1
|
Mascarenha RJL, Jo DM, Sim YA, Kim DH, Kim YM. Synergistic Antibacterial Effect of Eisenia bicyclis Extracts in Combination with Antibiotics against Fish Pathogenic Bacteria. J Microbiol Biotechnol 2024; 34:2112-2117. [PMID: 39210618 PMCID: PMC11540609 DOI: 10.4014/jmb.2406.06027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
The aquaculture industry faces significant challenges due to bacterial infections caused by Edwardsiella tarda, Photobacterium damselae, and Vibrio harveyi. The extensive use of traditional antibiotics, has resulted in widespread antibiotic resistance. This study aimed to investigate the antibacterial potential of the brown seaweed Eisenia bicyclis, particularly its synergistic effects with antibiotics against these fish pathogenic bacteria. E. bicyclis were processed to obtain methanolic extracts and fractionated using different polar solvents. The antibacterial activities of these extracts and fractions were assessed through disc diffusion and minimum inhibitory concentration (MIC) assays. The study further evaluated the antibiotic susceptibility of the bacterial strains and the synergistic effects of the extracts combined with erythromycin and oxyteteracycline using the fractional inhibitory concentration index. Results showed that the ethyl acetate (EtOAc) fraction of E. bicyclis methanolic extract exhibited the highest antibacterial activity. The combination of the EtOAc fraction with erythromycin significantly enhanced its antibacterial efficacy against the tested strains. This synergistic effect was indicated by a notable reduction in MIC values, demonstrating the potential of E. bicyclis to enhance the effectiveness of traditional antibiotics. The findings suggest that E. bicyclis extracts, particularly the EtOAc fraction, could serve as a potent natural resource to counteract antibiotic resistance in aquaculture.
Collapse
Affiliation(s)
- Raul Joao Lourenco Mascarenha
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Du-Min Jo
- National Marine Biodiversity Institute of Korea, Seochun 33662, Republic of Korea
| | - Yoon-Ah Sim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
2
|
Solanki R, Makwana N, Kumar R, Joshi M, Patel A, Bhatia D, Sahoo DK. Nanomedicines as a cutting-edge solution to combat antimicrobial resistance. RSC Adv 2024; 14:33568-33586. [PMID: 39439838 PMCID: PMC11495475 DOI: 10.1039/d4ra06117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a critical threat to global public health, necessitating the development of novel strategies. AMR occurs when bacteria, viruses, fungi, and parasites evolve to resist antimicrobial drugs, making infections difficult to treat and increasing the risk of disease spread, severe illness, and death. Over 70% of infection-causing microorganisms are estimated to be resistant to one or several antimicrobial drugs. AMR mechanisms include efflux pumps, target modifications (e.g., mutations in penicillin-binding proteins (PBPs), ribosomal subunits, or DNA gyrase), drug hydrolysis by enzymes (e.g., β-lactamase), and membrane alterations that reduce the antibiotic's binding affinity and entry. Microbes also resist antimicrobials through peptidoglycan precursor modification, ribosomal subunit methylation, and alterations in metabolic enzymes. Rapid development of new strategies is essential to curb the spread of AMR and microbial infections. Nanomedicines, with their small size and unique physicochemical properties, offer a promising solution by overcoming drug resistance mechanisms such as reduced drug uptake, increased efflux, biofilm formation, and intracellular bacterial persistence. They enhance the therapeutic efficacy of antimicrobial agents, reduce toxicity, and tackle microbial resistance effectively. Various nanomaterials, including polymeric-based, lipid-based, metal nanoparticles, carbohydrate-derived, nucleic acid-based, and hydrogels, provide efficient solutions for AMR. This review addresses the epidemiology of microbial resistance, outlines key resistance mechanisms, and explores how nanomedicines overcome these barriers. In conclusion, nanomaterials represent a versatile and powerful approach to combating the current antimicrobial crisis.
Collapse
Affiliation(s)
- Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| | - Nilesh Makwana
- School of Life Sciences, Jawaharlal Nehru University New Delhi India
| | - Rahul Kumar
- Dr B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences New Delhi India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC) Gandhinagar Gujarat India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University Patan 384265 Gujarat India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University Ames IA USA
| |
Collapse
|
3
|
Jin Y, Shang Y, Wu C, Chen Z, Shi H, Wang H, Li L, Yin S. Conformal immunomodulatory hydrogels for the treatment of otitis media. J Nanobiotechnology 2024; 22:619. [PMID: 39395981 PMCID: PMC11475211 DOI: 10.1186/s12951-024-02908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024] Open
Abstract
Otitis media (OM), a condition stemming from the proliferation of various bacteria within the tympanic cavity (TC), is commonly addressed through the administration of ofloxacin (OFL), a fluoroquinolone antibiotic. Nevertheless, the escalating issue of antibiotic resistance and the challenge of drug leakage underscore the exploration of an alternative, more effective treatment modality in clinical practice. Here, we introduce a simple and easily implementable fluid-regulated strategy aimed at delivering immunomodulatory hydrogels into the TC, ensuring conformal contact with the irregular anatomical surfaces of the middle ear cavity to more effectively eliminate bacteria and treat OM. This innovative strategy exhibits expedited therapeutic process of antibiotic-resistant, acute and chronic OM rats, and significant reductions in the severity of tympanic membrane (TM) inflammation, residual bacteria within the TC (0.12 *105 CFU), and the thickness of TM/TC mucosa (17.63/32.43 μm), as compared to conventional OFL treatment (3.6, 0.76 *105 CFU, 48.70/151.26 μm). The broad-spectrum antibacterial and antibiofilm properties of this strategy against a spectrum of OM pathogens are demonstrated. The strategy is validated to bolster the host's innate immune response through the stimulation of antibacterial protein synthesis, macrophage proliferation and activation, thereby accelerating bacterial eradication and inflammation resolution within the TC. This facile, cost-effective and in vivo degradable technology exhibits promising prospects for future clinical implementation.
Collapse
Affiliation(s)
- Yuefan Jin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200223, P. R. China
| | - Yueyi Shang
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200223, P. R. China
| | - Cuiping Wu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200223, P. R. China
| | - Zhengnong Chen
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200223, P. R. China
| | - Haibo Shi
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200223, P. R. China
| | - Hui Wang
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200223, P. R. China.
| | - Linpeng Li
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200223, P. R. China.
| | - Shankai Yin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200223, P. R. China.
| |
Collapse
|
4
|
El-Habib I, Maatouk H, Lemarchand A, Dine S, Roynette A, Mielcarek C, Traoré M, Azouani R. Antibacterial Size Effect of ZnO Nanoparticles and Their Role as Additives in Emulsion Waterborne Paint. J Funct Biomater 2024; 15:195. [PMID: 39057316 PMCID: PMC11278333 DOI: 10.3390/jfb15070195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Nosocomial infections, a prevalent issue in intensive care units due to antibiotic overuse, could potentially be addressed by metal oxide nanoparticles (NPs). However, there is still no comprehensive understanding of the impact of NPs' size on their antibacterial efficacy. Therefore, this study provides a novel investigation into the impact of ZnO NPs' size on bacterial growth kinetics. NPs were synthesized using a sol-gel process with monoethanolamine (MEA) and water. X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy confirmed their crystallization and size variations. ZnO NPs of 22, 35, and 66 nm were tested against the most common nosocomial bacteria: Escherichia coli, Pseudomonas aeruginosa (Gram-negative), and Staphylococcus aureus (Gram-positive). Evaluation of minimum inhibitory and bactericidal concentrations (MIC and MBC) revealed superior antibacterial activity in small NPs. Bacterial growth kinetics were monitored using optical absorbance, showing a reduced specific growth rate, a prolonged latency period, and an increased inhibition percentage with small NPs, indicating a slowdown in bacterial growth. Pseudomonas aeruginosa showed the lowest sensitivity to ZnO NPs, attributed to its resistance to environmental stress. Moreover, the antibacterial efficacy of paint containing 1 wt% of 22 nm ZnO NPs was evaluated, and showed activity against E. coli and S. aureus.
Collapse
Affiliation(s)
- Imroi El-Habib
- Laboratoire des Sciences des Procédés et des Matériaux (LSPM-CNRS UPR 3407), Institut Galilée, Université Sorbonne Paris Nord, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France; (I.E.-H.); (A.L.); (S.D.); (M.T.)
- Ecole de Biologie Industrielle (EBI), EBInnov, 49 Avenue des Genottes-CS 90009, 95895 Cergy Cedex, France; (H.M.); (A.R.); (C.M.)
| | - Hassan Maatouk
- Ecole de Biologie Industrielle (EBI), EBInnov, 49 Avenue des Genottes-CS 90009, 95895 Cergy Cedex, France; (H.M.); (A.R.); (C.M.)
| | - Alex Lemarchand
- Laboratoire des Sciences des Procédés et des Matériaux (LSPM-CNRS UPR 3407), Institut Galilée, Université Sorbonne Paris Nord, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France; (I.E.-H.); (A.L.); (S.D.); (M.T.)
| | - Sarah Dine
- Laboratoire des Sciences des Procédés et des Matériaux (LSPM-CNRS UPR 3407), Institut Galilée, Université Sorbonne Paris Nord, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France; (I.E.-H.); (A.L.); (S.D.); (M.T.)
| | - Anne Roynette
- Ecole de Biologie Industrielle (EBI), EBInnov, 49 Avenue des Genottes-CS 90009, 95895 Cergy Cedex, France; (H.M.); (A.R.); (C.M.)
| | - Christine Mielcarek
- Ecole de Biologie Industrielle (EBI), EBInnov, 49 Avenue des Genottes-CS 90009, 95895 Cergy Cedex, France; (H.M.); (A.R.); (C.M.)
| | - Mamadou Traoré
- Laboratoire des Sciences des Procédés et des Matériaux (LSPM-CNRS UPR 3407), Institut Galilée, Université Sorbonne Paris Nord, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France; (I.E.-H.); (A.L.); (S.D.); (M.T.)
| | - Rabah Azouani
- Ecole de Biologie Industrielle (EBI), EBInnov, 49 Avenue des Genottes-CS 90009, 95895 Cergy Cedex, France; (H.M.); (A.R.); (C.M.)
| |
Collapse
|
5
|
Tungare K, Gupta J, Bhori M, Garse S, Kadam A, Jha P, Jobby R, Amanullah M, Vijayakumar S. Nanomaterial in controlling biofilms and virulence of microbial pathogens. Microb Pathog 2024; 192:106722. [PMID: 38815775 DOI: 10.1016/j.micpath.2024.106722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The escalating threat of antimicrobial resistance (AMR) poses a grave concern to global public health, exacerbated by the alarming shortage of effective antibiotics in the pipeline. Biofilms, intricate populations of bacteria encased in self-produced matrices, pose a significant challenge to treatment, as they enhance resistance to antibiotics and contribute to the persistence of organisms. Amid these challenges, nanotechnology emerges as a promising domain in the fight against biofilms. Nanomaterials, with their unique properties at the nanoscale, offer innovative antibacterial modalities not present in traditional defensive mechanisms. This comprehensive review focuses on the potential of nanotechnology in combating biofilms, focusing on green-synthesized nanoparticles and their associated anti-biofilm potential. The review encompasses various aspects of nanoparticle-mediated biofilm inhibition, including mechanisms of action. The diverse mechanisms of action of green-synthesized nanoparticles offer valuable insights into their potential applications in addressing AMR and improving treatment outcomes, highlighting novel strategies in the ongoing battle against infectious diseases.
Collapse
Affiliation(s)
- Kanchanlata Tungare
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Plot no 50, Sector 15, CBD Belapur, 400614, Maharashtra, India.
| | - Juhi Gupta
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Plot no 50, Sector 15, CBD Belapur, 400614, Maharashtra, India
| | - Mustansir Bhori
- Inveniolife Technology PVT LTD, Office No.118, Grow More Tower, Plot No.5, Sector 2, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Samiksha Garse
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Plot no 50, Sector 15, CBD Belapur, 400614, Maharashtra, India
| | - Aayushi Kadam
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada; Anatek Services PVT LTD, 10, Sai Chamber, Near Santacruz Railway Bridge, Sen Nagar, Santacruz East, Mumbai, Maharashtra, 400055, India
| | - Pamela Jha
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Mumbai, Maharashtra, India
| | - Renitta Jobby
- Amity Institute of Biotechnology, Amity University, Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Navi Mumbai, Maharashtra, 410206, India; Amity Centre of Excellence in Astrobiology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Navi Mumbai, Maharashtra, 410206, India
| | - Mohammed Amanullah
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia, 61421
| | - Sekar Vijayakumar
- Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India; Marine College, Shandong University, Weihai, 264209, PR China
| |
Collapse
|
6
|
Nainangu P, Mothilal SN, Subramanian K, Thanigaimalai M, Kandasamy R, Srinivasan GP, Gopal S, Shaik MR, Kari ZA, Guru A, Antonyraj APM. Characterization and antibacterial evaluation of Eco-friendly silver nanoparticles synthesized by halophilic Streptomyces rochei SSCM102 isolated from mangrove sediment. Mol Biol Rep 2024; 51:730. [PMID: 38864973 DOI: 10.1007/s11033-024-09666-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Antimicrobial resistance has surged due to widespread antimicrobial drug use, prompting interest in biosynthesizing nanoparticles from marine-derived actinomycetes extracellular metabolites, valued for their diverse bioactive compounds. This approach holds promise for addressing the urgent need for novel antimicrobial agents. The current study aimed to characterize novel bioactive compounds from unexplored biodiversity hotspots, halophilic Streptomyces sp. isolated from mangrove sediment in the Pichavaram region, India. METHODS AND RESULTS Streptomyces rochei SSCM102 was conclusively identified through morphological and molecular characterization. Synthesis of silver nanoparticles (AgNPs) from Streptomyces rochei SSCM102 was characterized using various techniques, including UV-Vis, XRD, SEM, EDX, and FT-IR. The UV-Vis spectrum of the reduced AgNPs exhibited a prominent peak at 380 nm, confirming the AgNPs. The UV-Vis spectrum confirmed the synthesis of AgNP, and SEM analysis revealed a cubic morphology with sizes ranging from 11 to 21 nm. The FTIR spectrum demonstrated a shift in frequency widths between 626 cm-1 and 3432 cm-1. The EDX analysis substantiated the presence of metallic silver, evident from a strong band at 1.44 keV. The synthesized AgNPs exhibited antibacterial efficacy against human pathogens Escherichia coli (64 ± 0.32 µg/ml), Klebsiella pneumoniae (32 ± 0.16 µg/ml), and Pseudomonas aeruginosa (16 ± 0.08 µg/ml) by MIC and MBC values of 128 ± 0.64 (µg/ml), 64 ± 0.32 (µg/ml) and 32 ± 0.16 (µg/ml), respectively. Additionally, at a concentration of 400 µg/ml, the AgNPs displayed a 72% inhibition of DPPH radicals, indicating notable antioxidant capacity. The LC50 value of 130 µg/mL indicates that the green-synthesized AgNPs have lower toxicity by Brine Shrimp Larvae assay. CONCLUSION The study's novel approach to synthesizing eco-friendly silver nanoparticles using Halophilic Streptomyces rochei SSCM102 contributes significantly to the field of biomedical research and drug development. By demonstrating potent antibacterial properties and aligning with sustainability goals, these nanoparticles offer promising avenues for novel antibacterial therapies.
Collapse
Affiliation(s)
- Prasannabalaji Nainangu
- PG & Research Department of Microbiology, Sri Sankara Arts and Science College, Kanchipuram, Tamil Nadu, 631561, India
| | | | - Kumaran Subramanian
- PG & Research Department of Microbiology, Sri Sankara Arts and Science College, Kanchipuram, Tamil Nadu, 631561, India
| | - Murugan Thanigaimalai
- PG & Research Department of Microbiology, Sri Sankara Arts and Science College, Kanchipuram, Tamil Nadu, 631561, India
| | - Rajesh Kandasamy
- PG & Research Department of Microbiology, Sri Sankara Arts and Science College, Kanchipuram, Tamil Nadu, 631561, India
| | - Guru Prasad Srinivasan
- Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College, Saveetha University, Chennai, India
| | - Suresh Gopal
- PG & Research Department of Microbiology, Sri Sankara Arts and Science College, Kanchipuram, Tamil Nadu, 631561, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro‑Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro‑Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, 17600, Malaysia
| | - Ajay Guru
- Department of Cariology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India.
| | - Anahas Perianaika Matharasi Antonyraj
- Department of Research Analytics, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospital, Saveetha University, Poonamallee, Chennai, Tamil Nadu, 600 077, India.
| |
Collapse
|
7
|
Santos ACC, Batista GC, Cerqueira RC, Lisboa MG, Correa JL, Rodrigues TS, da Silva MNT, Bittar VP, Malta SM, Dos Santos NCL, Espindola FS, Bonetti AM, Ueira-Vieira C. Green synthesis of silver nanoparticle using pollen extract from Tetragonisca angustula a stingless bee. DISCOVER NANO 2024; 19:92. [PMID: 38801473 PMCID: PMC11130103 DOI: 10.1186/s11671-024-04038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
This study explores the green synthesis of silver nanoparticles (AgNPs) using a methanolic extract of fermented pollen from Tetragonisca angustula, a species of stingless bees. The AgNPs exhibit spherical morphology, low charge values, and suspension stability, with their unique composition attributed to elements from the pollen extract. Antioxidant assays show comparable activity between the pollen extract and AgNPs, emphasizing the retention of antioxidant effects. The synthesized AgNPs demonstrate antimicrobial activity against multidrug-resistant bacteria, highlighting their potential in combating bacterial resistance. The AgNPs exhibit no toxic effects on Drosophila melanogaster and even enhance the hatching rate of eggs. The study underscores the innovative use of stingless bee pollen extract in green synthesis, offering insights into the varied applications of AgNPs in biomedicine.
Collapse
Affiliation(s)
- Ana Carolina Costa Santos
- Laboratory of Genetics, Institute of Biotechnology, Federal University of Uberlândia, Uberlandia, Brazil
| | - Gabriela Carvalho Batista
- Laboratory of Genetics, Institute of Biotechnology, Federal University of Uberlândia, Uberlandia, Brazil
| | | | - Mariana Gonçalves Lisboa
- Laboratory of Genetics, Institute of Biotechnology, Federal University of Uberlândia, Uberlandia, Brazil
| | - Joberth Lee Correa
- Laboratory of Genetics, Institute of Biotechnology, Federal University of Uberlândia, Uberlandia, Brazil
| | - Tamiris Sabrina Rodrigues
- Laboratory of Genetics, Institute of Biotechnology, Federal University of Uberlândia, Uberlandia, Brazil
| | - Murillo Néia Thomaz da Silva
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlandia, Brazil
| | - Vinícius Prado Bittar
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Brazil
| | - Serena Mares Malta
- Laboratory of Genetics, Institute of Biotechnology, Federal University of Uberlândia, Uberlandia, Brazil
| | | | - Foued Salmen Espindola
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Brazil
| | - Ana Maria Bonetti
- Laboratory of Genetics, Institute of Biotechnology, Federal University of Uberlândia, Uberlandia, Brazil
| | - Carlos Ueira-Vieira
- Laboratory of Genetics, Institute of Biotechnology, Federal University of Uberlândia, Uberlandia, Brazil.
| |
Collapse
|
8
|
Zhang ML, Zhang GP, Ma HS, Pan YZ, Liao XL. Preparation of pH-responsive polyurethane nano micelles and their antibacterial application. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:519-534. [PMID: 38265701 DOI: 10.1080/09205063.2024.2301807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Abstract
Considering the differences in pH between bacterial infection microenvironment and normal tissues, a series of pH-responsive drug-release amphiphilic polyurethane copolymers (DPU-g-PEG) have been prepared in this work. Fourier transform infrared (FT-IR) spectroscopy and 1H NMR was selected to detect the structure of the condensed polymers. The DPU-g-PEG amphiphilic copolymers could form stable micelles with a hydrophilic shell of polyethylene glycol (PEG) and a hydrophobic core of polylactic acid (PLA). We loaded a model drug called triclosan onto DPU-g-PEG micelles and studied how pH affects their particle size, Zeta potential, and drug release performance. The results revealed that when exposed to acidic conditions, the surface potential of DPU-g-PEG micelles changed, the micelles' particle size increased, and the drug release performance was significantly enhanced. These results suggested that the micelles prepared in this study can release more antibacterial substances at sites of bacterial infection. Meanwhile, we also investigated the impact of different ratios of soft and hard segments on the properties of micelles, and the results showed that the pH responsiveness of micelles was strongest when the ratio of soft segments (PLLA diol + PEG 2000): 1,6-hexamethylene diisocyanate (HDI): 2,6-Bis-(2-hydroxy-ethyl)-pyrrolo[3,4-f]isoindole-1,3,5,7-tetraone (DMA) = 1: 1.2: 0.2. Furthermore, the results of inhibition zone test, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) all confirmed the antibacterial activity of triclosan-load DPU-g-PEG micelles. In conclusion, the DPU-g-PEG micelles produced in this study have the potential to be used as intelligent drug delivery systems in the biomedical field.
Collapse
Affiliation(s)
- Mao-Lan Zhang
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Gui-Ping Zhang
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Hong-Shuo Ma
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Yu-Zhu Pan
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, China
| | - Xiao-Ling Liao
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| |
Collapse
|
9
|
Aboelenin AM, El-Mowafy M, Saleh NM, Shaaban MI, Barwa R. Ciprofloxacin- and levofloxacin-loaded nanoparticles efficiently suppressed fluoroquinolone resistance and biofilm formation in Acinetobacter baumannii. Sci Rep 2024; 14:3125. [PMID: 38326515 PMCID: PMC10850473 DOI: 10.1038/s41598-024-53441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024] Open
Abstract
The spread of fluoroquinolone (FQ) resistance in Acinetobacter baumannii represents a critical health threat. This study aims to overcome FQ resistance in A. baumannii via the formulation of polymeric nanoFQs. Herein, 80 A. baumannii isolates were obtained from diverse clinical sources. All A. baumannii isolates showed high resistance to most of the investigated antimicrobials, including ciprofloxacin (CIP) and levofloxacin (LEV) (97.5%). FQ resistance-determining regions of the gyrA and parC genes were the most predominant resistant mechanism, harbored by 69 (86.3%) and 75 (93.8%) of the isolates, respectively. Additionally, plasmid-mediated quinolone resistance genes aac(6')-Ib and qnrS were detected in 61 (76.3%) and 2 (2.5%) of the 80 isolates, respectively. The CIP- and LEV-loaded poly ε-caprolactone (PCL) nanoparticles, FCIP and FLEV, respectively, showed a 1.5-6- and 6-12-fold decrease in the MIC, respectively, against the tested isolates. Interestingly, the time kill assay demonstrated that MICs of FCIP and FLEV completely killed A. baumannii isolates after 5-6 h of treatment. Furthermore, FCIP and FLEV were found to be efficient in overcoming the FQ resistance mediated by the efflux pumps in A. baumannii isolates as revealed by decreasing the MIC four-fold lower than that of free CIP and LEV, respectively. Moreover, FCIP and FLEV at 1/2 and 1/4 MIC significantly decreased biofilm formation by 47-93% and 69-91%, respectively. These findings suggest that polymeric nanoparticles can restore the effectiveness of FQs and represent a paradigm shift in the fight against A. baumannii isolates.
Collapse
Affiliation(s)
- Alaa M Aboelenin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Mohammed El-Mowafy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Noha M Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Mona I Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt.
| | - Rasha Barwa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt.
| |
Collapse
|
10
|
Singh A, Modi SK, Joshi P, Nenavathu BP, Singh MS, Verma S, Hatshan MR. Sunlight mediated removal of toxic pollutants from Yamuna wastewater using efficient nano TeO 2-ZnO nanocomposites. CHEMOSPHERE 2024; 348:140658. [PMID: 37956931 DOI: 10.1016/j.chemosphere.2023.140658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
We have utilised our TeO2-ZnO nanocomposites for Yamuna wastewater treatment in natural sunlight wherein the sampling site was Nigam Bodh Ghat, Kashmere Gate, Delhi. In BET isotherm, TZ NCs exhibited type IV isotherm forming a H3 like hysteric loop sustaining mesoporous characteristic with an increase in surface area, pore volume and pore diameter of 56.76 m2/g, 0.257 cc/g and 17.18 nm respectively, when compared to pristine ZnO NPs. Yamuna wastewater treatment was carried out using various concentrations of TZ NCs (range 0.1-0.3 g/500 mL) under natural sunlight. Post-treatment, all the physicochemical parameters such as DO, BOD, COD, Nitrates, Ammonia and Phenolic contents were found to be reduced to 10 times bringing Yamuna water parameters within safe limits. Our TZ NCs have shown to have high selectivity for the removal of Chromium from water. Out of all the three concentrations 0.2 g/500 mL or 0.4 mg/mL is the most optimum concentration of TZ NCs for complete Yamuna wastewater treatment. Also, the bacterial culture present in Yamuna water was killed by 90% using TZ having MIC of 0.1 mg/mL. The antibiofilm activity of TZ against K.pneumoniae MTCC 109 was also checked using Congo Red Agar Assay. The presence of heavy metals, their corresponding degradation and leaching studies were analysed using ICP-OES. TZ NCs showed a very minimal leaching rate of Zinc into the water, proving no toxicity associated with these nanocomposites. Further, to observe the safe disposal of TZ NCs into the soil, TZ NCs were utilised for ecotoxicity studies.
Collapse
Affiliation(s)
- Aishwarya Singh
- Department of Applied Sciences and Humanities, Indira Gandhi Delhi Technical University for Women, Delhi, 110006, India
| | - Suraj Kumar Modi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, 201310, India; Centre of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Preeti Joshi
- Department of Applied Sciences and Humanities, Indira Gandhi Delhi Technical University for Women, Delhi, 110006, India
| | - Bhavani Prasad Nenavathu
- Department of Applied Sciences and Humanities, Indira Gandhi Delhi Technical University for Women, Delhi, 110006, India.
| | - Manu Smriti Singh
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, 201310, India; Centre of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India; Centre for Life Sciences, Mahindra University Survey, No: 62/1A, Bahadurpally Jeedimetla, Hyderabad, Telangana, 500043, India
| | - Swati Verma
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
11
|
Kaiser KG, Delattre V, Frost VJ, Buck GW, Phu JV, Fernandez TG, Pavel IE. Nanosilver: An Old Antibacterial Agent with Great Promise in the Fight against Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1264. [PMID: 37627684 PMCID: PMC10451389 DOI: 10.3390/antibiotics12081264] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance in bacteria is a major problem worldwide that costs 55 billion USD annually for extended hospitalization, resource utilization, and additional treatment expenditures in the United States. This review examines the roles and forms of silver (e.g., bulk Ag, silver salts (AgNO3), and colloidal Ag) from antiquity to the present, and its eventual incorporation as silver nanoparticles (AgNPs) in numerous antibacterial consumer products and biomedical applications. The AgNP fabrication methods, physicochemical properties, and antibacterial mechanisms in Gram-positive and Gram-negative bacterial models are covered. The emphasis is on the problematic ESKAPE pathogens and the antibiotic-resistant pathogens of the greatest human health concern according to the World Health Organization. This review delineates the differences between each bacterial model, the role of the physicochemical properties of AgNPs in the interaction with pathogens, and the subsequent damage of AgNPs and Ag+ released by AgNPs on structural cellular components. In closing, the processes of antibiotic resistance attainment and how novel AgNP-antibiotic conjugates may synergistically reduce the growth of antibiotic-resistant pathogens are presented in light of promising examples, where antibiotic efficacy alone is decreased.
Collapse
Affiliation(s)
- Kyra G. Kaiser
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Victoire Delattre
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Victoria J. Frost
- Department of Chemistry, Physics, Geology and the Environment, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA; (V.J.F.); (J.V.P.)
- Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA
| | - Gregory W. Buck
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Julianne V. Phu
- Department of Chemistry, Physics, Geology and the Environment, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA; (V.J.F.); (J.V.P.)
- Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA
| | - Timea G. Fernandez
- Department of Chemistry, Physics, Geology and the Environment, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA; (V.J.F.); (J.V.P.)
- Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA
| | - Ioana E. Pavel
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|