - Robby Rynek
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Annika Jahnke
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | | | | | - Sonja Oberbeckmann
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| |
Collapse
|
2
|
Choi I, Srinivasan S, Kim MK. Sphingomonas Immobilis sp. nov., and Sphingomonas natans sp. nov. bacteria isolated from soil. Arch Microbiol 2024; 206:278. [PMID: 38789600 DOI: 10.1007/s00203-024-04006-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Two novel strains of bacteria, CA1-15T and BIUV-7T, were isolated from soil samples gathered in Cheonan-si, Republic of Korea, and Inje-gun, Republic of Korea, respectively. These bacteria are Gram-negative, aerobic, and non-motile. Phylogenetic evaluations, using the sequence of the 16S rRNA gene, showed that strains CA1-15T and BIUV-7T belong to a distinctive clade within the family Sphingomonadaceae (order Sphingomonadales, class Alphaproteobacteria). The strains exhibited the highest similarity in their genetic makeup with representatives of the genus Sphingomonas. Strain CA1-15T was closely related to Sphingomonas echinoides NRRL B-3126T (97.8% similarity in 16S rRNA gene sequence), Sphingomonas oligophenolica JCM 12,082T (97.8%), Sphingomonas glacialis C16yT (97.6%) and Sphingomonas psychrolutea MDB1-AT (97.3%). Strain BIUV-7T was closely related to Sphingomonas nostoxanthinifaciens AK-PDB1-5T (97.0%), Sphingomonas vulcanisoli SN6-13T (96.3%), Sphingomonas naphthae DKC-5-1T (96.2%), and Sphingomonas prati W18RDT (95.7%). The optimal growth conditions for strains CA1-15T and BIUV-7T were determined to be at pH 7.0 and a temperature of 25 °C. Analysis of the cellular fatty acids of strain CA1-15T and BIUV-7T revealed that summed feature 8 (C18:1ω7c/C18:1ω6c) (60.4%), summed feature 8 (C18:1ω7c/C18:1ω6c) (62.9%) were the major component, respectively. Additionally, both strains exhibited ubiquinone Q-10 as their major respiratory quinone, and diphosphatidylglycerol (DPG), glycosphingolipid (SGL), and phosphatidylethanolamine (PE) as the major polar lipid. The genome of strain CA1-15T measures 4,133,944 bp, comprising 4,026 coding sequences (CDSs) and 46 tRNA genes. Similarly, the genome of strain BIUV-7T is 4,563,252 bp, characterized by 4,226 CDSs and 44 tRNA genes. The average nucleotide identity (ANI) analysis and digital DNA-DNA hybridization (dDDH) values between strain CA1-15T and other Sphingomonas species range from 73.2 to 79.9% and 19.4-22.9%, respectively. Comparatively, ANI and dDDH values between strain BIUV-7T and other Sphingomonas species are in the range of 72.9-76.5% and 19.3-20.9%, respectively. Based on the biochemical, chemotaxonomic, and phylogenetic analyses, it is evident that strains CA1-15T and BIUV-7T represent two novel bacterial species within the genus Sphingomonas. Accordingly, the names Sphingomonas immobilis sp. nov. and Sphingomonas natans sp. nov. are proposed. also, CA1-15T(= KCTC 92960T = NBRC 116547T) is the type strain of Sphingomonas immobilis and BIUV-7T(= KCTC 92961T = NBRC 116546T) is the type strain of Sphingomonas natans.
Collapse
Affiliation(s)
- Inyoung Choi
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University, Seoul, 01797, Republic of Korea
| | - Sathiyaraj Srinivasan
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University, Seoul, 01797, Republic of Korea.
| | - Myung Kyum Kim
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University, Seoul, 01797, Republic of Korea.
| |
Collapse
|
3
|
Oren A, Göker M. Validation List no. 216. Valid publication of new names and new combinations effectively published outside the IJSEM. Int J Syst Evol Microbiol 2024; 74. [PMID: 38546332 PMCID: PMC10995726 DOI: 10.1099/ijsem.0.006229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 04/07/2024] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| |
Collapse
|
4
|
Kandasamy GD, Kathirvel P. Production, characterization and in vitro biological activities of crude pigment from endophytic Micrococcus luteus associated with Avicennia marina. Arch Microbiol 2023; 206:26. [PMID: 38108901 DOI: 10.1007/s00203-023-03751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
Due to their non-toxic and non-carcinogenic nature, biopigments have a phenomenal benefit over synthetic pigments, making them a desirable source for human utilization and a potential alternative to traditional synthetic pigments that are hazardous to the environment and public health. Endosymbiotic interactions between mangrove plants and bacteria could provide an alternate source for the synthesis of unique compounds with potent biomedical applications. Pigmented endophytic bacteria were screened from the explants of Avicennia marina, a mangrove plant, and identified as Micrococcus luteus by molecular characterization. The intracellular pigment was successfully extracted using the sonication-assisted solvent extraction method, and screening factors impacting the pigmentation bioprocess were determined using a one-factor-at-a-time approach. The endophyte produced yellow pigment in the liquid medium, with the maximum growth and pigment production recorded in nutrient broth at 37 ℃ and pH 7 after 96 h of incubation, while the maximum accumulation of pigment was observed in the media supplemented with glucose and tryptone as carbon and nitrogen sources, respectively. The extracted crude pigment was further characterized by ultraviolet, followed by Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry. The obtained crude pigment has been evaluated for its antioxidant and anticancer activity by various assays, such as DPPH radical scavenging activity, FRAP assay, superoxide anion and nitric oxide radical scavenging, metal chelating activity, phosphomolybdenum assay, and MTT assay, respectively, at varying concentrations. The results of our study revealed that the yellow pigment produced by the endophyte showed significant dose-dependent antioxidant and anticancer activity.
Collapse
Affiliation(s)
| | - Preethi Kathirvel
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
5
|
Jiang L, Peng Y, Kim KH, Jeon D, Choe H, Han AR, Kim CY, Lee J. Jeongeuplla avenae gen. nov., sp. nov., a novel β-carotene-producing bacterium that alleviates salinity stress in Arabidopsis. Front Microbiol 2023; 14:1265308. [PMID: 38125566 PMCID: PMC10731981 DOI: 10.3389/fmicb.2023.1265308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
A novel endophytic bacterium, designated DY-R2A-6T, was isolated from oat (Avena sativa L.) seeds and found to produces β-carotene. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain DY-R2A-6T had 96.3% similarity with Jiella aquimaris LZB041T, 96.0% similarity with Aurantimonas aggregate R14M6T and Aureimonas frigidaquae JCM 14755T, and less than 95.8% similarity with other genera in the family Aurantimonadaceae. The complete genome of strain DY-R2A-6T comprised 5,929,370 base pairs, consisting of one full chromosome (5,909,198 bp) and one plasmid (20,172 bp), with a G + C content was 69.1%. The overall genome-related index (OGRI), including digital DNA-DNA hybridization (<20.5%), ANI (<79.2%), and AAI (<64.2%) values, all fell below the thresholds set for novel genera. The major cellular fatty acids (>10%) of strain DY-R2A-6T were C16:0, C19:0 cyclo ω8c, and summed feature 8 (C18:1ω7c and/or C18:1ω6c). Ubiquinone-10 was the main respiratory quinone. We identified the gene cluster responsible for carotenoid biosynthesis in the genome and found that the pink-pigment produced by strain DY-R2A-6T is β-carotene. In experiment with Arabidopsis seedlings, co-cultivation with strain DY-R2A-6T led to a 1.4-fold increase in plant biomass and chlorophyll content under salt stress conditions, demonstrating its capacity to enhance salt stress tolerance in plants. Moreover, external application of β-carotene to Arabidopsis seedlings under salt stress conditions also mitigated the stress significantly. Based on these findings, strain DY-R2A-6T is proposed to represent a novel genus and species in the family Aurantimonadaceae, named Jeongeuplla avenae gen. nov., sp. nov. The type strain is DY-R2A-6T (= KCTC 82985T = GDMCC 1.3014T). This study not only identified a new taxon but also utilized genome analysis to predict and confirm the production of β-carotene by strain DY-R2A-6T. It also demonstrated the ability of this strain to enhance salt stress tolerance in plants, suggesting potential application in agriculture to mitigate environmental stress in crops.
Collapse
Affiliation(s)
- Lingmin Jiang
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Yuxin Peng
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Ki-Hyun Kim
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Doeun Jeon
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Hanna Choe
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Cha Young Kim
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Jiyoung Lee
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
6
|
Jiang L, Choe H, Peng Y, Jeon D, Cho D, Jiang Y, Lee JH, Kim CY, Lee J. Sphingomonas abietis sp. nov., an Endophytic Bacterium Isolated from Korean Fir. J Microbiol Biotechnol 2023; 33:1292-1298. [PMID: 37528562 PMCID: PMC10619552 DOI: 10.4014/jmb.2303.03017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 08/03/2023]
Abstract
PAMB 00755T, a bacterial strain, was isolated from Korean fir leaves. The strain exhibits yellow colonies and consists of Gram-negative, non-motile, short rods or ovoid-shaped cells. It displays optimal growth conditions at 20°C, 0% NaCl, and pH 6.0. Results of 16S rRNA gene-based phylogenetic analyses showed that strain PAMB 00755T was most closely related to Sphingomonas chungangi MAH-6T (97.7%) and Sphingomonas polyaromaticivorans B2-7T (97.4%), and ≤96.5% sequence similarity to other members of the genus Sphingomonas. The values of average nucleotide identity (79.9-81.3%), average amino acid identity (73.3-75.9%), and digital DNA-DNA hybridization (73.3-75.9%) were significantly lower than the threshold values for species boundaries; these overall genome-related indexes (OGRI) analyses indicated that the strain represents a novel species. Genomic analysis revealed that the strain has a 4.4-Mbp genome encoding 4,083 functional genes, while the DNA G+C content of the whole genome is 66.1%. The genome of strain PAMB 00755T showed a putative carotenoid biosynthetic cluster responsible for its antioxidant activity. The respiratory quinone was identified as ubiquinone 10 (Q-10), while the major fatty acids in the profile were identified as C18:1ω7c and/or C18:1ω6c (summed feature 8). The major polar lipids of strain PAMB 00755T were diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, and phosphatidylcholine. Based on a comprehensive analysis of genomic, phenotypic, and chemotaxonomic characteristics, we proposed the name Sphingomonas abietis sp. nov. for this novel species, with PAMB 00755T as the type strain (= KCTC 92781T = GDMCC 1.3779T).
Collapse
Affiliation(s)
- Lingmin Jiang
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
- Present address: National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Hanna Choe
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Yuxin Peng
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Doeun Jeon
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Donghyun Cho
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Yue Jiang
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
- Department of Biosystem and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Cha Young Kim
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Jiyoung Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
- Department of Biosystem and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
7
|
Mazoyon C, Catterou M, Alahmad A, Mongelard G, Guénin S, Sarazin V, Dubois F, Duclercq J. Sphingomonas sediminicola Dae20 Is a Highly Promising Beneficial Bacteria for Crop Biostimulation Due to Its Positive Effects on Plant Growth and Development. Microorganisms 2023; 11:2061. [PMID: 37630621 PMCID: PMC10459697 DOI: 10.3390/microorganisms11082061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Current agricultural practices rely heavily on synthetic fertilizers, which not only consume a lot of energy but also disrupt the ecological balance. The overuse of synthetic fertilizers has led to soil degradation. In a more sustainable approach, alternative methods based on biological interactions, such as plant growth-promoting bacteria (PGPRs), are being explored. PGPRs, which include both symbiotic and free-living bacteria, form mutualistic relationships with plants by enhancing nutrient availability, producing growth regulators, and regulating stress responses. This study investigated the potential of Sphingomonas sediminicola Dae20, an α-Proteobacteria species commonly found in the rhizosphere, as a beneficial PGPR. We observed that S. sediminicola Dae20 stimulated the root system and growth of three different plant species in the Brassicaceae family, including Arabidopsis thaliana, mustard, and rapeseed. The bacterium produced auxin, nitric oxide, siderophores and showed ACC deaminase activity. In addition to activating an auxin response in the plant, S. sediminicola Dae20 exhibited the ability to modulate other plant hormones, such as abscisic acid, jasmonic acid and salicylic acid, which are critical for plant development and defense responses. This study highlights the multifunctional properties of S. sediminicola Dae20 as a promising PGPR and underscores the importance of identifying effective and versatile beneficial bacteria to improve plant nutrition and promote sustainable agricultural practices.
Collapse
Affiliation(s)
- Candice Mazoyon
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80000 Amiens, France; (C.M.); (M.C.); (A.A.); (F.D.)
| | - Manuella Catterou
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80000 Amiens, France; (C.M.); (M.C.); (A.A.); (F.D.)
| | - Abdelrahman Alahmad
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80000 Amiens, France; (C.M.); (M.C.); (A.A.); (F.D.)
- Agroécologie, Hydrogéochimie, Milieux et Ressources (AGHYLE, UP2018.C101) UniLaSalle Rouen, SFR NORVEGE FED 4277, 76130 Mont-Saint Aignan, France
| | - Gaëlle Mongelard
- Centre de Ressources Régionales en Biologie Moléculaire (CRRBM), Université de Picardie Jules Verne (UPJV), 80000 Amiens, France; (G.M.); (S.G.)
| | - Stéphanie Guénin
- Centre de Ressources Régionales en Biologie Moléculaire (CRRBM), Université de Picardie Jules Verne (UPJV), 80000 Amiens, France; (G.M.); (S.G.)
| | | | - Fréderic Dubois
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80000 Amiens, France; (C.M.); (M.C.); (A.A.); (F.D.)
| | - Jérôme Duclercq
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80000 Amiens, France; (C.M.); (M.C.); (A.A.); (F.D.)
| |
Collapse
|