1
|
Xu Y, Ji X, Chen X, Gui G, He T, Xiao Y, Lv L, Lyu W. Characterisation of Proteus mirabilis isolates from the poultry production chain in Zhejiang Province, China: antimicrobial resistance, virulence factors and genotypic profiling. Br Poult Sci 2025:1-10. [PMID: 39853207 DOI: 10.1080/00071668.2024.2436995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/13/2024] [Indexed: 01/26/2025]
Abstract
1. This study investigated antimicrobial resistance, virulence factors and genotypic profiling among Proteus mirabilis isolated from three sources (poultry farms, slaughterhouses and retail markets) in the poultry production chain in Zhejiang Province, China, to assess its potential risk to public health.2. A total of 112 P. mirabilis strains were isolated from 409 samples, including 35 from poultry farms, 35 from slaughterhouses and 42 from retail markets. Antimicrobial susceptibility was tested using 18 antimicrobials in 9 categories, in which 110 (98.2%) strains were considered multidrug-resistant (MDR). These strains carried numerous antimicrobial resistance genes, with the sulphonamide resistance gene (sul1) having the highest rate (100%) and the polymyxin resistance gene (mcr-1) the lowest (3.6%).3. These isolates were validated to carry virulence genes pmfA, mrpA, atfC, rsbA, atfA, ureC and ucaA with the high prevalence of 96.4, 92.9, 92.0, 85.7, 85.7, 57.1 and 46.4%, respectively. Genotyping results using the ERIC-PCR indicated that the genetic similarity of all the isolates was 68.6% to 100% which fell into 4 clusters.4. The P. mirabilis isolates from the slaughterhouses exhibited higher levels of antibiotic resistance and a more pronounced MDR phenomenon than those from poultry farms and retail markets. The proportion of isolates carrying the most commonly detected resistant and virulence genes was higher in samples from poultry farms and slaughterhouses as opposed to retail markets. Importantly, there was genetic similarity and heterogeneity among P. mirabilis isolates from the three sources and genotypic diversity was the highest among isolates from retail markets, followed by slaughterhouses and poultry farms.
Collapse
Affiliation(s)
- Y Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - X Ji
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - X Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - G Gui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - T He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Y Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - L Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - W Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
2
|
Karpenko A, Shelenkov A, Petrova L, Gusarov V, Zamyatin M, Mikhaylova Y, Akimkin V. Two multidrug-resistant Proteus mirabilis clones carrying extended spectrum beta-lactamases revealed in a single hospital department by whole genome sequencing. Heliyon 2024; 10:e40821. [PMID: 39687096 PMCID: PMC11648881 DOI: 10.1016/j.heliyon.2024.e40821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Proteus mirabilis bacteria is a component of normal intestinal microflora of humans and animals, but can also be found in hospital settings causing urinary tract infections and sepsis. The problem of treating such infections is complicated by multidrug-resistant isolates producing extended spectrum beta-lactamases (ESBL), and the number of ESBL-carrying P. mirabilis strains has significantly increased recently. This study presents a detailed analysis of 12 multidrug-resistant P. mirabilis isolates obtained from the wounds of different patients in one surgical department of a multidisciplinary hospital in Moscow, Russia, using the short- and long-read whole genome sequencing. The isolates under investigation divided into two clusters (clones) C1 and C2 based on their genomic profiles and carried antimicrobial resistance (AMR) genes corresponding well with phenotypic profiles, which was the first case of reporting two different P. mirabilis clones obtained simultaneously from the same specimens at one hospital, to the best of our knowledge. Some genes, including ESBL encoding ones, were specific for either C1 or C2 (aac(6')-Ib10, ant(2″)-Ia, qnrA1, bla VEB-6 and fosA3, bla CTX -M-65 , correspondingly). Additionally, the Salmonella genomic islands 1 were found that differed in composition of multiple antibiotic resistance regions between C1 and C2 groups. CRISPR-Cas system type I-E was revealed only in C2 isolates, while the same set of virulence factors was determined for both P. mirabilis clones. Diversity of all genetic factors found in case of simultaneous existence of two clones collected from the same source at one department indicates high pathogenic potential of P. mirabilis and poses a requirement of proper spreading monitoring. The data obtained will facilitate the understanding of AMR transfer and dynamics within clinical P. mirabilis isolates and contribute to epidemiological surveillance of this pathogen.
Collapse
Affiliation(s)
- Anna Karpenko
- Central Research Institute of Epidemiology, Novogireevskaya str., 3a, 111123, Moscow, Russia
| | - Andrey Shelenkov
- Central Research Institute of Epidemiology, Novogireevskaya str., 3a, 111123, Moscow, Russia
| | - Lyudmila Petrova
- National Medical and Surgical Center named after N.I. Pirogov, Nizhnyaya Pervomayskaya str., 70, 105203, Moscow, Russia
| | - Vitaly Gusarov
- National Medical and Surgical Center named after N.I. Pirogov, Nizhnyaya Pervomayskaya str., 70, 105203, Moscow, Russia
| | - Mikhail Zamyatin
- National Medical and Surgical Center named after N.I. Pirogov, Nizhnyaya Pervomayskaya str., 70, 105203, Moscow, Russia
| | - Yulia Mikhaylova
- Central Research Institute of Epidemiology, Novogireevskaya str., 3a, 111123, Moscow, Russia
| | - Vasiliy Akimkin
- Central Research Institute of Epidemiology, Novogireevskaya str., 3a, 111123, Moscow, Russia
| |
Collapse
|
3
|
Wu R, Dong Z, Liu Y, Xin J, Duan Y, Zheng H, Yang Y, Fu H, Zhong Z, Liu H, Zhou Z, Huang Y, Peng G. Bacteriophage P2-71: a promising therapeutic against multidrug-resistant Proteus mirabilis in urinary tract infections. Front Vet Sci 2024; 11:1445264. [PMID: 39376913 PMCID: PMC11457703 DOI: 10.3389/fvets.2024.1445264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Background Proteus mirabilis is a Gram-negative, rod-shaped bacterium widely found in natural environments. It is known for causing a range of severe illnesses in mammals, particularly urinary tract infections (UTIs). This study evaluates the therapeutic efficacy of phage P2-71 against Proteus mirabilis in vivo and in vitro environments. Methods The in vitro therapeutic potential of bacteriophage P2-71 was assessed through the ability of phage to kill Proteus mirabilis by using a plate counting assay, and biofilm inhibition and biofilm lysis assays using a microtitre plate method. Additionally, an in vivo UTI model in C57BL/6Jmice was developed via urethral inoculation of the bacterium. Phage therapy was administered through urethral injection over a period of 5 days. Therapeutic outcomes were measured by analyzing bacterial load, phage titer, inflammatory markers, and histopathological changes in the urine, urogenital tissues, and spleen. Results In vitro, bacteriophage P2-71 achieved significant reductions in P. mirabilis concentrations, with log reductions of 1.537 and 0.7009 CFU/mL in laboratory and urine environments, respectively (p < 0.001). The phage also decreased biofilm formation by 34-49% and lysed 15-25% of mature biofilms at various multiplicities of infection (MOIs) (p < 0.001). In vivo, phage treatment significantly lowered bacterial concentrations in the urine on Days 1 and 3 (p < 0.0001), achieving a maximum reduction of 4.602 log₁₀ CFU/mL; however, its effectiveness diminished by Day 5 (p > 0.05). Concurrently, phage titers decreased over time. Importantly, phage treatment notably reduced bacterial load in the bladder, kidneys, and spleen (p < 0.001). Inflammatory markers such as IL-6, IL-1β, and TNF-α were significantly lower in the treatment group, especially in the bladder (p < 0.0001), indicating an effective reduction in inflammation. Histopathological analysis showed significant mitigation of tissue damage. Conclusion The results demonstrated that bacteriophage P2-71 is a promising alternative therapy for UTIs caused by MDR Proteus mirabilis. This bacteriophage therapy offers a viable strategy for managing infections where traditional antimicrobials fail, highlighting its potential in clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Li MS. Request for an Opinion: conservation of the illegitimate prokaryotic generic name Proteus Hauser 1885 (Approved Lists 1980). Int J Syst Evol Microbiol 2024; 74. [PMID: 38922319 DOI: 10.1099/ijsem.0.006434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
The prokaryotic generic name Proteus Hauser 1885 (Approved Lists 1980) is a later homonym of the protozoan genus name Proteus Müller, 1786 and therefore should be considered illegitimate and in need of replacement according to Rules 51b(4) and 54 of the International Code of Nomenclature of Prokaryotes. However, it would be unwelcome for medical and veterinary community to propose by anyone any replacement name and discontinue the current usage. To prevent from any unfavourable replacement, conservation of the illegitimate prokaryotic generic name Proteus Hauser 1885 (Approved Lists 1980) according to Rules 23a Note 4 and 56b is needed, and therefore, a request for conservation by the Judicial Commission over its earlier protozoan homonym is made here by the author, with Judicial Opinions 9 and 12 serving as precedents.
Collapse
Affiliation(s)
- Meng-Syun Li
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| |
Collapse
|
5
|
Anbessa B, Lulekal E, Hymete A, Debella A, Debebe E, Abebe A, Degu S. Ethnomedicine, antibacterial activity, antioxidant potential and phytochemical screening of selected medicinal plants in Dibatie district, Metekel zone, western Ethiopia. BMC Complement Med Ther 2024; 24:199. [PMID: 38773522 PMCID: PMC11110246 DOI: 10.1186/s12906-024-04499-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/10/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Medicinal plants play a major role in the delivery of healthcare, particularly among the rural population of Ethiopia. Plant extracts and their bioactive compounds have been utilized for the treatment of several diseases. This study was aimed at evaluating the antibacterial activity, antioxidant capacity, and phytochemical content of selected medicinal plants used in Dibatie district, western Ethiopia. METHODS Study plants were collected, shade dried, pulverized, extracted by maceration in 80% ethanol, and subjected to antibacterial, antioxidant, and phytochemical tests. Minimum inhibitory concentration (MIC) was determined using 96-well microplates and nutrient broth microdilution. Antioxidant activity was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. Phytochemical screening was conducted using standard test methods. RESULTS The ethanolic extract of Polystachya steudneri Rchb.f. pseudobulbs was the most active against gram-negative Proteus mirabilis, Salmonella typhimurium, Klebsiella pneumoniae, Escherichia coli, and Shigella flexneri, with MIC values of 8 ± 0, 11 ± 5, 3 ± 1, 3 ± 1, and 2 ± 0 mg/mL, respectively. The ethanolic extract of P. steudneri was also the most effective against gram-positive Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus agalactiae, and Enterococcus faecalis, with MIC values of 8 ± 0, 8 ± 0, 3 ± 1, and 16 ± 0 mg/mL, respectively. Ethanolic extracts of Gnidia involucrata Steud. ex A.Rich. stems and roots were effective antioxidants, with respective 50% DPPH free radical inhibitory concentrations (IC50) of 168.68 and 181.79 µg/mL, followed by that of P. steudneri (IC50 = 203.11 µg/mL). The study plants contained alkaloids, anthocyanins, anthraquinones, cardiac glycosides, coumarins, flavonoids, phenols, saponins, steroids, tannins, and terpenoids. CONCLUSIONS This study confirmed the antibiotic, antioxidant, and phytochemical constituents of the investigated plants and suggested further investigations that may lead to bioactive lead compounds.
Collapse
Affiliation(s)
- Baressa Anbessa
- Department of Plant Biology and Biodiversity Management, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
- Department of Biology, College of Natural and Computational Sciences, Bule Hora University, Bule Hora, Ethiopia.
| | - Ermias Lulekal
- Department of Plant Biology and Biodiversity Management, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ariaya Hymete
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Asfaw Debella
- Directorate of Modern and Traditional Medicine Research, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Eyob Debebe
- Traditional and Modern Medicine Research and Development Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abiy Abebe
- Traditional and Modern Medicine Research and Development Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Sileshi Degu
- Traditional and Modern Medicine Research and Development Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Dong Z, Wu R, Liu L, Ai S, Yang J, Li Q, Fu K, Zhou Y, Fu H, Zhou Z, Liu H, Zhong Z, Qiu X, Peng G. Phage P2-71 against multi-drug resistant Proteus mirabilis: isolation, characterization, and non-antibiotic antimicrobial potential. Front Cell Infect Microbiol 2024; 14:1347173. [PMID: 38500503 PMCID: PMC10945010 DOI: 10.3389/fcimb.2024.1347173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024] Open
Abstract
Proteus mirabilis, a prevalent urinary tract pathogen and formidable biofilm producer, especially in Catheter-Associated Urinary Tract Infection, has seen a worrying rise in multidrug-resistant (MDR) strains. This upsurge calls for innovative approaches in infection control, beyond traditional antibiotics. Our research introduces bacteriophage (phage) therapy as a novel non-antibiotic strategy to combat these drug-resistant infections. We isolated P2-71, a lytic phage derived from canine feces, demonstrating potent activity against MDR P. mirabilis strains. P2-71 showcases a notably brief 10-minute latent period and a significant burst size of 228 particles per infected bacterium, ensuring rapid bacterial clearance. The phage maintains stability over a broad temperature range of 30-50°C and within a pH spectrum of 4-11, highlighting its resilience in various environmental conditions. Our host range assessment solidifies its potential against diverse MDR P. mirabilis strains. Through killing curve analysis, P2-71's effectiveness was validated at various MOI levels against P. mirabilis 37, highlighting its versatility. We extended our research to examine P2-71's stability and bactericidal kinetics in artificial urine, affirming its potential for clinical application. A detailed genomic analysis reveals P2-71's complex genetic makeup, including genes essential for morphogenesis, lysis, and DNA modification, which are crucial for its therapeutic action. This study not only furthers the understanding of phage therapy as a promising non-antibiotic antimicrobial but also underscores its critical role in combating emerging MDR infections in both veterinary and public health contexts.
Collapse
Affiliation(s)
- Zhiyou Dong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ruihu Wu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lijuan Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shengquan Ai
- New Ruipeng Pet Healthcare Group, Chengdu, China
| | - Jinpeng Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qianlan Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Keyi Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunian Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hualin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haifeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xianmeng Qiu
- New Ruipeng Pet Healthcare Group, Chengdu, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|