1
|
Jia S, Hu M, Gu M, Ma J, Li D, Xiang G, Liu P, Wang K, Servati P, Ge WK, Sun XW. Optimizing ZnO-Quantum Dot Interface with Thiol as Ligand Modification for High-Performance Quantum Dot Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307298. [PMID: 37972284 DOI: 10.1002/smll.202307298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/16/2023] [Indexed: 11/19/2023]
Abstract
As the electron transport layer in quantum dot light-emitting diodes (QLEDs), ZnO suffers from excessive electrons that lead to luminescence quenching of the quantum dots (QDs) and charge-imbalance in QLEDs. Therefore, the interplay between ZnO and QDs requires an in-depth understanding. In this study, DFT and COSMOSL simulations are employed to investigate the effect of sulfur atoms on ZnO. Based on the simulations, thiol ligands (specifically 2-hydroxy-1-ethanethiol) to modify the ZnO nanocrystals are adopted. This modification alleviates the excess electrons without causing any additional issues in the charge injection in QLEDs. This modification strategy proves to be effective in improving the performance of red-emitting QLEDs, achieving an external quantum efficiency of over 23% and a remarkably long lifetime T95 of >12 000 h at 1000 cd m-2 . Importantly, the relationship between ZnO layers with different electronic properties and their effect on the adjacent QDs through a single QD measurement is investigated. These findings show that the ZnO surface defects and electronic properties can significantly impact the device performance, highlighting the importance of optimizing the ZnO-QD interface, and showcasing a promising ligand strategy for the development of highly efficient QLEDs.
Collapse
Affiliation(s)
- Siqi Jia
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Advanced Displays and Imaging, Henan Academy of Sciences, Zhengzhou, 450046, China
- Peng Cheng Laboratory, Shenzhen, 518038, China
| | - Menglei Hu
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mi Gu
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jingrui Ma
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Depeng Li
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guohong Xiang
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pai Liu
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Deep Subwavelength Scale Photonics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kai Wang
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Peyman Servati
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Wei Kun Ge
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiao Wei Sun
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
2
|
Larson TS, Worthington CD, Verber MD, Keating JE, Lockett MR, Glish GL. DiffN Selection of Tandem Mass Spectrometry Precursors. Anal Chem 2023; 95:9581-9588. [PMID: 37310720 PMCID: PMC10640856 DOI: 10.1021/acs.analchem.3c01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Current data-dependent acquisition (DDA) approaches select precursor ions for tandem mass spectrometry (MS/MS) characterization based on their absolute intensity, known as a TopN approach. Low-abundance species may not be identified as biomarkers in a TopN approach. Herein, a new DDA approach is proposed, DiffN, which uses the relative differential intensity of ions between two samples to selectively target species undergoing the largest fold changes for MS/MS. Using a dual nano-electrospray (nESI) ionization source which allows samples contained in separate capillaries to be analyzed in parallel, the DiffN approach was developed and validated with well-defined lipid extracts. A dual nESI source and DiffN DDA approach was applied to quantify the differences in lipid abundance between two colorectal cancer cell lines. The SW480 and SW620 lines represent a matched pair from the same patient: the SW480 cells from a primary tumor and the SW620 cells from a metastatic lesion. A comparison of TopN and DiffN DDA approaches on these cancer cell samples highlights the ability of DiffN to increase the likelihood of biomarker discovery and the decreased probability of TopN to efficiently select lipid species that undergo large fold changes. The ability of the DiffN approach to efficiently select precursor ions of interest makes it a strong candidate for lipidomic analyses. This DiffN DDA approach may also apply to other molecule classes (e.g., other metabolites or proteins) that are amenable to shotgun analyses.
Collapse
Affiliation(s)
- Tyler S. Larson
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, United States
| | - Cameron D. Worthington
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, United States
| | - Matthew D. Verber
- Chemistry Electronics Core Laboratory, University of North Carolina at Chapel Hill, Kenan Laboratory, Chapel Hill, NC, 27599-3290, United States
| | - James E. Keating
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, United States
| | - Matthew R. Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7295, United States
| | - Gary L. Glish
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, United States
| |
Collapse
|
3
|
Structural remodeling of AAA+ ATPase p97 by adaptor protein ASPL facilitates posttranslational methylation by METTL21D. Proc Natl Acad Sci U S A 2023; 120:e2208941120. [PMID: 36656859 PMCID: PMC9942839 DOI: 10.1073/pnas.2208941120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
p97 is an essential AAA+ ATPase that extracts and unfolds substrate proteins from membranes and protein complexes. Through its mode of action, p97 contributes to various cellular processes, such as membrane fusion, ER-associated protein degradation, DNA repair, and many others. Diverse p97 functions and protein interactions are regulated by a large number of adaptor proteins. Alveolar soft part sarcoma locus (ASPL) is a unique adaptor protein that regulates p97 by disassembling functional p97 hexamers to smaller entities. An alternative mechanism to regulate the activity and interactions of p97 is by posttranslational modifications (PTMs). Although more than 140 PTMs have been identified in p97, only a handful of those have been described in detail. Here we present structural and biochemical data to explain how the p97-remodeling adaptor protein ASPL enables the metastasis promoting methyltransferase METTL21D to bind and trimethylate p97 at a single lysine side chain, which is deeply buried inside functional p97 hexamers. The crystal structure of a heterotrimeric p97:ASPL:METTL21D complex in the presence of cofactors ATP and S-adenosyl homocysteine reveals how structural remodeling by ASPL exposes the crucial lysine residue of p97 to facilitate its trimethylation by METTL21D. The structure also uncovers a role of the second region of homology (SRH) present in the first ATPase domain of p97 in binding of a modifying enzyme to the AAA+ ATPase. Investigation of this interaction in the human, fish, and plant reveals fine details on the mechanism and significance of p97 trimethylation by METTL21D across different organisms.
Collapse
|
4
|
Agnihotri TG, Gomte SS, Jain A. Emerging theranostics to combat cancer: a perspective on metal-based nanomaterials. Drug Dev Ind Pharm 2022; 48:585-601. [PMID: 36448770 DOI: 10.1080/03639045.2022.2153862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
OBJECTIVE Theranostics, encompassing diagnostics and therapeutics, has emerged as a critical component of cancer treatment. Metal-based theranostics is one such next-generation nanotechnology-based drug delivery system with a myriad of benefits in pre-clinical and clinical medication for the deadly diseases like cancer, where early detection can actually be life-saving. SIGNIFICANCE Metal theranostics have shown promising outcomes in terms of anticancer medication monitoring, targeted drug delivery, and simultaneous detection and treatment of early-stage cancer. METHODS For collection of literature data, different search engines including Google scholar, SciFinder, PubMed, ScienceDirect have been employed. With key words like, cancer, theranostics, metal nanoparticles relevant and appropriate data have been generated. RESULTS Noninvasive administration of the active drug is made possible by theranostics nanoparticulate systems' ability to aggregate at the tumor site and offer morphological and biochemical characteristics of the tumor site. The recent advancement of metal-based theranostics including metallic nanoparticles, metal oxides, metal sulfides, nanocomposites, etc. has been explored at length in this article. CONCLUSION The review highlights emerging applications in terms of molecular imaging, targeted therapy and different diagnostic approaches of metal theranostics. Possible challenges faced by nanotheranostics in terms of clinical immersion and toxicological aspects which need to be addressed at depth are also discussed at the end.
Collapse
Affiliation(s)
- Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| |
Collapse
|
5
|
Usher ET, Showalter SA. Biophysical insights into glucose-dependent transcriptional regulation by PDX1. J Biol Chem 2022; 298:102623. [PMID: 36272648 PMCID: PMC9691942 DOI: 10.1016/j.jbc.2022.102623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/22/2022] Open
Abstract
The pancreatic and duodenal homeobox 1 (PDX1) is a central regulator of glucose-dependent transcription of insulin in pancreatic β cells. PDX1 transcription factor activity is integral to the development and sustained health of the pancreas; accordingly, deciphering the complex network of cellular cues that lead to PDX1 activation or inactivation is an important step toward understanding the etiopathologies of pancreatic diseases and the development of novel therapeutics. Despite nearly 3 decades of research into PDX1 control of Insulin expression, the molecular mechanisms that dictate the function of PDX1 in response to glucose are still elusive. The transcriptional activation functions of PDX1 are regulated, in part, by its two intrinsically disordered regions, which pose a barrier to its structural and biophysical characterization. Indeed, many studies of PDX1 interactions, clinical mutations, and posttranslational modifications lack molecular level detail. Emerging methods for the quantitative study of intrinsically disordered regions and refined models for transactivation now enable us to validate and interrogate the biochemical and biophysical features of PDX1 that dictate its function. The goal of this review is to summarize existing PDX1 studies and, further, to generate a comprehensive resource for future studies of transcriptional control via PDX1.
Collapse
Affiliation(s)
- Emery T Usher
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott A Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
6
|
Villela Zumaya AL, Mincheva R, Raquez JM, Hassouna F. Nanocluster-Based Drug Delivery and Theranostic Systems: Towards Cancer Therapy. Polymers (Basel) 2022; 14:1188. [PMID: 35335518 PMCID: PMC8955999 DOI: 10.3390/polym14061188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last decades, the global life expectancy of the population has increased, and so, consequently, has the risk of cancer development. Despite the improvement in cancer therapies (e.g., drug delivery systems (DDS) and theranostics), in many cases recurrence continues to be a challenging issue. In this matter, the development of nanotechnology has led to an array of possibilities for cancer treatment. One of the most promising therapies focuses on the assembly of hierarchical structures in the form of nanoclusters, as this approach involves preparing individual building blocks while avoiding handling toxic chemicals in the presence of biomolecules. This review aims at presenting an overview of the major advances made in developing nanoclusters based on polymeric nanoparticles (PNPs) and/or inorganic NPs. The preparation methods and the features of the NPs used in the construction of the nanoclusters were described. Afterwards, the design, fabrication and properties of the two main classes of nanoclusters, namely noble-metal nanoclusters and hybrid (i.e., hetero) nanoclusters and their mode of action in cancer therapy, were summarized.
Collapse
Affiliation(s)
- Alma Lucia Villela Zumaya
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic;
| | - Rosica Mincheva
- Laboratory of Polymeric and Composite Materials, University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium; (R.M.); (J.-M.R.)
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials, University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium; (R.M.); (J.-M.R.)
| | - Fatima Hassouna
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic;
| |
Collapse
|
7
|
Wang K, Lu J, Li J, Gao Y, Mao Y, Zhao Q, Wang S. Current trends in smart mesoporous silica-based nanovehicles for photoactivated cancer therapy. J Control Release 2021; 339:445-472. [PMID: 34637819 DOI: 10.1016/j.jconrel.2021.10.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Photoactivated therapeutic strategies (photothermal therapy and photodynamic therapy), due to the adjusted therapeutic area, time and light dosage, have prevailed for the fight against tumors. Currently, the monotherapy with limited treatment effect and undesired side effects is gradually replaced by multimodal and multifunctional nanosystems. Mesoporous silica nanoparticles (MSNs) with unique physicochemical advantages, such as huge specific surface area, controllable pore size and morphology, functionalized modification, satisfying biocompatibility and biodegradability, are considered as promising candidates for multimodal photoactivated cancer therapy. Excitingly, the innovative nanoplatforms based on the mesoporous silica nanoparticles provide more and more effective treatment strategies and display excellent antitumor potential. Given the rapid development of antitumor strategies based on MSNs, this review summarizes the current progress in MSNs-based photoactivated cancer therapy, mainly consists of (1) photothermal therapy-related theranostics; (2) photodynamic therapy-related theranostics; (3) multimodal synergistic therapy, such as chemo-photothermal-photodynamic therapy, phototherapy-immunotherapy and phototherapy-radio therapy. Based on the limited penetration of irradiation light in photoactivated therapy, the challenges faced by deep-seated tumor therapy are fully discussed, and future clinical translation of MSNs-based photoactivated cancer therapy are highlighted.
Collapse
Affiliation(s)
- Kaili Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Junya Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jiali Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yinlu Gao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| |
Collapse
|
8
|
Shibraen MH, Ibrahim OM, Asad RA, Yang S, El-Aassar M. Interpenetration of metal cations into polyelectrolyte-multilayer-films via layer-by-layer assembly: Selective antibacterial functionality of cationic guar gum/ polyacrylic acid- Ag+ nanofilm against resistant E. coli. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
El-Deeb NM, Abo-Eleneen MA, Al-Madboly LA, Sharaf MM, Othman SS, Ibrahim OM, Mubarak MS. Biogenically Synthesized Polysaccharides-Capped Silver Nanoparticles: Immunomodulatory and Antibacterial Potentialities Against Resistant Pseudomonas aeruginosa. Front Bioeng Biotechnol 2020; 8:643. [PMID: 32793561 PMCID: PMC7391905 DOI: 10.3389/fbioe.2020.00643] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/26/2020] [Indexed: 01/16/2023] Open
Abstract
Bacterial infections are the key cause of death in patients suffering from burns and diabetic wounds while the use of traditional antibiotics has been growing steadily. Thus, in the present study, we are trying to introduce a paradigm shift strategy to improve chronic wound healing of bacterial infection. To that end, we have biologically synthesized silver nanoparticles (AgNPs) using Arthrospira sp polysaccharides, and evaluated their antibacterial efficacy with their safety pattern. Scanning electron micrographs showed spherical AgNPs coated with algal polysaccharides with an approximate size of 9.7 nm. Treatment of Pseudomonas aeruginosa with the AgNPs (0.5–1 μg/mL) resulted in a significant disruption in P. aeruginosa outer membrane, reduction in biofilm formation, and a significant decrease of production of alginate and pyocyanin along with a concentration-dependent reduction in β-lactamase activity. In addition, at the in vivo level, AgNPs displayed substantial activity to control P. aeruginosa infections in rat skin wounds with significant reduction in in COX-2 enzyme in both rat skin homogenate and serum samples. Furthermore, AgNPs facilitated wound curative in the P. aeruginosa infected model by reducing the hemorrhagic areas number and the infiltrated inflammatory cells. Taken all together, these biogenic nanoparticles showed unique properties in controlling bacterial wound infections and improving the healing process of damaged tissues via its direct and indirect effects.
Collapse
Affiliation(s)
- Nehal M El-Deeb
- Biopharmacetical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, Egypt.,Department of Biology and Biotechnology Program, Indiana University, Bloomington, IN, United States
| | - Mai A Abo-Eleneen
- Microbiology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Lamiaa A Al-Madboly
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mona M Sharaf
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, Egypt
| | - Sarah S Othman
- Pharmaceutical Bioproducts Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, Egypt
| | - Omar M Ibrahim
- Department of Medicine and Translational Research, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | | |
Collapse
|
10
|
Pan M, Yang J, Liu K, Yin Z, Ma T, Liu S, Xu L, Wang S. Noble Metal Nanostructured Materials for Chemical and Biosensing Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E209. [PMID: 31991797 PMCID: PMC7074850 DOI: 10.3390/nano10020209] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/26/2022]
Abstract
Nanomaterials with unique physical and chemical properties have attracted extensive attention of scientific research and will play an increasingly important role in the future development of science and technology. With the gradual deepening of research, noble metal nanomaterials have been applied in the fields of new energy materials, photoelectric information storage, and nano-enhanced catalysis due to their unique optical, electrical and catalytic properties. Nanostructured materials formed by noble metal elements (Au, Ag, etc.) exhibit remarkable photoelectric properties, good stability and low biotoxicity, which received extensive attention in chemical and biological sensing field and achieved significant research progress. In this paper, the research on the synthesis, modification and sensing application of the existing noble metal nanomaterials is reviewed in detail, which provides a theoretical guidance for further research on the functional properties of such nanostructured materials and their applications of other nanofields.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zongjia Yin
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tianyu Ma
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shengmiao Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Longhua Xu
- School of Food Science and Engineering, Shandong Agricultural University, Shandong 271018, China;
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
11
|
Croissant JG, Durand JO. Mesoporous Silica-Based Nanoparticles for Light-Actuated Biomedical Applications via Near-Infrared Two-Photon Absorption. Enzymes 2018; 43:67-99. [PMID: 30244809 DOI: 10.1016/bs.enz.2018.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this review, we highlight the design of nanomaterials for two-photon excitation, in order to treat tumors with a high accuracy. Indeed two-photon excitation allows remote control of the nanoparticles with a spatio-temporal resolution. The nanomaterials are based on mesoporous silica-organosilica nanoparticles including core-shell systems. The therapeutic treatments include drug delivery, photodynamic therapy, gene silencing, and their combinations. At first, the nanosystems designed for two-photon-triggered cytotoxic drug delivery are reviewed. Then the nanomaterials prepared for two-photon photodynamic therapy and reactive oxygen species delivery are discussed. Finally, the nanosystems combining drug delivery or gene silencing with two-photon photodynamic therapy are presented. Due to the rapid progresses concerning two-photon-excited nanomaterials and the interest of near-infrared light to treat deep tumors, we believe this technology could be of high interest for the personalized medicine of the future.
Collapse
Affiliation(s)
- Jonas G Croissant
- Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, United States; Center for Micro-Engineered Materials, Advanced Materials Laboratory, University of New Mexico, Albuquerque, NM, United States.
| | - Jean-Olivier Durand
- Institut Charles Gerhardt Montpellier, UMR-5253 CNRS-UM-ENSCM, Montpellier, France
| |
Collapse
|
12
|
Croissant JG, Brinker CJ. Biodegradable Silica-Based Nanoparticles: Dissolution Kinetics and Selective Bond Cleavage. Enzymes 2018; 43:181-214. [PMID: 30244807 DOI: 10.1016/bs.enz.2018.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Silica-based nanomaterials are extensively used in industrial applications and academic biomedical research, thus properly assessing their toxicity and biodegradability is essential for their safe and effective formulation and use. Unfortunately, there is often a lot of confusion in the literature with respect to the toxicity and biodegradability of silica since various studies have yielded contradictory results. In this contribution, we first endeavor to underscore that the simplistic model of silica should be discarded in favor of a more realistic model recognizing that all silicas are not created equal and should thus be considered in the plural as silicas and silica hybrids, which indeed hold various biocompatibility and biodegradability profiles. We then demonstrated that all silicas are-as displayed in Nature-degradable in water by dissolution, as governed by the laws of kinetics. Lastly, we explore the vast potential of tuning the degradability of silica by materials design using various silica hybrids for redox-, pH-, enzymatic-, and biochelation-mediated lysis mechanisms.
Collapse
Affiliation(s)
- Jonas G Croissant
- Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, United States; Center for Micro-Engineered Materials, Advanced Materials Laboratory, University of New Mexico, Albuquerque, NM, United States.
| | - C Jeffrey Brinker
- Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, United States; Center for Micro-Engineered Materials, Advanced Materials Laboratory, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
13
|
Mesoporous silica nanoparticles as cutting-edge theranostics: Advancement from merely a carrier to tailor-made smart delivery platform. J Control Release 2018; 287:35-57. [PMID: 30125637 DOI: 10.1016/j.jconrel.2018.08.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022]
Abstract
Large surface area, uniform and tunable pore size, high pore volume and low mass density- such attractive features of Mesoporous silica nanoparticles (MSNPs) have compelled researchers to explore the biomedical potential of this nano-material. Recently gained interest in MSNPs have been due to their tremendous potential in cancer therapy and imaging. Last several years have witnessed a rapid development in engineering functionalized MSNPs with various types of functional groups integrated into the system for imaging and therapeutic applications. Although their potential for drug delivery application has been studied since the year 2000, still a major challenge is to improve drug loading capacity and in vivo targeting with minimal side-effects to major organs. In this review article, the recent development of MSNPs as a therapeutic and diagnostic platform has been detailed out with emphasis on drug and bio-macromolecule delivery/co-delivery, bio-imaging and detoxification.
Collapse
|
14
|
Croissant JG, Zink JI, Raehm L, Durand JO. Two-Photon-Excited Silica and Organosilica Nanoparticles for Spatiotemporal Cancer Treatment. Adv Healthc Mater 2018; 7:e1701248. [PMID: 29345434 DOI: 10.1002/adhm.201701248] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/08/2017] [Indexed: 12/11/2022]
Abstract
Coherent two-photon-excited (TPE) therapy in the near-infrared (NIR) provides safer cancer treatments than current therapies lacking spatial and temporal selectivities because it is characterized by a 3D spatial resolution of 1 µm3 and very low scattering. In this review, the principle of TPE and its significance in combination with organosilica nanoparticles (NPs) are introduced and then studies involving the design of pioneering TPE-NIR organosilica nanomaterials are discussed for bioimaging, drug delivery, and photodynamic therapy. Organosilica nanoparticles and their rich and well-established chemistry, tunable composition, porosity, size, and morphology provide ideal platforms for minimal side-effect therapies via TPE-NIR. Mesoporous silica and organosilica nanoparticles endowed with high surface areas can be functionalized to carry hydrophobic and biologically unstable two-photon absorbers for drug delivery and diagnosis. Currently, most light-actuated clinical therapeutic applications with NPs involve photodynamic therapy by singlet oxygen generation, but low photosensitizing efficiencies, tumor resistance, and lack of spatial resolution limit their applicability. On the contrary, higher photosensitizing yields, versatile therapies, and a unique spatial resolution are available with engineered two-photon-sensitive organosilica particles that selectively impact tumors while healthy tissues remain untouched. Patients suffering pathologies such as retinoblastoma, breast, and skin cancers will greatly benefit from TPE-NIR ultrasensitive diagnosis and therapy.
Collapse
Affiliation(s)
- Jonas G. Croissant
- Chemical and Biological Engineering; University of New Mexico; 210 University Blvd NE Albuquerque NM 87131-0001 USA
- Center for Micro-Engineered Materials; Advanced Materials Laboratory; University of New Mexico; MSC04 2790, 1001 University Blvd SE, Suite 103 Albuquerque NM 87106 USA
| | - Jeffrey I. Zink
- Department of Chemistry and Biochemistry; University of California Los Angeles; 405 Hilgard Avenue Los Angeles CA 90095 USA
| | - Laurence Raehm
- Institut Charles Gerhardt de Montpellier; UMR 5253 CNRS-UM-ENSCM; Université de Montpellier; Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| | - Jean-Olivier Durand
- Institut Charles Gerhardt de Montpellier; UMR 5253 CNRS-UM-ENSCM; Université de Montpellier; Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| |
Collapse
|
15
|
Croissant JG, Fatieiev Y, Almalik A, Khashab NM. Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Adv Healthc Mater 2018; 7. [PMID: 29193848 DOI: 10.1002/adhm.201700831] [Citation(s) in RCA: 330] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/30/2017] [Indexed: 01/08/2023]
Abstract
Predetermining the physico-chemical properties, biosafety, and stimuli-responsiveness of nanomaterials in biological environments is essential for safe and effective biomedical applications. At the forefront of biomedical research, mesoporous silica nanoparticles and mesoporous organosilica nanoparticles are increasingly investigated to predict their biological outcome by materials design. In this review, it is first chronicled that how the nanomaterial design of pure silica, partially hybridized organosilica, and fully hybridized organosilica (periodic mesoporous organosilicas) governs not only the physico-chemical properties but also the biosafety of the nanoparticles. The impact of the hybridization on the biocompatibility, protein corona, biodistribution, biodegradability, and clearance of the silica-based particles is described. Then, the influence of the surface engineering, the framework hybridization, as well as the morphology of the particles, on the ability to load and controllably deliver drugs under internal biological stimuli (e.g., pH, redox, enzymes) and external noninvasive stimuli (e.g., light, magnetic, ultrasound) are presented. To conclude, trends in the biomedical applications of silica and organosilica nanovectors are delineated, such as unconventional bioimaging techniques, large cargo delivery, combination therapy, gaseous molecule delivery, antimicrobial protection, and Alzheimer's disease therapy.
Collapse
Affiliation(s)
- Jonas G. Croissant
- Chemical and Biological Engineering; University of New Mexico; 210 University Blvd NE Albuquerque NM 87131-0001 USA
- Center for Micro-Engineered Materials; Advanced Materials Laboratory; University of New Mexico; MSC04 2790, 1001 University Blvd SE Suite 103 Albuquerque NM 87106 USA
| | - Yevhen Fatieiev
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology; Thuwal Riyadh KSA 11442 Saudi Arabia
| | - Abdulaziz Almalik
- Life sciences and Environment Research Institute; Center of Excellence in Nanomedicine (CENM); King Abdulaziz City for Science and Technology (KACST); Riyadh 11461 Saudi Arabia
| | - Niveen M. Khashab
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology; Thuwal Riyadh KSA 11442 Saudi Arabia
| |
Collapse
|
16
|
Mesoporous silica-based nanoplatforms for the delivery of photodynamic therapy agents. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017; 48:3-17. [PMID: 30546918 PMCID: PMC6267390 DOI: 10.1007/s40005-017-0356-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) is an established method for the treatment of cancer which utilizes light, a photosensitizer (PS), and oxygen. Unfavourable characteristics of most PSs, such as low solubility and tumour specificity have led many researchers to adopt nanoscale drug delivery platforms for use in PDT. Mesoporous silica nanoparticles (MSNs) form a significant part of that effort, due to their ease and controllability of synthesis, ease of loading, availability of diverse surface functionalization, and biocompatibility. Therefore, in this review, we discuss the properties of MSNs as they pertain to their use in PDT and review the latest advances in the field, comparing the different approaches currently being used.
Collapse
|
17
|
Elgqvist J. Nanoparticles as Theranostic Vehicles in Experimental and Clinical Applications-Focus on Prostate and Breast Cancer. Int J Mol Sci 2017; 18:E1102. [PMID: 28531102 PMCID: PMC5455010 DOI: 10.3390/ijms18051102] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 12/27/2022] Open
Abstract
Prostate and breast cancer are the second most and most commonly diagnosed cancer in men and women worldwide, respectively. The American Cancer Society estimates that during 2016 in the USA around 430,000 individuals were diagnosed with one of these two types of cancers, and approximately 15% of them will die from the disease. In Europe, the rate of incidences and deaths are similar to those in the USA. Several different more or less successful diagnostic and therapeutic approaches have been developed and evaluated in order to tackle this issue and thereby decrease the death rates. By using nanoparticles as vehicles carrying both diagnostic and therapeutic molecular entities, individualized targeted theranostic nanomedicine has emerged as a promising option to increase the sensitivity and the specificity during diagnosis, as well as the likelihood of survival or prolonged survival after therapy. This article presents and discusses important and promising different kinds of nanoparticles, as well as imaging and therapy options, suitable for theranostic applications. The presentation of different nanoparticles and theranostic applications is quite general, but there is a special focus on prostate cancer. Some references and aspects regarding breast cancer are however also presented and discussed. Finally, the prostate cancer case is presented in more detail regarding diagnosis, staging, recurrence, metastases, and treatment options available today, followed by possible ways to move forward applying theranostics for both prostate and breast cancer based on promising experiments performed until today.
Collapse
Affiliation(s)
- Jörgen Elgqvist
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden.
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden.
| |
Collapse
|
18
|
Croissant JG, Fatieiev Y, Khashab NM. Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1604634. [PMID: 28084658 DOI: 10.1002/adma.201604634] [Citation(s) in RCA: 420] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/13/2016] [Indexed: 05/27/2023]
Abstract
The biorelated degradability and clearance of siliceous nanomaterials have been questioned worldwide, since they are crucial prerequisites for the successful translation in clinics. Typically, the degradability and biocompatibility of mesoporous silica nanoparticles (MSNs) have been an ongoing discussion in research circles. The reason for such a concern is that approved pharmaceutical products must not accumulate in the human body, to prevent severe and unpredictable side-effects. Here, the biorelated degradability and clearance of silicon and silica nanoparticles (NPs) are comprehensively summarized. The influence of the size, morphology, surface area, pore size, and surface functional groups, to name a few, on the degradability of silicon and silica NPs is described. The noncovalent organic doping of silica and the covalent incorporation of either hydrolytically stable or redox- and enzymatically cleavable silsesquioxanes is then described for organosilica, bridged silsesquioxane (BS), and periodic mesoporous organosilica (PMO) NPs. Inorganically doped silica particles such as calcium-, iron-, manganese-, and zirconium-doped NPs, also have radically different hydrolytic stabilities. To conclude, the degradability and clearance timelines of various siliceous nanomaterials are compared and it is highlighted that researchers can select a specific nanomaterial in this large family according to the targeted applications and the required clearance kinetics.
Collapse
Affiliation(s)
- Jonas G Croissant
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Yevhen Fatieiev
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
19
|
Alsaiari SK, Hammami MA, Croissant JG, Omar HW, Neelakanda P, Yapici T, Peinemann KV, Khashab NM. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections. Adv Healthc Mater 2017; 6. [PMID: 28121071 DOI: 10.1002/adhm.201601135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/08/2016] [Indexed: 11/05/2022]
Abstract
Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility.
Collapse
Affiliation(s)
- Shahad K. Alsaiari
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| | - Mohammed A. Hammami
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| | - Jonas G. Croissant
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| | - Haneen W. Omar
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| | - Pradeep Neelakanda
- Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| | - Tahir Yapici
- Analytical Core Lab; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| | - Klaus-Viktor Peinemann
- Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| | - Niveen M. Khashab
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
20
|
Croissant JG, Cattoën X, Durand JO, Wong Chi Man M, Khashab NM. Organosilica hybrid nanomaterials with a high organic content: syntheses and applications of silsesquioxanes. NANOSCALE 2016; 8:19945-19972. [PMID: 27897295 DOI: 10.1039/c6nr06862f] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Organic-inorganic hybrid materials garner properties from their organic and inorganic matrices as well as synergistic features, and therefore have recently attracted much attention at the nanoscale. Non-porous organosilica hybrid nanomaterials with a high organic content such as silsesquioxanes (R-SiO1.5, with R organic groups) and bridged silsesquioxanes (O1.5Si-R-SiO1.5) are especially attractive hybrids since they provide 20 to 80 weight percent of organic functional groups in addition to the known chemistry and stability of silica. In the organosilica family, silsesquioxanes (R-SiO1.5) stand between silicas (SiO2) and silicones (R2SiO), and are variously called organosilicas, ormosil (organically-modified silica), polysilsesquioxanes and silica hybrids. Herein, we comprehensively review non-porous silsesquioxane and bridged silsesquioxane nanomaterials and their applications in nanomedicine, electro-optics, and catalysis.
Collapse
Affiliation(s)
- Jonas G Croissant
- Smart Hybrid Materials Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.
| | - Xavier Cattoën
- Institut Néel, Université Grenoble Alpes and CNRS, Grenoble, France
| | - Jean-Olivier Durand
- Institut Charles Gerhardt Montpellier UMR-5253 CNRS-UM2-ENSCM-UM1cc, 1701 Place Eugène Bataillon, F-34095 Montpelliercedex 05, France
| | - Michel Wong Chi Man
- Institut Charles Gerhardt Montpellier UMR-5253 CNRS-UM2-ENSCM-UM1cc, 1701 Place Eugène Bataillon, F-34095 Montpelliercedex 05, France
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.
| |
Collapse
|
21
|
Omar H, Croissant JG, Alamoudi K, Alsaiari S, Alradwan I, Majrashi MA, Anjum DH, Martins P, Laamarti R, Eppinger J, Moosa B, Almalik A, Khashab NM. Biodegradable Magnetic Silica@Iron Oxide Nanovectors with Ultra-Large Mesopores for High Protein Loading, Magnetothermal Release, and Delivery. J Control Release 2016; 259:187-194. [PMID: 27913308 DOI: 10.1016/j.jconrel.2016.11.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/08/2016] [Accepted: 11/27/2016] [Indexed: 10/20/2022]
Abstract
The delivery of large cargos of diameter above 15nm for biomedical applications has proved challenging since it requires biocompatible, stably-loaded, and biodegradable nanomaterials. In this study, we describe the design of biodegradable silica-iron oxide hybrid nanovectors with large mesopores for large protein delivery in cancer cells. The mesopores of the nanomaterials spanned from 20 to 60nm in diameter and post-functionalization allowed the electrostatic immobilization of large proteins (e.g. mTFP-Ferritin, ~534kDa). Half of the content of the nanovectors was based with iron oxide nanophases which allowed the rapid biodegradation of the carrier in fetal bovine serum and a magnetic responsiveness. The nanovectors released large protein cargos in aqueous solution under acidic pH or magnetic stimuli. The delivery of large proteins was then autonomously achieved in cancer cells via the silica-iron oxide nanovectors, which is thus a promising for biomedical applications.
Collapse
Affiliation(s)
- Haneen Omar
- Smart Hybrid Materials Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jonas G Croissant
- Smart Hybrid Materials Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kholod Alamoudi
- Smart Hybrid Materials Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Shahad Alsaiari
- Smart Hybrid Materials Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ibrahim Alradwan
- Life sciences and Environment Research Institute, Center of Excellence in Nanomedicine (CENM), King Abdulaziz City for Science and Technology (KACST), Riyadh 11461, Saudi Arabia
| | - Majed A Majrashi
- Life sciences and Environment Research Institute, Center of Excellence in Nanomedicine (CENM), King Abdulaziz City for Science and Technology (KACST), Riyadh 11461, Saudi Arabia
| | - Dalaver H Anjum
- Imaging and Characterization Laboratory, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Patricia Martins
- Smart Hybrid Materials Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ria Laamarti
- KAUST Catalysis Center (KCC), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)
| | - Jorg Eppinger
- KAUST Catalysis Center (KCC), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)
| | - Basem Moosa
- Smart Hybrid Materials Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Abdulaziz Almalik
- Life sciences and Environment Research Institute, Center of Excellence in Nanomedicine (CENM), King Abdulaziz City for Science and Technology (KACST), Riyadh 11461, Saudi Arabia.
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia..
| |
Collapse
|
22
|
Davidson LM, Barkalina N, Yeste M, Jones C, Coward K. Development of a laser-activated mesoporous silica nanocarrier delivery system for applications in molecular and genetic research. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:115002. [PMID: 27842157 DOI: 10.1117/1.jbo.21.11.115002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
Nanoparticles have revolutionized medical research over the last decade. One notable emerging area of nanomedicine is research developments in the reproductive sciences. Since increasing evidence indicates links between abnormal gene expression and previously unexplained states of infertility, there is a strong impetus to develop tools, such as nanoparticle platforms, to elucidate the pathophysiological mechanisms underlying such states. Mesoporous silica nanoparticles (MSNPs) represent a powerful and safe delivery tool for molecular and genetic investigations. Nevertheless, ongoing progress is restricted by low efficiency and unpredictable control of cargo delivery. Here, we describe for the first time, the development of a laser-activated MSNP system with heat-responsive cargo. Data derived from human embryonic kidney cells (HEK293T) indicate that when driven by a heat-shock promoter, MSNP cargo exhibits a significantly increased expression following infrared laser stimulus to stimulate a heat-shock response, without adverse cytotoxic effects. This delivery platform, with increased efficiency and the ability to impart spatial and temporal control, is highly useful for molecular and genetic investigations. We envision that this straightforward stimuli-responsive system could play a significant role in developing efficient nanodevices for research applications, for example in reproductive medicine.
Collapse
Affiliation(s)
- Lien M Davidson
- University of Oxford, Nuffield Department of Obstetrics and Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | - Natalia Barkalina
- University of Oxford, Nuffield Department of Obstetrics and Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | - Marc Yeste
- University of Oxford, Nuffield Department of Obstetrics and Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | - Celine Jones
- University of Oxford, Nuffield Department of Obstetrics and Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | - Kevin Coward
- University of Oxford, Nuffield Department of Obstetrics and Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
23
|
Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials 2016; 91:90-127. [DOI: 10.1016/j.biomaterials.2016.03.019] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/05/2016] [Accepted: 03/13/2016] [Indexed: 01/23/2023]
|
24
|
Croissant JG, Picard S, Aggad D, Klausen M, Mauriello Jimenez C, Maynadier M, Mongin O, Clermont G, Genin E, Cattoën X, Wong Chi Man M, Raehm L, Garcia M, Gary-Bobo M, Blanchard-Desce M, Durand JO. Fluorescent periodic mesoporous organosilica nanoparticles dual-functionalized via click chemistry for two-photon photodynamic therapy in cells. J Mater Chem B 2016; 4:5567-5574. [DOI: 10.1039/c6tb00638h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of ethenylene-based periodic mesoporous organosilica nanoparticles for two-photon imaging and photodynamic therapy of breast cancer cells is described.
Collapse
|
25
|
Dias DR, Moreira AF, Correia IJ. The effect of the shape of gold core–mesoporous silica shell nanoparticles on the cellular behavior and tumor spheroid penetration. J Mater Chem B 2016; 4:7630-7640. [DOI: 10.1039/c6tb02668k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Analysis of the effect of shape on the biological performances of gold core–mesoporous silica shell nanoparticles.
Collapse
Affiliation(s)
- Diana R. Dias
- CICS-UBI – Health Sciences Research Centre
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - André F. Moreira
- CICS-UBI – Health Sciences Research Centre
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Ilídio J. Correia
- CICS-UBI – Health Sciences Research Centre
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| |
Collapse
|