1
|
Patil RS, Sharma S, Bhaskarwar AV, Nambiar S, Bhat NA, Koppolu MK, Bhukya H. TetR and OmpR family regulators in natural product biosynthesis and resistance. Proteins 2025; 93:38-71. [PMID: 37874037 DOI: 10.1002/prot.26621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
This article provides a comprehensive review and sequence-structure analysis of transcription regulator (TR) families, TetR and OmpR/PhoB, involved in specialized secondary metabolite (SSM) biosynthesis and resistance. Transcription regulation is a fundamental process, playing a crucial role in orchestrating gene expression to confer a survival advantage in response to frequent environmental stress conditions. This process, coupled with signal sensing, enables bacteria to respond to a diverse range of intra and extracellular signals. Thus, major bacterial signaling systems use a receptor domain to sense chemical stimuli along with an output domain responsible for transcription regulation through DNA-binding. Sensory and output domains on a single polypeptide chain (one component system, OCS) allow response to stimuli by allostery, that is, DNA-binding affinity modulation upon signal presence/absence. On the other hand, two component systems (TCSs) allow cross-talk between the sensory and output domains as they are disjoint and transmit information by phosphorelay to mount a response. In both cases, however, TRs play a central role. Biosynthesis of SSMs, which includes antibiotics, is heavily regulated by TRs as it diverts the cell's resources towards the production of these expendable compounds, which also have clinical applications. These TRs have evolved to relay information across specific signals and target genes, thus providing a rich source of unique mechanisms to explore towards addressing the rapid escalation in antimicrobial resistance (AMR). Here, we focus on the TetR and OmpR family TRs, which belong to OCS and TCS, respectively. These TR families are well-known examples of regulators in secondary metabolism and are ubiquitous across different bacteria, as they also participate in a myriad of cellular processes apart from SSM biosynthesis and resistance. As a result, these families exhibit higher sequence divergence, which is also evident from our bioinformatic analysis of 158 389 and 77 437 sequences from TetR and OmpR family TRs, respectively. The analysis of both sequence and structure allowed us to identify novel motifs in addition to the known motifs responsible for TR function and its structural integrity. Understanding the diverse mechanisms employed by these TRs is essential for unraveling the biosynthesis of SSMs. This can also help exploit their regulatory role in biosynthesis for significant pharmaceutical, agricultural, and industrial applications.
Collapse
Affiliation(s)
- Rachit S Patil
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Siddhant Sharma
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Aditya V Bhaskarwar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Souparnika Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Niharika A Bhat
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Mani Kanta Koppolu
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Hussain Bhukya
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| |
Collapse
|
2
|
Saadh MJ, Ahmed HH, Al-Hussainy AF, Kaur I, Kumar A, Chahar M, Saini S, Taher WM, Alwan M, Jawad MJ, Darvishi M, Alsaikhan F. Bile's Hidden Weapon: Modulating the Microbiome and Tumor Microenvironment. Curr Microbiol 2024; 82:25. [PMID: 39614901 DOI: 10.1007/s00284-024-04004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
The human gut microbiome is a dynamic and intricate ecosystem, composed of trillions of microorganisms that play a pivotal role in maintaining overall health and well-being. However, the gut microbiome is constantly exposed to various environmental factors, including the bile produced by the liver, which can significantly impact its composition and function. Bile acids, secreted by the liver and stored in the gallbladder, modulate the gut microbiome, influencing its composition and function. This altered microbiome profile can, in turn, impact the tumor microenvironment (TME), promoting an immunosuppressive environment that favors tumor growth and metastasis. Furthermore, changes in the gut microbiome can also influence the production of bile acids and other metabolites that directly affect cancer cells and their behavior. Moreover, bile acids have been shown to shape the microbiome and increase antibiotic resistance, underscoring the need for targeted interventions. This review provides a comprehensive overview of the intricate relationships between bile, the gut microbiome, and the TME, highlighting the mechanisms by which this interplay drives cancer progression and resistance to therapy. Understanding these complex interactions is crucial for developing novel therapeutic strategies that target the gut-bile-TME axis and improve patient outcomes.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | | | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University, Rajasthan, Jaipur, India
| | - Suman Saini
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran.
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Demeester W, De Paepe B, De Mey M. Fundamentals and Exceptions of the LysR-type Transcriptional Regulators. ACS Synth Biol 2024; 13:3069-3092. [PMID: 39306765 PMCID: PMC11495319 DOI: 10.1021/acssynbio.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as a promising group of macromolecules for the field of biosensors. As the largest family of bacterial transcription factors, the LTTRs represent a vast and mostly untapped repertoire of sensor proteins. To fully harness these regulators for transcription factor-based biosensor development, it is crucial to understand their underlying mechanisms and functionalities. In the first part, this Review discusses the established model and features of LTTRs. As dual-function regulators, these inducible transcription factors exude precise control over their regulatory targets. In the second part of this Review, an overview is given of the exceptions to the "classic" LTTR model. While a general regulatory mechanism has helped elucidate the intricate regulation performed by LTTRs, it is essential to recognize the variations within the family. By combining this knowledge, characterization of new regulators can be done more efficiently and accurately, accelerating the expansion of transcriptional sensors for biosensor development. Unlocking the pool of LTTRs would significantly expand the currently limited range of detectable molecules and regulatory functions available for the implementation of novel synthetic genetic circuitry.
Collapse
Affiliation(s)
- Wouter Demeester
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Brecht De Paepe
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
4
|
Mayo-Pérez S, Gama-Martínez Y, Dávila S, Rivera N, Hernández-Lucas I. LysR-type transcriptional regulators: state of the art. Crit Rev Microbiol 2024; 50:598-630. [PMID: 37635411 DOI: 10.1080/1040841x.2023.2247477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The LysR-type transcriptional regulators (LTTRs) are DNA-binding proteins present in bacteria, archaea, and in algae. Knowledge about their distribution, abundance, evolution, structural organization, transcriptional regulation, fundamental roles in free life, pathogenesis, and bacteria-plant interaction has been generated. This review focuses on these aspects and provides a current picture of LTTR biology.
Collapse
Affiliation(s)
- S Mayo-Pérez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Y Gama-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - S Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - N Rivera
- IPN: CICATA, Unidad Morelos del Instituto Politécnico Nacional, Atlacholoaya, Mexico
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
5
|
Tang H, Liu Z, Hu B, Zhu L. D-Ring Modifications of Tetracyclines Determine Their Ability to Induce Resistance Genes in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1338-1348. [PMID: 38157442 DOI: 10.1021/acs.est.3c07559] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The widespread utilization of tetracyclines (TCs) in agriculture and medicine has led to the borderless spread of tetracycline resistance in humans, animals, and the environment, posing huge risks to both the ecosystem and human society. Changes in the functional group modifications resulted in a higher bacteriostatic efficacy of the new generation of TCs, but their effect on the emergence and evolution of antibiotic resistance genes (ARGs) is not yet known. To this end, four TCs from three generations were chosen to compare their structural effects on influencing the evolution of ARGs in soil microbial communities. The findings revealed that low-generation TCs, such as tetracycline and oxytetracycline, exhibited a greater propensity to stimulate the production and proliferation of ARGs than did high-generation tigecycline. Molecular docking analysis demonstrated that modifications of the D-ring functional group determined the binding capacity of TCs to the substrate-binding pocket of transcriptional regulators and efflux pumps mainly involved in drug resistance. This can be further evidenced by reverse transcription-quantitative polymerase chain reaction quantification and intracellular antibiotic accumulation assessment. This study sheds light on the mechanism of the structural effect of antibiotic-induced ARG production from the perspective of compound-protein binding, therefore providing theoretical support for controlling the dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Huiming Tang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Laborda P, Alcalde-Rico M, Gil-Gil T, Martínez JL, Blanco P. Biosensors for Inducers of Transient Antibiotic Resistance. Methods Mol Biol 2024; 2721:103-121. [PMID: 37819518 DOI: 10.1007/978-1-0716-3473-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The acquisition of an antibiotic resistance phenotype can be due to genetic modifications (heritable) or transient changes in bacterial physiology (non-heritable). Induction of the expression of multidrug efflux pumps by specific compounds/growth conditions is one of the causes of Pseudomonas aeruginosa transient resistance. Biosensor strains have been used for decades to analyze real-time changes in transcription and (less frequently) translation of different genes, in different mutants, growing under several conditions or in the presence of different compounds. Among them, those based on bioluminescence or fluorescence are the most amenable for the real-time analysis of transcription. In this chapter, we describe the methods for constructing fluorescence- and bioluminescence-based biosensors to monitor the P. aeruginosa efflux pumps expression, as well as the use of these biosensors to identify compounds capable of inducing the expression of these antibiotic resistance determinants and, consequently, triggering transient resistance to antimicrobials.
Collapse
Affiliation(s)
- Pablo Laborda
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Manuel Alcalde-Rico
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), Valparaíso, Chile
| | | | | | - Paula Blanco
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Stein NV, Eder M, Burr F, Stoss S, Holzner L, Kunz HH, Jung H. The RND efflux system ParXY affects siderophore secretion in Pseudomonas putida KT2440. Microbiol Spectr 2023; 11:e0230023. [PMID: 37800935 PMCID: PMC10715066 DOI: 10.1128/spectrum.02300-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Gram-negative bacteria from the Pseudomonas group are survivors in various environmental niches. For example, the bacteria secrete siderophores to capture ferric ions under deficiency conditions. Tripartite efflux systems are involved in the secretion of siderophores, which are also important for antibiotic resistance. For one of these efflux systems, the resistance-nodulation-cell division transporter ParXY from the model organism Pseudomonas putida KT2440, we show that it influences the secretion of the siderophore pyoverdine in addition to its already known involvement in antibiotic resistance. Phenotypically, its role in pyoverdine secretion is only apparent when other pyoverdine secretion systems are inactive. The results confirm that the different tripartite efflux systems have overlapping substrate specificities and can at least partially functionally substitute for each other, especially in important physiological activities such as supplying the cell with iron ions. This fact must be taken into account when developing specific inhibitors for tripartite efflux systems.
Collapse
Affiliation(s)
- Nicola Victoria Stein
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Michelle Eder
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Fabienne Burr
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Sarah Stoss
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Lorenz Holzner
- Plant Biochemistry and Physiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Hans-Henning Kunz
- Plant Biochemistry and Physiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Heinrich Jung
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| |
Collapse
|
8
|
Engelgeh T, Herrmann J, Jansen R, Müller R, Halbedel S. Tartrolon sensing and detoxification by the Listeria monocytogenes timABR resistance operon. Mol Microbiol 2023; 120:629-644. [PMID: 37804169 DOI: 10.1111/mmi.15178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023]
Abstract
Listeria monocytogenes is a foodborne bacterium that naturally occurs in the soil. Originating from there, it contaminates crops and infects farm animals and their consumption by humans may lead to listeriosis, a systemic life-threatening infectious disease. The adaptation of L. monocytogenes to such contrastive habitats is reflected by the presence of virulence genes for host infection and other genes for survival under environmental conditions. Among the latter are ABC transporters for excretion of antibiotics produced by environmental competitors; however, most of these transporters have not been characterized. Here, we generated a collection of promoter-lacZ fusions for genes encoding ABC-type drug transporters of L. monocytogenes and screened this reporter strain collection for induction using a library of natural compounds produced by various environmental microorganisms. We found that the timABR locus (lmo1964-lmo1962) was induced by the macrodiolide antibiotic tartrolon B, which is synthesized by the soil myxobacterium Sorangium cellulosum. Tartrolon B resistance of L. monocytogenes was dependent on timAB, encoding the ATPase and the permease component of a novel ABC transporter. Moreover, transplantation of timAB was sufficient to confer tartrolon B resistance to Bacillus subtilis. Expression of the timABR locus was found to be auto-repressed by the TimR repressor, whose repressing activity was lost in the presence of tartrolon B. We also demonstrate that tartrolon sensitivity was suppressed by high external potassium concentrations, suggesting that tartrolon acts as potassium ionophore. Our results help to map the ecological interactions of an important human pathogen with its co-residing species within their joint natural reservoir.
Collapse
Affiliation(s)
- Tim Engelgeh
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research, Saarland University, Saarbrücken, Germany
- Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Rolf Jansen
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research, Saarland University, Saarbrücken, Germany
- Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
- Institute for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
9
|
Bayat M, Nahand JS, Farsad-Akhatr N, Memar MY. Bile effects on the Pseudomonas aeruginosa pathogenesis in cystic fibrosis patients with gastroesophageal reflux. Heliyon 2023; 9:e22111. [PMID: 38034726 PMCID: PMC10685303 DOI: 10.1016/j.heliyon.2023.e22111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/10/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Gastroesophageal reflux (GER) occurs in most cystic fibrosis (CF) patients and is the primary source of bile aspiration in the airway tract of CF individuals. Aspirated bile is associated with the severity of lung diseases and chronic inflammation caused by Pseudomonas aeruginosa as the most common pathogen of CF respiratory tract infections. P. aeruginosa is equipped with several mechanisms to facilitate the infection process, including but not limited to the expression of virulence factors, biofilm formation, and antimicrobial resistance, all of which are under the strong regulation of quorum sensing (QS) mechanism. By increasing the expression of lasI, rhlI, and pqsA-E, bile exposure directly impacts the QS network. An increase in psl expression and pyocyanin production can promote biofilm formation. Along with the loss of flagella and reduced swarming motility, GER-derived bile can repress the expression of genes involved in creating an acute infection, such as expression of Type Three Secretion (T3SS), hydrogen cyanide (hcnABC), amidase (amiR), and phenazine (phzA-E). Inversely, to cause persistent infection, bile exposure can increase the Type Six Secretion System (T6SS) and efflux pump expression, which can trigger resistance to antibiotics such as colistin, polymyxin B, and erythromycin. This review will discuss the influence of aspirated bile on the pathogenesis, resistance, and persistence of P. aeruginosa in CF patients.
Collapse
Affiliation(s)
- Mobina Bayat
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Farsad-Akhatr
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Avakh A, Grant GD, Cheesman MJ, Kalkundri T, Hall S. The Art of War with Pseudomonas aeruginosa: Targeting Mex Efflux Pumps Directly to Strategically Enhance Antipseudomonal Drug Efficacy. Antibiotics (Basel) 2023; 12:1304. [PMID: 37627724 PMCID: PMC10451789 DOI: 10.3390/antibiotics12081304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) poses a grave clinical challenge due to its multidrug resistance (MDR) phenotype, leading to severe and life-threatening infections. This bacterium exhibits both intrinsic resistance to various antipseudomonal agents and acquired resistance against nearly all available antibiotics, contributing to its MDR phenotype. Multiple mechanisms, including enzyme production, loss of outer membrane proteins, target mutations, and multidrug efflux systems, contribute to its antimicrobial resistance. The clinical importance of addressing MDR in P. aeruginosa is paramount, and one pivotal determinant is the resistance-nodulation-division (RND) family of drug/proton antiporters, notably the Mex efflux pumps. These pumps function as crucial defenders, reinforcing the emergence of extensively drug-resistant (XDR) and pandrug-resistant (PDR) strains, which underscores the urgency of the situation. Overcoming this challenge necessitates the exploration and development of potent efflux pump inhibitors (EPIs) to restore the efficacy of existing antipseudomonal drugs. By effectively countering or bypassing efflux activities, EPIs hold tremendous potential for restoring the antibacterial activity against P. aeruginosa and other Gram-negative pathogens. This review focuses on concurrent MDR, highlighting the clinical significance of efflux pumps, particularly the Mex efflux pumps, in driving MDR. It explores promising EPIs and delves into the structural characteristics of the MexB subunit and its substrate binding sites.
Collapse
Affiliation(s)
| | | | | | | | - Susan Hall
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia; (A.A.); (G.D.G.); (M.J.C.); (T.K.)
| |
Collapse
|
11
|
Thorwall S, Trivedi V, Ottum E, Wheeldon I. Population genomics-guided engineering of phenazine biosynthesis in Pseudomonas chlororaphis. Metab Eng 2023; 78:223-234. [PMID: 37369325 DOI: 10.1016/j.ymben.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
The emergence of next-generation sequencing (NGS) technologies has made it possible to not only sequence entire genomes, but also identify metabolic engineering targets across the pangenome of a microbial population. This study leverages NGS data as well as existing molecular biology and bioinformatics tools to identify and validate genomic signatures for improving phenazine biosynthesis in Pseudomonas chlororaphis. We sequenced a diverse collection of 34 Pseudomonas isolates using short- and long-read sequencing techniques and assembled whole genomes using the NGS reads. In addition, we assayed three industrially relevant phenotypes (phenazine production, biofilm formation, and growth temperature) for these isolates in two different media conditions. We then provided the whole genomes and phenazine production data to a unitig-based microbial genome-wide association study (mGWAS) tool to identify novel genomic signatures responsible for phenazine production in P. chlororaphis. Post-processing of the mGWAS analysis results yielded 330 significant hits influencing the biosynthesis of one or more phenazine compounds. Based on a quantitative metric (called the phenotype score), we elucidated the most influential hits for phenazine production and experimentally validated them in vivo in the most optimal phenazine producing strain. Two genes significantly increased phenazine-1-carboxamide (PCN) production: a histidine transporter (ProY_1), and a putative carboxypeptidase (PS__04251). A putative MarR-family transcriptional regulator decreased PCN titer when overexpressed in a high PCN producing isolate. Overall, this work seeks to demonstrate the utility of a population genomics approach as an effective strategy in enabling the identification of targets for metabolic engineering of bioproduction hosts.
Collapse
Affiliation(s)
- Sarah Thorwall
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
| | - Varun Trivedi
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
| | - Eva Ottum
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Ian Wheeldon
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA; Center for Industrial Biotechnology, University of California, Riverside, CA 92521, USA; Integrative Institute for Genome Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
12
|
Venkateswaran P, Vasudevan S, David H, Shaktivel A, Shanmugam K, Neelakantan P, Solomon AP. Revisiting ESKAPE Pathogens: virulence, resistance, and combating strategies focusing on quorum sensing. Front Cell Infect Microbiol 2023; 13:1159798. [PMID: 37457962 PMCID: PMC10339816 DOI: 10.3389/fcimb.2023.1159798] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
The human-bacterial association is long-known and well-established in terms of both augmentations of human health and attenuation. However, the growing incidents of nosocomial infections caused by the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) call for a much deeper understanding of these organisms. Adopting a holistic approach that includes the science of infection and the recent advancements in preventing and treating infections is imperative in designing novel intervention strategies against ESKAPE pathogens. In this regard, this review captures the ingenious strategies commissioned by these master players, which are teamed up against the defenses of the human team, that are equally, if not more, versatile and potent through an analogy. We have taken a basketball match as our analogy, dividing the human and bacterial species into two teams playing with the ball of health. Through this analogy, we make the concept of infectious biology more accessible.
Collapse
Affiliation(s)
- Parvathy Venkateswaran
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adityan Shaktivel
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthik Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
13
|
Zhao Y, Xu G, Xu Z, Guo B, Liu F. LexR Positively Regulates the LexABC Efflux Pump Involved in Self-Resistance to the Antimicrobial Di- N-Oxide Phenazine in Lysobacter antibioticus. Microbiol Spectr 2023; 11:e0487222. [PMID: 37166326 PMCID: PMC10269722 DOI: 10.1128/spectrum.04872-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/21/2023] [Indexed: 05/12/2023] Open
Abstract
Myxin, a di-N-oxide phenazine isolated from the soil bacterium Lysobacter antibioticus, exhibits potent activity against various microorganisms and has the potential to be developed as an agrochemical. Antibiotic-producing microorganisms have developed self-resistance mechanisms to protect themselves from autotoxicity. Antibiotic efflux is vital for such protection. Recently, we identified a resistance-nodulation-division (RND) efflux pump, LexABC, involved in self-resistance against myxin in L. antibioticus. Expression of its genes, lexABC, was induced by myxin and was positively regulated by the LysR family transcriptional regulator LexR. The molecular mechanisms, however, have not been clear. Here, LexR was found to bind to the lexABC promoter region to directly regulate expression. Moreover, myxin enhanced this binding. Molecular docking and surface plasmon resonance analysis showed that myxin bound LexR with valine and lysine residues at positions 146 (V146) and 195 (K195), respectively. Furthermore, mutation of K195 in vivo led to downregulation of the gene lexA. These results indicated that LexR sensed and bound with myxin, thereby directly activating the expression of the LexABC efflux pump and increasing L. antibioticus resistance against myxin. IMPORTANCE Antibiotic-producing bacteria exhibit various sophisticated mechanisms for self-protection against their own secondary metabolites. RND efflux pumps that eliminate antibiotics from cells are ubiquitous in Gram-negative bacteria. Myxin is a heterocyclic N-oxide phenazine with potent antimicrobial and antitumor activities produced by the soil bacterium L. antibioticus. The RND pump LexABC contributes to the self-resistance of L. antibioticus against myxin. Herein, we report a mechanism involving the LysR family regulator LexR that binds to myxin and directly activates the LexABC pump. Further study on self-resistance mechanisms could help the investigation of strategies to deal with increasing bacterial antibiotic resistance and enable the discovery of novel natural products with resistance genes as selective markers.
Collapse
Affiliation(s)
- Yangyang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- School of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Gaoge Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Zhizhou Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Baodian Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- School of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| |
Collapse
|
14
|
Darby EM, Trampari E, Siasat P, Gaya MS, Alav I, Webber MA, Blair JMA. Molecular mechanisms of antibiotic resistance revisited. Nat Rev Microbiol 2023; 21:280-295. [PMID: 36411397 DOI: 10.1038/s41579-022-00820-y] [Citation(s) in RCA: 332] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/22/2022]
Abstract
Antibiotic resistance is a global health emergency, with resistance detected to all antibiotics currently in clinical use and only a few novel drugs in the pipeline. Understanding the molecular mechanisms that bacteria use to resist the action of antimicrobials is critical to recognize global patterns of resistance and to improve the use of current drugs, as well as for the design of new drugs less susceptible to resistance development and novel strategies to combat resistance. In this Review, we explore recent advances in understanding how resistance genes contribute to the biology of the host, new structural details of relevant molecular events underpinning resistance, the identification of new resistance gene families and the interactions between different resistance mechanisms. Finally, we discuss how we can use this information to develop the next generation of antimicrobial therapies.
Collapse
Affiliation(s)
- Elizabeth M Darby
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | - Pauline Siasat
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | - Ilyas Alav
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- Medical School, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK.
| |
Collapse
|
15
|
Moore-Machacek A, Gloe A, O'Leary N, Reen FJ. Efflux, Signaling and Warfare in a Polymicrobial World. Antibiotics (Basel) 2023; 12:antibiotics12040731. [PMID: 37107093 PMCID: PMC10135244 DOI: 10.3390/antibiotics12040731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The discovery void of antimicrobial development has occurred at a time when the world has seen a rapid emergence and spread of antimicrobial resistance, the 'perfect storm' as it has often been described. While the discovery and development of new antibiotics has continued in the research sphere, the pipeline to clinic has largely been fed by derivatives of existing classes of antibiotics, each prone to pre-existing resistance mechanisms. A novel approach to infection management has come from the ecological perspective whereby microbial networks and evolved communities already possess small molecular capabilities for pathogen control. The spatiotemporal nature of microbial interactions is such that mutualism and parasitism are often two ends of the same stick. Small molecule efflux inhibitors can directly target antibiotic efflux, a primary resistance mechanism adopted by many species of bacteria and fungi. However, a much broader anti-infective capability resides within the action of these inhibitors, borne from the role of efflux in key physiological and virulence processes, including biofilm formation, toxin efflux, and stress management. Understanding how these behaviors manifest within complex polymicrobial communities is key to unlocking the full potential of the advanced repertoires of efflux inhibitors.
Collapse
Affiliation(s)
| | - Antje Gloe
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- Institute for Pharmaceutical Microbiology, University of Bonn, D-53113 Bonn, Germany
| | - Niall O'Leary
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
| | - F Jerry Reen
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- Synthesis and Solid-State Pharmaceutical Centre, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
16
|
Dou Q, Zhu Y, Li C, Bian Z, Song H, Zhang R, Wang Y, Zhang X, Wang Y. 4F-Indole Enhances the Susceptibility of Pseudomonas aeruginosa to Aminoglycoside Antibiotics. Microbiol Spectr 2023; 11:e0451922. [PMID: 36975825 PMCID: PMC10100892 DOI: 10.1128/spectrum.04519-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Infections caused by multidrug-resistant bacteria are becoming increasingly serious. The aminoglycoside antibiotics have been widely used to treat severe Gram-negative bacterial infections. Here, we reported that a class of small molecules, namely, halogenated indoles, can resensitize Pseudomonas aeruginosa PAO1 to aminoglycoside antibiotics such as gentamicin, kanamycin, tobramycin, amikacin, neomycin, ribosomalin sulfate, and cisomicin. We selected 4F-indole as a representative of halogenated indoles to investigate its mechanism and found that the two-component system (TCS) PmrA/PmrB inhibited the expression of multidrug efflux pump MexXY-OprM, allowing kanamycin to act intracellularly. Moreover, 4F-indole inhibited the biosynthesis of several virulence factors, such as pyocyanin, type III secretion system (T3SS), and type VI secretion system (T6SS) exported effectors, and reduced the swimming and twitching motility by suppressing the expression of flagella and type IV pili. This study suggests that the combination of 4F-indole and kanamycin can be more effective against P. aeruginosa PAO1 and affect its multiple physiological activities, providing a novel insight into the reactivation of aminoglycoside antibiotics. IMPORTANCE Infections caused by Pseudomonas aeruginosa have become a major public health crisis. Its resistance to existing antibiotics causes clinical infections that are hard to cure. In this study, we found that halogenated indoles in combination with aminoglycoside antibiotics could be more effective than antibiotics alone against P. aeruginosa PAO1 and preliminarily revealed the mechanism of the 4F-indole-induced regulatory effect. Moreover, the regulatory effect of 4F-indole on different physiological behaviors of P. aeruginosa PAO1 was analyzed by combined transcriptomics and metabolomics. We explain that 4F-indole has potential as a novel antibiotic adjuvant, thus slowing down the further development of bacterial resistance.
Collapse
Affiliation(s)
- Qin Dou
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yuxiang Zhu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Chunhui Li
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Zeran Bian
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Huihui Song
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Ruizhen Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yingsong Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xile Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yan Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
17
|
Urdaneta-Páez V, Hamchand R, Anthony K, Crawford J, Sutherland AG, Kazmierczak BI. Identification of Efflux Substrates Using a Riboswitch-Based Reporter in Pseudomonas aeruginosa. mSphere 2023; 8:e0006923. [PMID: 36946743 PMCID: PMC10117056 DOI: 10.1128/msphere.00069-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Pseudomonas aeruginosa is intrinsically resistant to many classes of antibiotics, reflecting the restrictive nature of its outer membrane and the action of its numerous efflux systems. However, the dynamics of compound uptake, retention, and efflux in this bacterium remain incompletely understood. Here, we exploited the sensor capabilities of a Z-nucleotide-sensing riboswitch to create an experimental system able to identify physicochemical and structural properties of compounds that permeate the bacterial cell, avoid efflux, and perturb the folate cycle or de novo purine synthesis. In the first step, a collection of structurally diverse compounds enriched in antifolate drugs was screened for ZTP (5-aminoimidazole-4-carboxamide riboside 5'-triphosphate) riboswitch reporter activity in efflux-deficient P. aeruginosa, allowing us to identify compounds that entered the cell and disrupted the folate pathway. These initial hits were then rescreened using isogenic efflux-proficient bacteria, allowing us to separate efflux substrates from efflux avoiders. We confirmed this categorization by measuring intracellular levels of select compounds in the efflux-deficient and -proficient strain using high-resolution liquid chromatography-mass spectrometry (LC-MS). This simple yet powerful method, optimized for high-throughput screening, enables the discovery of numerous permeable compounds that avoid efflux and paves the way for further refinement of the physicochemical and structural rules governing efflux in this multidrug-resistant Gram-negative pathogen. IMPORTANCE Treatment of Pseudomonas aeruginosa infections has become increasingly challenging. The development of novel antibiotics against this multidrug-resistant bacterium is a priority, but many drug candidates never achieve effective concentrations in the bacterial cell due to its highly restrictive outer membrane and the action of multiple efflux pumps. Here, we develop a robust and simple reporter system in P. aeruginosa to screen chemical libraries and identify compounds that either enter the cell and remain inside or enter the cell and are exported by efflux systems. This approach enables the development of rules of compound uptake and retention in P. aeruginosa that will lead to more rational design of novel antibiotics.
Collapse
Affiliation(s)
- Verónica Urdaneta-Páez
- Department of Medicine, Section of Infectious Diseases, Yale University, New Haven, Connecticut, USA
| | - Randy Hamchand
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | | | - Jason Crawford
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | | | - Barbara I Kazmierczak
- Department of Medicine, Section of Infectious Diseases, Yale University, New Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
18
|
Identification of efflux substrates using a riboswitch-based reporter in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530370. [PMID: 36909469 PMCID: PMC10002626 DOI: 10.1101/2023.02.27.530370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Pseudomonas aeruginosa is intrinsically resistant to many classes of antibiotics, reflecting the restrictive nature of its outer membrane and the action of its numerous efflux systems. However, the dynamics of compound uptake, retention and efflux in this bacterium remain incompletely understood. Here, we exploited the sensor capabilities of a Z-nucleotide sensing riboswitch to create an experimental system able to identify physicochemical and structural properties of compounds that permeate the bacterial cell, avoid efflux, and perturb the folate cycle or de novo purine synthesis. In a first step, a collection of structurally diverse compounds enriched in antifolate drugs was screened for ZTP riboswitch reporter activity in efflux-deficient P. aeruginosa , allowing us to identify compounds that entered the cell and disrupted the folate pathway. These initial hits were then rescreened using isogenic efflux-proficient bacteria, allowing us to separate efflux substrates from efflux avoiders. We confirmed this categorization by measuring intracellular levels of select compounds in the efflux-deficient and - proficient strain using high resolution LC-MS. This simple yet powerful method, optimized for high throughput screening, enables the discovery of numerous permeable compounds that avoid efflux and paves the way for further refinement of the physicochemical and structural rules governing efflux in this multi-drug resistant Gram-negative pathogen. Importance Treatment of Pseudomonas aeruginosa infections has become increasingly challenging. The development of novel antibiotics against this multi-drug resistant bacterium is a priority, but many drug candidates never achieve effective concentrations in the bacterial cell due due to its highly restrictive outer membrane and the action of multiple efflux pumps. Here, we develop a robust and simple reporter system in P. aeruginosa to screen chemical libraries and identify compounds that either enter the cell and remain inside, or enter the cell and are exported by efflux systems. This approach enables developing rules of compound uptake and retention in P. aeruginosa that will lead to more rational design of novel antibiotics.
Collapse
|
19
|
Lorusso AB, Carrara JA, Barroso CDN, Tuon FF, Faoro H. Role of Efflux Pumps on Antimicrobial Resistance in Pseudomonas aeruginosa. Int J Mol Sci 2022; 23:15779. [PMID: 36555423 PMCID: PMC9779380 DOI: 10.3390/ijms232415779] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance is an old and silent pandemic. Resistant organisms emerge in parallel with new antibiotics, leading to a major global public health crisis over time. Antibiotic resistance may be due to different mechanisms and against different classes of drugs. These mechanisms are usually found in the same organism, giving rise to multidrug-resistant (MDR) and extensively drug-resistant (XDR) bacteria. One resistance mechanism that is closely associated with the emergence of MDR and XDR bacteria is the efflux of drugs since the same pump can transport different classes of drugs. In Gram-negative bacteria, efflux pumps are present in two configurations: a transmembrane protein anchored in the inner membrane and a complex formed by three proteins. The tripartite complex has a transmembrane protein present in the inner membrane, a periplasmic protein, and a porin associated with the outer membrane. In Pseudomonas aeruginosa, one of the main pathogens associated with respiratory tract infections, four main sets of efflux pumps have been associated with antibiotic resistance: MexAB-OprM, MexXY, MexCD-OprJ, and MexEF-OprN. In this review, the function, structure, and regulation of these efflux pumps in P. aeruginosa and their actions as resistance mechanisms are discussed. Finally, a brief discussion on the potential of efflux pumps in P. aeruginosa as a target for new drugs is presented.
Collapse
Affiliation(s)
- Andre Bittencourt Lorusso
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, Brazil
- School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - João Antônio Carrara
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, Brazil
| | | | - Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Helisson Faoro
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, Brazil
- CHU de Quebec Research Center, Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
20
|
Study of chloroquine susceptibility potential of plants using pseudomonas aeruginosa as in vitro model. 3 Biotech 2022; 12:329. [PMID: 36285247 PMCID: PMC9587148 DOI: 10.1007/s13205-022-03382-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Chloroquine (CQ) is mainly known for antimalarial activity but due to lower sensitivity, it has not been well explored in the microbial disease treatment. In the present investigation, we attempted to enhance the CQ sensitivity in Pseudomonas aeruginosa. Presence of efflux pump is well demonstrated in bacterial system which plays an important role in drug sensitivity and resistance in bacteria and also serves other functions. Taking the advantage of presence of efflux pump in Pseudomonas aeruginosa, we made an attempt to sensitize the Pseudomonas aeruginosa with various plant extracts and phytochemicals for the development of CQ sensitivity. Ten rationally selected plant extracts were screened for the development of chloroquine sensitivity in P. aeruginosa. The chloroquine susceptibility assay was demonstrated by combining CQ and verapamil (a known efflux pump inhibitor) as a standard in an in vitro assay system. Results were quite encouraging as methanolic extracts of Syzygium aromaticum, Zingiber officinale and Curcuma longa were able to enhance chloroquine sensitivity in P. aeruginosa by increasing the zone of inhibition in well-defined assay system. These plant extracts were finally analysed for the presence of various phytochemicals. The Syzygium aromaticum extract showed the presence of phytochemicals, such as quinones, phenol, triterpenoid, saponins, tannins, alkaloids and flavonoids. On the other hand, the methanolic extract of Zingiber officinale and Curcuma longa showed the presence of saponins, tannins, alkaloids and flavonoids in the extract. Towards the identification of active principle of selected plant extract for CQ sensitivity enhancement, thin-layer chromatography was performed and various phytocomponent bands were isolated. Flavonoid (Rf 0.44) in Syzygium aromaticum, alkaloid (Rf 0.43) in Zingiber officinale and phenol (Rf 0.62) in Curcuma longa were found responsible for the enhancement of CQ susceptibility in P. aeruginosa. This interesting finding confirmed the concept that a prior course or combination of plant extracts or phytochemicals with chloroquine can be effective against P. aeruginosa. Present investigation successfully presented the proof of concept for the enhancement of chloroquine sensitivity in bacterial system by modulating an efflux pump. Concept can be explored for repurposing chloroquine for new applications.
Collapse
|
21
|
Whole-Genome Sequencing Reveals Diversity of Carbapenem-Resistant Pseudomonas aeruginosa Collected through CDC's Emerging Infections Program, United States, 2016-2018. Antimicrob Agents Chemother 2022; 66:e0049622. [PMID: 36066241 PMCID: PMC9487505 DOI: 10.1128/aac.00496-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The CDC's Emerging Infections Program (EIP) conducted population- and laboratory-based surveillance of US carbapenem-resistant Pseudomonas aeruginosa (CRPA) from 2016 through 2018. To characterize the pathotype, 1,019 isolates collected through this project underwent antimicrobial susceptibility testing and whole-genome sequencing. Sequenced genomes were classified using the seven-gene multilocus sequence typing (MLST) scheme and a core genome (cg)MLST scheme was used to determine phylogeny. Both chromosomal and horizontally transmitted mechanisms of carbapenem resistance were assessed. There were 336 sequence types (STs) among the 1,019 sequenced genomes, and the genomes varied by an average of 84.7% of the cgMLST alleles used. Mutations associated with dysfunction of the porin OprD were found in 888 (87.1%) of the genomes and were correlated with carbapenem resistance, and a machine learning model incorporating hundreds of genetic variations among the chromosomal mechanisms of resistance was able to classify resistant genomes. While only 7 (0.1%) isolates harbored carbapenemase genes, 66 (6.5%) had acquired non-carbapenemase β-lactamase genes, and these were more likely to have OprD dysfunction and be resistant to all carbapenems tested. The genetic diversity demonstrates that the pathotype includes a variety of strains, and clones previously identified as high-risk make up only a minority of CRPA strains in the United States. The increased carbapenem resistance in isolates with acquired non-carbapenemase β-lactamase genes suggests that horizontally transmitted mechanisms aside from carbapenemases themselves may be important drivers of the spread of carbapenem resistance in P. aeruginosa.
Collapse
|
22
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
23
|
Gorzynski M, Week T, Jaramillo T, Dzalamidze E, Danelishvili L. Mycobacterium abscessus Genetic Determinants Associated with the Intrinsic Resistance to Antibiotics. Microorganisms 2021; 9:microorganisms9122527. [PMID: 34946129 PMCID: PMC8707978 DOI: 10.3390/microorganisms9122527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 12/04/2021] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium abscessus
subsp. abscessus (MAB) is a fast-growing nontuberculous mycobacterium causing pulmonary infections in immunocompromised and immunocompetent individuals. The treatment of MAB infections in clinics is extremely challenging, as this organism is naturally resistant to most available antibiotics. There is limited knowledge on the mechanisms of MAB intrinsic resistance and on the genes that are involved in the tolerance to antimicrobials. To identify the MAB genetic factors, including the components of the cell surface transport systems related to the efflux pumps, major known elements contributing to antibiotic resistance, we screened the MAB transposon library of 2000 gene knockout mutants. The library was exposed at either minimal inhibitory (MIC) or bactericidal concentrations (BC) of amikacin, clarithromycin, or cefoxitin, and MAB susceptibility was determined through the optical density. The 98 susceptible and 36 resistant mutants that exhibited sensitivity below the MIC and resistance to BC, respectively, to all three drugs were sequenced, and 16 mutants were found to belong to surface transport systems, such as the efflux pumps, porins, and carrier membrane enzymes associated with different types of molecule transport. To establish the relevance of the identified transport systems to antibiotic tolerance, the gene expression levels of the export related genes were evaluated in nine MAB clinical isolates in the presence or absence of antibiotics. The selected mutants were also evaluated for their ability to form biofilms and for their intracellular survival in human macrophages. In this study, we identified numerous MAB genes that play an important role in the intrinsic mechanisms to antimicrobials and further demonstrated that, by targeting components of the drug efflux system, we can significantly increase the efficacy of the current antibiotics.
Collapse
Affiliation(s)
- Mylene Gorzynski
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (M.G.); (T.W.); (T.J.); (E.D.)
- Department of Biochemistry & Molecular Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Tiana Week
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (M.G.); (T.W.); (T.J.); (E.D.)
- Department of Bioengineering, College of Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Tiana Jaramillo
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (M.G.); (T.W.); (T.J.); (E.D.)
- Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Elizaveta Dzalamidze
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (M.G.); (T.W.); (T.J.); (E.D.)
- BioHealth Sciences, Department of Microbiology, College of Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Lia Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (M.G.); (T.W.); (T.J.); (E.D.)
- Correspondence:
| |
Collapse
|
24
|
Rostami T, Ranjbar M, Ghourchian S, Darzi F, Douraghi M, Nateghi-Rostami M. Upregulation of abeM, amvA, and qacEΔ1 efflux pump genes associated with resistance of Acinetobacter baumannii strains to disinfectants. Health Sci Rep 2021; 4:e395. [PMID: 34622028 PMCID: PMC8485592 DOI: 10.1002/hsr2.395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/22/2021] [Accepted: 08/31/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND AND AIMS Acinetobacter baumannii is among the most concerning cause of nosocomial infections due to its high level of antibiotic resistance and high mortality. The aim of this study was to determine the role of efflux pumps in resistance of A. baumannii strains to three disinfectants, including MICROZED ID-MAX, NANOSIL D2, and OPIDEX OPA. METHODS Twenty-eight environmental and clinical isolates of A. baumannii were collected from selected hospitals of central Iran. The minimum inhibitory concentrations of the disinfectants were determined and real time reverse transcriptase-PCR was performed to investigate the expression level of qacEΔ1, amvA, abeM, and adeB efflux pump genes. RESULTS Considering both clinical and environmental isolates, there was a significant difference in the mean expression level of qacEΔ1 gene between susceptible and resistant strains to MICROZED ID-MAX disinfectant, of amvA and abeM genes between susceptible and resistant strains to NANOSIL D2 disinfectant and of abeM gene in susceptible and resistant strains to OPIDEX OPA disinfectant (all P ˂ .05). The expression levels of abeM and amvA genes were higher in the environmental isolates that were resistant to NANOSIL D2 disinfectant compared to those that were susceptible (P ˂ .05). CONCLUSIONS This study provided evidence for the role of abeM and amvA genes in the resistance of environmental isolates to disinfectants, particularly hydrogen peroxide derivatives.
Collapse
Affiliation(s)
- Tahereh Rostami
- Faculty of Biotechnology Amol University of Special Modern Technologies Amol Iran
| | - Mojtaba Ranjbar
- Faculty of Biotechnology Amol University of Special Modern Technologies Amol Iran
| | - Sedighe Ghourchian
- Department of Pathobiology School of Public Health, Tehran University of Medical Sciences Tehran Iran
| | - Fatemeh Darzi
- Department of Parasitology Pasteur Institute of Iran Tehran Iran
| | - Masoumeh Douraghi
- Department of Pathobiology School of Public Health, Tehran University of Medical Sciences Tehran Iran
| | | |
Collapse
|
25
|
Oxidative Stress Response in Pseudomonas aeruginosa. Pathogens 2021; 10:pathogens10091187. [PMID: 34578219 PMCID: PMC8466533 DOI: 10.3390/pathogens10091187] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative environmental and human opportunistic pathogen highly adapted to many different environmental conditions. It can cause a wide range of serious infections, including wounds, lungs, the urinary tract, and systemic infections. The high versatility and pathogenicity of this bacterium is attributed to its genomic complexity, the expression of several virulence factors, and its intrinsic resistance to various antimicrobials. However, to thrive and establish infection, P. aeruginosa must overcome several barriers. One of these barriers is the presence of oxidizing agents (e.g., hydrogen peroxide, superoxide, and hypochlorous acid) produced by the host immune system or that are commonly used as disinfectants in a variety of different environments including hospitals. These agents damage several cellular molecules and can cause cell death. Therefore, bacteria adapt to these harsh conditions by altering gene expression and eliciting several stress responses to survive under oxidative stress. Here, we used PubMed to evaluate the current knowledge on the oxidative stress responses adopted by P. aeruginosa. We will describe the genes that are often differently expressed under oxidative stress conditions, the pathways and proteins employed to sense and respond to oxidative stress, and how these changes in gene expression influence pathogenicity and the virulence of P. aeruginosa. Understanding these responses and changes in gene expression is critical to controlling bacterial pathogenicity and developing new therapeutic agents.
Collapse
|
26
|
Interest of Homodialkyl Neamine Derivatives against Resistant P. aeruginosa, E. coli, and β-Lactamases-Producing Bacteria-Effect of Alkyl Chain Length on the Interaction with LPS. Int J Mol Sci 2021; 22:ijms22168707. [PMID: 34445410 PMCID: PMC8396045 DOI: 10.3390/ijms22168707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 11/24/2022] Open
Abstract
Development of novel therapeutics to treat antibiotic-resistant infections, especially those caused by ESKAPE pathogens, is urgent. One of the most critical pathogens is P. aeruginosa, which is able to develop a large number of factors associated with antibiotic resistance, including high level of impermeability. Gram-negative bacteria are protected from the environment by an asymmetric Outer Membrane primarily composed of lipopolysaccharides (LPS) at the outer leaflet and phospholipids in the inner leaflet. Based on a large hemi-synthesis program focusing on amphiphilic aminoglycoside derivatives, we extend the antimicrobial activity of 3′,6-dinonyl neamine and its branched isomer, 3′,6-di(dimethyloctyl) neamine on clinical P. aeruginosa, ESBL, and carbapenemase strains. We also investigated the capacity of 3′,6-homodialkyl neamine derivatives carrying different alkyl chains (C7–C11) to interact with LPS and alter membrane permeability. 3′,6-Dinonyl neamine and its branched isomer, 3′,6-di(dimethyloctyl) neamine showed low MICs on clinical P. aeruginosa, ESBL, and carbapenemase strains with no MIC increase for long-duration incubation. In contrast from what was observed for membrane permeability, length of alkyl chains was critical for the capacity of 3′,6-homodialkyl neamine derivatives to bind to LPS. We demonstrated the high antibacterial potential of the amphiphilic neamine derivatives in the fight against ESKAPE pathogens and pointed out some particular characteristics making the 3′,6-dinonyl- and 3′,6-di(dimethyloctyl)-neamine derivatives the best candidates for further development.
Collapse
|
27
|
Antibacterial Activity of Chitosan and PAβN on MexAB Expression in Clinical Isolates of Ciprofloxacin Resistant Pseudomonas aeruginosa. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.115652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Pseudomonas aeruginosa is a nosocomial pathogen, acquiring resistance to a wide range of antibiotics. The MexAB-OprM pump can lead to resistance in this organism. Thus, the study was conducted to determine the effect of chitosan and phenylalanine arginyl ß-naphthylamide (PaβN) on the expression of MexAB in isolated ciprofloxacin resistant P. aeruginosa. Objectives: This study investigated the effect of an antibiotic combination on the MexABP. aeruginosa expression. Methods: A total of 30 ciprofloxacin-resistant isolates of P. aeruginosa were collected in this project. Then, chitosan nanoparticles were prepared using the ionic gelation method. Minimum inhibitory concentration (MIC) values were determined for ciprofloxacin, ciprofloxacin + PAßN, chitosan + ciprofloxacin, and chitosan + ciprofloxacin + PAßN using the micro-dilution method. Moreover, the expression level of MexAB genes was measured using real-time polymerase chain reaction. Results: In total, 76.7% of the isolates were identified as multidrug resistant. A significant decrease in the MIC value was observed in groups treated with PAβN compared to those without PAβN. Moreover, the MIC value was significantly lower in the ciprofloxacin chitosan group than in groups without ciprofloxacin. Decreased MexA and MexB mRNA levels were observed in all antibiotic-treated strains compared to the ciprofloxacin-treated group. Conclusions: There is a significant relationship between the increased MexAB expression and resistance to ciprofloxacin (P-value < 0.05). One of the therapeutic concerns is multidrug resistant bacteria, which needs to be addressed by finding new and more effective antibiotics.
Collapse
|
28
|
Salah AN, Elleboudy NS, El-Housseiny GS, Yassien MA. Cloning and sequencing of lsaE efflux pump gene from MDR Enterococci and its role in erythromycin resistance. INFECTION GENETICS AND EVOLUTION 2021; 94:105010. [PMID: 34293480 DOI: 10.1016/j.meegid.2021.105010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/04/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023]
Abstract
Enterococci are opportunistic members of intestinal microbiota with notable ability to transmit antimicrobial resistance genes. Among the different resistance mechanisms, multidrug efflux is evolving as a huge problem in conferring multidrug resistance to bacterial cells because these pumps extrude a broad range of antimicrobials. Therefore, the aim of this work was to evaluate role of efflux pumps in the development of multi-drug resistance in Enterococci through studying the antimicrobial resistance profiles of Enterococci isolates, phenotypically and genotypically investigating the role of active efflux pumps in development of resistance, in addition to characterizing the most common efflux pump genes. The study involved the recovery of 149 Enterococci isolates from specimens of patients suffering infections in some hospitals in Egypt. Antimicrobial resistance profiles of isolates showed that only 1.3% of the isolates were resistant to each of linezolid, daptomycin, and fosfomycin. The highest resistance was to ampicillin (60.4%) while 47 of the isolates (31.54%) were found to be multidrug-resistant. Efflux pumps have shown to have a significant role in erythromycin resistance in 11 isolates (23.4% of MDR isolates) as indicated by an 8 or more fold decrease in minimum inhibitory concentration in the presence of the efflux pump inhibitor, carbonyl cyanide m- chlorophenylhydrazone (CCCP). End point PCR was used to detect efflux pump genes lsaE, msrC, and mefA in the 11 isolates at which efflux pumps were found to play a significant role in resistance. Nine out of the 11 isolates (81.8%) were found to carry lsaE gene. This gene was inserted into pUC21 vector and cloned into DH5α E. coli resulting in successful transformation and expression of erythromycin resistance in this host. Finally, sequencing of the lsaE gene was carried out. To the best of our knowledge, this is the first report on the cloning of lsaE gene from MDR Enterococcus isolates.
Collapse
Affiliation(s)
- Akram N Salah
- Experimental and Advanced Pharmaceutical Research Unit, Faculty of Pharmacy, Ain shams University, Organization of African Unity St. Abbassia, POB: 11566, Cairo, Egypt
| | - Nooran S Elleboudy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain shams University, Organization of African Unity St. Abbassia, POB: 11566, Cairo, Egypt
| | - Ghadir S El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain shams University, Organization of African Unity St. Abbassia, POB: 11566, Cairo, Egypt.
| | - Mahmoud A Yassien
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain shams University, Organization of African Unity St. Abbassia, POB: 11566, Cairo, Egypt
| |
Collapse
|
29
|
Bogiel T, Rzepka M, Gospodarek-Komkowska E. An Application of Imipenem Discs or P. aeruginosa ATCC 27853 Reference Strain Increases Sensitivity of Carbapenem Inactivation Method for Non-Fermenting Gram-Negative Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10070875. [PMID: 34356796 PMCID: PMC8300646 DOI: 10.3390/antibiotics10070875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 01/04/2023] Open
Abstract
Non-fermenting Gram-negative rods are one of the most commonly isolated bacteria from human infections. These microorganisms are typically opportunistic pathogens that pose a serious threat to public health due to possibility of transmission in the human population. Resistance to beta-lactams, due to carbapenemases synthesis, is one of the most important antimicrobial resistance mechanisms amongst them. The aim of this study was to evaluate the usefulness of the Carbapenem Inactivation Method (CIM), and its modifications, for the detection of carbapenemase activity amongst non-fermenting Gram-negative rods. This research involved 81 strains of Gram-negative rods. Of the tested strains, 55 (67.9%) synthesized carbapenemases. For non-fermenting rods, 100% sensitivity and specificity was obtained in the version of the CIM test using imipenem discs and E. coli ATCC 25922 strain. The CIM test allows for differentiation of carbapenems resistance mechanisms resulting from carbapenemase synthesis from other resistance types. It is a reliable diagnostic method for the detection of carbapenemase activity amongst non-fermenting Gram-negative rods. Application of imipenem discs and P. aeruginosa ATCC 27853 reference strain increases CIM results sensitivity, while imipenem discs and E. coli ATCC 25922 strain use maintains full precision of the test for non-fermenting rods.
Collapse
|
30
|
The LysR-Type Transcriptional Regulator BsrA (PA2121) Controls Vital Metabolic Pathways in Pseudomonas aeruginosa. mSystems 2021; 6:e0001521. [PMID: 34254827 PMCID: PMC8407307 DOI: 10.1128/msystems.00015-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas aeruginosa, a facultative human pathogen causing nosocomial infections, has complex regulatory systems involving many transcriptional regulators. LTTR (LysR-Type Transcriptional Regulator) family proteins are involved in the regulation of various processes, including stress responses, motility, virulence, and amino acid metabolism. The aim of this study was to characterize the LysR-type protein BsrA (PA2121), previously described as a negative regulator of biofilm formation in P. aeruginosa. Genome wide identification of BsrA binding sites using chromatin immunoprecipitation and sequencing analysis revealed 765 BsrA-bound regions in the P. aeruginosa PAO1161 genome, including 367 sites in intergenic regions. The motif T-N11-A was identified within sequences bound by BsrA. Transcriptomic analysis showed altered expression of 157 genes in response to BsrA excess; of these, 35 had a BsrA binding site within their promoter regions, suggesting a direct influence of BsrA on the transcription of these genes. BsrA-repressed loci included genes encoding proteins engaged in key metabolic pathways such as the tricarboxylic acid cycle. The panel of loci possibly directly activated by BsrA included genes involved in pilus/fimbria assembly, as well as secretion and transport systems. In addition, DNA pull-down and regulatory analyses showed the involvement of PA2551, PA3398, and PA5189 in regulation of bsrA expression, indicating that this gene is part of an intricate regulatory network. Taken together, these findings reveal the existence of a BsrA regulon, which performs important functions in P. aeruginosa. IMPORTANCE This study shows that BsrA, a LysR-type transcriptional regulator from Pseudomonas aeruginosa, previously identified as a repressor of biofilm synthesis, is part of an intricate global regulatory network. BsrA acts directly and/or indirectly as the repressor and/or activator of genes from vital metabolic pathways (e.g., pyruvate, acetate, and tricarboxylic acid cycle) and is involved in control of transport functions and the formation of surface appendages. Expression of the bsrA gene is increased in the presence of antibiotics, which suggests its induction in response to stress, possibly reflecting the need to redirect metabolism under stressful conditions. This is particularly relevant for the treatment of infections caused by P. aeruginosa. In summary, the findings of this study demonstrate that the BsrA regulator performs important roles in carbon metabolism, biofilm formation, and antibiotic resistance in P. aeruginosa.
Collapse
|
31
|
Sadeer NB, Mahomoodally MF. Antibiotic Potentiation of Natural Products: A Promising Target to Fight Pathogenic Bacteria. Curr Drug Targets 2021; 22:555-572. [PMID: 32972338 DOI: 10.2174/1389450121666200924113740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/29/2020] [Accepted: 07/08/2020] [Indexed: 01/13/2023]
Abstract
Pathogenic microorganisms should be considered as the number one foe of human, as witnessed by recent outbreaks of coronavirus disease (COVID-19) and with bacteria no longer sensitive to existing antibiotics. The resistance of pathogenic bacteria and deaths attributable to bacterial infections is increasing exponentially. Bacteria used different mechanisms to counterattack to existing antibiotics, namely (i) enzymatic inhibition, (ii) penicillin-binding protein modification, (iii) porin mutations, (iv) efflux pumps and (v) molecular modifications of antibiotic targets. Developing new antibiotics would be time-consuming to address such a situation, thus one of the promising approaches is by potentiating existing antibiotics. Plants used synergism to naturally defend and protect themselves from microbes. Using the same strategy, several studies have shown that the combinations of natural products and antibiotics could effectively prolong the lifespan of existing antibiotics and minimize the impact and emergence of antibiotic resistance. Combining essential oils constituents, namely uvaol, ferruginol, farnesol and carvacrol, with antibiotics, have proved to be efficient efflux pump inhibitors. Plant-derived compounds such as gallic acid and tannic acid are effective potentiators of various antibiotics, including novobiocin, chlorobiocin, coumermycin, fusidic acid, and rifampicin, resulting in a 4-fold increase in the potencies of these antibiotics. Several lines of research, as discussed in this review, have demonstrated the effectiveness of natural products in potentiating existing antibiotics. For this reason, the search for more efficient combinations should be an ongoing process with the aim to extend the life of the ones that we have and may preserve the life for the ones that are yet to come.
Collapse
Affiliation(s)
- Nabeelah Bibi Sadeer
- Department of Health Sciences, Faculty of Science, University of Mauritius, 230Reduit, Mauritius
| | - Mohamad Fawzi Mahomoodally
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
32
|
Cortés-Avalos D, Martínez-Pérez N, Ortiz-Moncada MA, Juárez-González A, Baños-Vargas AA, Estrada-de Los Santos P, Pérez-Rueda E, Ibarra JA. An update of the unceasingly growing and diverse AraC/XylS family of transcriptional activators. FEMS Microbiol Rev 2021; 45:6219864. [PMID: 33837749 DOI: 10.1093/femsre/fuab020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/31/2021] [Indexed: 01/09/2023] Open
Abstract
Transcriptional factors play an important role in gene regulation in all organisms, especially in Bacteria. Here special emphasis is placed in the AraC/XylS family of transcriptional regulators. This is one of the most abundant as many predicted members have been identified and more members are added because more bacterial genomes are sequenced. Given the way more experimental evidence has mounded in the past decades, we decided to update the information about this captivating family of proteins. Using bioinformatics tools on all the data available for experimentally characterized members of this family, we found that many members that display a similar functional classification can be clustered together and in some cases they have a similar regulatory scheme. A proposal for grouping these proteins is also discussed. Additionally, an analysis of surveyed proteins in bacterial genomes is presented. Altogether, the current review presents a panoramic view into this family and we hope it helps to stimulate future research in the field.
Collapse
Affiliation(s)
- Daniel Cortés-Avalos
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Noemy Martínez-Pérez
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
| | - Mario A Ortiz-Moncada
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Aylin Juárez-González
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Arturo A Baños-Vargas
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Paulina Estrada-de Los Santos
- Laboratorio de Biotecnología Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México.,Facultad de Ciencias, Centro de Genómica y Bioinformática, Universidad Mayor, Santiago, Chile
| | - J Antonio Ibarra
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
33
|
Henderson PJF, Maher C, Elbourne LDH, Eijkelkamp BA, Paulsen IT, Hassan KA. Physiological Functions of Bacterial "Multidrug" Efflux Pumps. Chem Rev 2021; 121:5417-5478. [PMID: 33761243 DOI: 10.1021/acs.chemrev.0c01226] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial multidrug efflux pumps have come to prominence in human and veterinary pathogenesis because they help bacteria protect themselves against the antimicrobials used to overcome their infections. However, it is increasingly realized that many, probably most, such pumps have physiological roles that are distinct from protection of bacteria against antimicrobials administered by humans. Here we undertake a broad survey of the proteins involved, allied to detailed examples of their evolution, energetics, structures, chemical recognition, and molecular mechanisms, together with the experimental strategies that enable rapid and economical progress in understanding their true physiological roles. Once these roles are established, the knowledge can be harnessed to design more effective drugs, improve existing microbial production of drugs for clinical practice and of feedstocks for commercial exploitation, and even develop more sustainable biological processes that avoid, for example, utilization of petroleum.
Collapse
Affiliation(s)
- Peter J F Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Claire Maher
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Liam D H Elbourne
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Ian T Paulsen
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| |
Collapse
|
34
|
Imchen M, Kumavath R. Shotgun metagenomics reveals a heterogeneous prokaryotic community and a wide array of antibiotic resistance genes in mangrove sediment. FEMS Microbiol Ecol 2021; 96:5897355. [PMID: 32845305 DOI: 10.1093/femsec/fiaa173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Saline tolerant mangrove forests partake in vital biogeochemical cycles. However, they are endangered due to deforestation as a result of urbanization. In this study, we have carried out a metagenomic snapshot of the mangrove ecosystem from five countries to assess its taxonomic, functional and antibiotic resistome structure. Chao1 alpha diversity varied significantly (P < 0.001) between the countries (Brazil, Saudi Arabia, China, India and Malaysia). All datasets were composed of 33 phyla dominated by eight major phyla covering >90% relative abundance. Comparative analysis of mangrove with terrestrial and marine ecosystems revealed the strongest heterogeneity in the mangrove microbial community. We also observed that the mangrove community shared similarities to both the terrestrial and marine microbiome, forming a link between the two contrasting ecosystems. The antibiotic resistant genes (ARG) resistome was comprised of nineteen level 3 classifications dominated by multidrug resistance efflux pumps (46.7 ± 4.3%) and BlaR1 family regulatory sensor-transducer disambiguation (25.2 ± 4.8%). ARG relative abundance was significantly higher in Asian countries and in human intervention datasets at a global scale. Our study shows that the mangrove microbial community and its antibiotic resistance are affected by geography as well as human intervention and are unique to the mangrove ecosystem. Understanding changes in the mangrove microbiome and its ARG is significant for sustainable development and public health.
Collapse
Affiliation(s)
- Madangchanok Imchen
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O) Kasaragod, Kerala-671320, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O) Kasaragod, Kerala-671320, India
| |
Collapse
|
35
|
Impey RE, Hawkins DA, Sutton JM, Soares da Costa TP. Overcoming Intrinsic and Acquired Resistance Mechanisms Associated with the Cell Wall of Gram-Negative Bacteria. Antibiotics (Basel) 2020; 9:E623. [PMID: 32961699 PMCID: PMC7558195 DOI: 10.3390/antibiotics9090623] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
The global increase in multi-drug-resistant bacteria is severely impacting our ability to effectively treat common infections. For Gram-negative bacteria, their intrinsic and acquired resistance mechanisms are heightened by their unique cell wall structure. The cell wall, while being a target of some antibiotics, represents a barrier due to the inability of most antibacterial compounds to traverse and reach their intended target. This means that its composition and resulting mechanisms of resistance must be considered when developing new therapies. Here, we discuss potential antibiotic targets within the most well-characterised resistance mechanisms associated with the cell wall in Gram-negative bacteria, including the outer membrane structure, porins and efflux pumps. We also provide a timely update on the current progress of inhibitor development in these areas. Such compounds could represent new avenues for drug discovery as well as adjuvant therapy to help us overcome antibiotic resistance.
Collapse
Affiliation(s)
- Rachael E. Impey
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (R.E.I.); (D.A.H.)
| | - Daniel A. Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (R.E.I.); (D.A.H.)
| | - J. Mark Sutton
- National Infection Service, Research and Development Institute, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK;
| | - Tatiana P. Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (R.E.I.); (D.A.H.)
| |
Collapse
|
36
|
Ding J, Gao X, Gui H, Ding X, Lu Y, An S, Liu Q. Proteomic Analysis of Proteins Associated with Inhibition of Pseudomonas aeruginosa Resistance to Imipenem Mediated by the Chinese Herbal Medicine Qi Gui Yin. Microb Drug Resist 2020; 27:462-470. [PMID: 32924788 DOI: 10.1089/mdr.2020.0110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective: Antibiotic resistance of Pseudomonas aeruginosa (PA) that lowers the effectiveness of current treatments for pneumonia is a growing problem. Qi Gui Yin is a Chinese herbal medicine that has been used to improve the efficacy of antibiotic therapy against antibiotic-resistant bacteria. This study aimed to elucidate the mechanism by which Qi Gui Yin inhibits antibiotic resistance of PA. Methods: Active components of Qi Gui Yin were analyzed by chromatography. Isobaric Tags for Relative and Absolute Quantification (iTRAQ) technology was used to compare protein expression profiles of PA strains cultured in serum from rats that were and were not treated with Qi Gui Yin. Quantitative polymerase chain reaction (qPCR) analysis was performed to detect gene expression changes. Results: Proteomic analysis identified 76 differentially expressed proteins between PA strains cultured in serum from rats that were or were not treated with Qi Gui Yin. Bioinformatics analysis revealed that the largest number of differentially expressed proteins were associated with resistance mechanisms such as quorum sensing, bacterial biofilm formation, and active pumping. In addition, qPCR analysis confirmed that downregulation of iscU and arcA gene expression was associated with Qi Gui Yin treatment. Conclusions: Serum from Qi Gui Yin-treated rats could effectively inhibit antibiotic resistance of PA. Chlorogenic acid and astragaloside IV are the main components of Qi Gui Yin, which may mediate inhibition of antibiotic resistance. Our findings provide new insights into strategies involving Chinese herbal medicine that can be used to treat pneumonia caused by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Junying Ding
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Xiang Gao
- Department of Clinical Laboratory, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hong Gui
- Department of Clinical Laboratory, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xuefei Ding
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Youran Lu
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Shidong An
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Qingquan Liu
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
37
|
Fodor A, Abate BA, Deák P, Fodor L, Gyenge E, Klein MG, Koncz Z, Muvevi J, Ötvös L, Székely G, Vozik D, Makrai L. Multidrug Resistance (MDR) and Collateral Sensitivity in Bacteria, with Special Attention to Genetic and Evolutionary Aspects and to the Perspectives of Antimicrobial Peptides-A Review. Pathogens 2020; 9:pathogens9070522. [PMID: 32610480 PMCID: PMC7399985 DOI: 10.3390/pathogens9070522] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic poly-resistance (multidrug-, extreme-, and pan-drug resistance) is controlled by adaptive evolution. Darwinian and Lamarckian interpretations of resistance evolution are discussed. Arguments for, and against, pessimistic forecasts on a fatal “post-antibiotic era” are evaluated. In commensal niches, the appearance of a new antibiotic resistance often reduces fitness, but compensatory mutations may counteract this tendency. The appearance of new antibiotic resistance is frequently accompanied by a collateral sensitivity to other resistances. Organisms with an expanding open pan-genome, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae, can withstand an increased number of resistances by exploiting their evolutionary plasticity and disseminating clonally or poly-clonally. Multidrug-resistant pathogen clones can become predominant under antibiotic stress conditions but, under the influence of negative frequency-dependent selection, are prevented from rising to dominance in a population in a commensal niche. Antimicrobial peptides have a great potential to combat multidrug resistance, since antibiotic-resistant bacteria have shown a high frequency of collateral sensitivity to antimicrobial peptides. In addition, the mobility patterns of antibiotic resistance, and antimicrobial peptide resistance, genes are completely different. The integron trade in commensal niches is fortunately limited by the species-specificity of resistance genes. Hence, we theorize that the suggested post-antibiotic era has not yet come, and indeed might never come.
Collapse
Affiliation(s)
- András Fodor
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
- Correspondence: or (A.F.); (L.M.); Tel.: +36-(30)-490-9294 (A.F.); +36-(30)-271-2513 (L.M.)
| | - Birhan Addisie Abate
- Ethiopian Biotechnology Institute, Agricultural Biotechnology Directorate, Addis Ababa 5954, Ethiopia;
| | - Péter Deák
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
- Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary
| | - László Fodor
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, P.O. Box 22, H-1581 Budapest, Hungary;
| | - Ervin Gyenge
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania; (E.G.); (G.S.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - Michael G. Klein
- Department of Entomology, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA;
| | - Zsuzsanna Koncz
- Max-Planck Institut für Pflanzenzüchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany;
| | | | - László Ötvös
- OLPE, LLC, Audubon, PA 19403-1965, USA;
- Institute of Medical Microbiology, Semmelweis University, H-1085 Budapest, Hungary
- Arrevus, Inc., Raleigh, NC 27612, USA
| | - Gyöngyi Székely
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania; (E.G.); (G.S.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania
| | - Dávid Vozik
- Research Institute on Bioengineering, Membrane Technology and Energetics, Faculty of Engineering, University of Veszprem, H-8200 Veszprém, Hungary; or or
| | - László Makrai
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, P.O. Box 22, H-1581 Budapest, Hungary;
- Correspondence: or (A.F.); (L.M.); Tel.: +36-(30)-490-9294 (A.F.); +36-(30)-271-2513 (L.M.)
| |
Collapse
|
38
|
Role of efflux in enhancing butanol tolerance of bacteria. J Biotechnol 2020; 320:17-27. [PMID: 32553531 DOI: 10.1016/j.jbiotec.2020.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
N-butanol, a valued solvent and potential fuel extender, could possibly be produced by fermentation using either native producers, i.e. solventogenic Clostridia, or engineered platform organisms such as Escherichia coli or Pseudomonas species, if the main process obstacle, a low final butanol concentration, could be overcome. A low final concentration of butanol is the result of its high toxicity to production cells. Nevertheless, bacteria have developed several mechanisms to cope with this toxicity and one of them is active butanol efflux. This review presents information about a few well characterized butanol efflux pumps from Gram-negative bacteria (P. putida and E. coli) and summarizes knowledge about putative butanol efflux systems in Gram-positive bacteria.
Collapse
|
39
|
AccR, a TetR Family Transcriptional Repressor, Coordinates Short-Chain Acyl Coenzyme A Homeostasis in Streptomyces avermitilis. Appl Environ Microbiol 2020; 86:AEM.00508-20. [PMID: 32303550 DOI: 10.1128/aem.00508-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Malonyl coenzyme A (malonyl-CoA) and methylmalonyl-CoA are the most common extender units for the biosynthesis of fatty acids and polyketides in Streptomyces, an industrially important producer of polyketides. Carboxylation of acetyl- and propionyl-CoAs is an essential source of malonyl- and methylmalonyl-CoAs; therefore, acyl-CoA carboxylases (ACCases) play key roles in primary and secondary metabolism. The regulation of the expression of ACCases in Streptomyces spp. has not been investigated previously. We characterized a TetR family transcriptional repressor, AccR, that mediates intracellular acetyl-, propionyl-, methylcrotonyl-, malonyl-, and methylmalonyl-CoA levels by controlling the transcription of genes that encode the main ACCase and enzymes associated with branched-chain amino acid metabolism in S. avermitilis AccR bound to a 16-nucleotide palindromic binding motif (GTTAA-N6-TTAAC) in promoter regions and repressed the transcription of the accD1A1-hmgL-fadE4 operon, echA8, echA9, and fadE2, which are involved in the production and assimilation of acetyl- and propionyl-CoAs. Methylcrotonyl-, propionyl-, and acetyl-CoAs acted as effectors to release AccR from its target DNA, resulting in enhanced transcription of target genes by derepression. The affinity of methylcrotonyl- and propionyl-CoAs to AccR was stronger than that of acetyl-CoA. Deletion of accR resulted in increased concentrations of short-chain acyl-CoAs (acetyl-, propionyl-, malonyl-, and methylmalonyl-CoAs), leading to enhanced avermectin production. Avermectin production was increased by 14.5% in an accR deletion mutant of the industrial high-yield strain S. avermitilis A8. Our findings clarify the regulatory mechanisms that maintain the homeostasis of short-chain acyl-CoAs in Streptomyces IMPORTANCE Acyl-CoA carboxylases play key roles in primary and secondary metabolism. However, the regulation of ACCase genes transcription in Streptomyces spp. remains unclear. Here, we demonstrated that AccR responded to intracellular acetyl-, propionyl-, and methylcrotonyl-CoA availability and mediated transcription of the genes related to production and assimilation of these compounds in S. avermitilis When intracellular concentrations of these compounds are low, AccR binds to target genes and represses their transcription, resulting in low production of malonyl- and methylmalonyl-CoAs. When intracellular acetyl-, propionyl-, and methylcrotonyl-CoA concentrations are high, these compounds bind to AccR to dissociate AccR from target DNA, promoting the conversion of these compounds to malonyl- and methylmalonyl-CoAs. This investigation revealed how AccR coordinates short-chain acyl-CoA homeostasis in Streptomyces.
Collapse
|
40
|
Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, Huynh W, Nguyen ALV, Cheng AA, Liu S, Min SY, Miroshnichenko A, Tran HK, Werfalli RE, Nasir JA, Oloni M, Speicher DJ, Florescu A, Singh B, Faltyn M, Hernandez-Koutoucheva A, Sharma AN, Bordeleau E, Pawlowski AC, Zubyk HL, Dooley D, Griffiths E, Maguire F, Winsor GL, Beiko RG, Brinkman FSL, Hsiao WWL, Domselaar GV, McArthur AG. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517-D525. [PMID: 31665441 PMCID: PMC7145624 DOI: 10.1093/nar/gkz935] [Citation(s) in RCA: 1302] [Impact Index Per Article: 260.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023] Open
Abstract
The Comprehensive Antibiotic Resistance Database (CARD; https://card.mcmaster.ca) is a curated resource providing reference DNA and protein sequences, detection models and bioinformatics tools on the molecular basis of bacterial antimicrobial resistance (AMR). CARD focuses on providing high-quality reference data and molecular sequences within a controlled vocabulary, the Antibiotic Resistance Ontology (ARO), designed by the CARD biocuration team to integrate with software development efforts for resistome analysis and prediction, such as CARD's Resistance Gene Identifier (RGI) software. Since 2017, CARD has expanded through extensive curation of reference sequences, revision of the ontological structure, curation of over 500 new AMR detection models, development of a new classification paradigm and expansion of analytical tools. Most notably, a new Resistomes & Variants module provides analysis and statistical summary of in silico predicted resistance variants from 82 pathogens and over 100 000 genomes. By adding these resistance variants to CARD, we are able to summarize predicted resistance using the information included in CARD, identify trends in AMR mobility and determine previously undescribed and novel resistance variants. Here, we describe updates and recent expansions to CARD and its biocuration process, including new resources for community biocuration of AMR molecular reference data.
Collapse
Affiliation(s)
- Brian P Alcock
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Amogelang R Raphenya
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Tammy T Y Lau
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Kara K Tsang
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Mégane Bouchard
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Bachelor of Health Sciences Program, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Arman Edalatmand
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - William Huynh
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Anna-Lisa V Nguyen
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Bachelor of Health Sciences Program, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Annie A Cheng
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Sihan Liu
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Sally Y Min
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Anatoly Miroshnichenko
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Hiu-Ki Tran
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Rafik E Werfalli
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Jalees A Nasir
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Martins Oloni
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - David J Speicher
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Alexandra Florescu
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Bachelor of Health Sciences Program, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Bhavya Singh
- Honours Biology Program, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Mateusz Faltyn
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Bachelor of Arts & Science Program, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | | | - Arjun N Sharma
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Emily Bordeleau
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Andrew C Pawlowski
- Department of Genetics, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Haley L Zubyk
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Damion Dooley
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, V6T 2B5, British Columbia, Canada
| | - Emma Griffiths
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Finlay Maguire
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, B3H 1W5, Canada
| | - Geoff L Winsor
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Robert G Beiko
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, B3H 1W5, Canada
| | - Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - William W L Hsiao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, V6T 2B5, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, V5Z 4R4, Canada
| | - Gary V Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada
| | - Andrew G McArthur
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
41
|
Kawalek A, Modrzejewska M, Zieniuk B, Bartosik AA, Jagura-Burdzy G. Interaction of ArmZ with the DNA-binding domain of MexZ induces expression of mexXY multidrug efflux pump genes and antimicrobial resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019; 63:AAC.01199-19. [PMID: 31527038 PMCID: PMC6879243 DOI: 10.1128/aac.01199-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022] Open
Abstract
Multidrug efflux pumps play an important role in antibiotic resistance in bacteria. In Pseudomonas aeruginosa, MexXY pump provides intrinsic resistance to many antimicrobials, including aminoglycosides. The expression of mexXY operon is negatively regulated by MexZ repressor. The repression is alleviated in response to the antibiotic-induced ribosome stress, which results in increased synthesis of anti-repressor ArmZ, interacting with MexZ. The molecular mechanism of MexZ inactivation by ArmZ is not known. Here, we showed that the N-terminal part of MexZ, encompassing the DNA-binding domain, is required for interaction with ArmZ. Using the bacterial two hybrid system based mutant screening and pull-down analyses we identified substitutions in MexZ that diminished (R3S, K6E, R13H) or completely impaired (K53E) the interaction with ArmZ without blocking MexZ activity as a transcriptional repressor. Introduction of corresponding mexZ missense mutations into P aeruginosa PAO1161 chromosome impaired (mexZ K6E, mexZ R13H) or blocked (mexZ K53E) tetracycline mediated induction of mexY expression. Concomitantly, PAO1161 mexZ K53E strain was more susceptible to aminoglycosides. The identified residues are highly conserved in MexZ-like transcriptional regulators found in bacterial genomes encoding both MexX/MexY/MexZ and ArmZ/PA5470 orthologs, suggesting that a similar mechanism may contribute to induction of efflux mediated resistance in other bacterial species. Overall, our data shed light on the molecular mechanism of ArmZ mediated induction of intrinsic antimicrobial resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Adam Kawalek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Warsaw, Poland
| | - Magdalena Modrzejewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Warsaw, Poland
| | - Bartlomiej Zieniuk
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Aneta Agnieszka Bartosik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Warsaw, Poland
| | - Grazyna Jagura-Burdzy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Warsaw, Poland
| |
Collapse
|
42
|
Gong Z, Li H, Cai Y, Stojkoska A, Xie J. Biology of MarR family transcription factors and implications for targets of antibiotics against tuberculosis. J Cell Physiol 2019; 234:19237-19248. [PMID: 31012115 DOI: 10.1002/jcp.28720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
The emergence of multidrug resistant (MDR) Mycobacterium tuberculosis strains and increased incidence of HIV coinfection fueled the difficulty in controlling tuberculosis (TB). MarR (multiple antibiotic resistance regulator) family transcription factors can regulate marRAB operon and are involved in resistance to multiple environmental stresses. We have summarized the structure, function, distribution, and regulation of the MarR family proteins, as well as their implications for novel targets for antibiotics, especially for tuberculosis.
Collapse
Affiliation(s)
- Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Hui Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yuhua Cai
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Andrea Stojkoska
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
43
|
Mendes RE, Jones RN, Woosley LN, Cattoir V, Castanheira M. Application of Next-Generation Sequencing for Characterization of Surveillance and Clinical Trial Isolates: Analysis of the Distribution of β-lactamase Resistance Genes and Lineage Background in the United States. Open Forum Infect Dis 2019; 6:S69-S78. [PMID: 30895217 PMCID: PMC6419912 DOI: 10.1093/ofid/ofz004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background Sequencing technologies and techniques have seen remarkable transformation and innovation that have significantly affected sequencing capability. Data analyses have replaced sequencing as the main challenge. This paper provides an overview on applying next-generation sequencing (NGS) and analysis and discusses the benefits and challenges. In addition, this document shows results from using NGS and bioinformatics tools to screen for β-lactamase genes and assess the epidemiological structure of Escherichia coli– and Klebsiella pneumoniae–causing bloodstream (BSIs) and urinary tract (UTIs) infections in patients hospitalized in the United States during the SENTRY Antimicrobial Surveillance Program for 2016. Methods A total of 3525 isolates (2751 E. coli and 774 K. pneumoniae) causing BSIs (n = 892) and UTIs (n = 2633) in hospitalized patients in the United States were included. Isolates were tested for susceptibility by broth microdilution, and those that met a minimum inhibitory concentration (MIC)–based screening criteria had their genomes sequenced and analyzed. Results A total of 11.6% and 16.1% of E. coli–causing UTIs and BSIs, respectively, met the MIC-based criteria, whereas 11.0% and 13.7% of K. pneumoniae isolates causing UTIs and BSIs, respectively, met the criteria. Among E. coli, blaCTX-M variants (87.6% overall) prevailed (60.5% of CTX-M group 1 and 26.9% of group 9). A total of 60.3% of K. pneumoniae isolates carried blaCTX-M variants (52.7% and 7.6% of groups 1 and 9, respectively). Two E. coli (0.6%) and 13 K. pneumoniae (12.9%) isolates harbored blaKPC. Among KPC-producing K. pneumoniae (2 from BSIs and 11 from UTIs), 84.6% (11/13) were ST258 (CC258). Seventeen and 38 unique clonal complexes (CCs) were noted in E. coli that caused BSIs and UTIs, respectively, and CC131 (or ST131) was the most common CC among BSI (53.6%) and UTI (58.2%) isolates. Twenty-three and 26 CCs were noted among K. pneumoniae–causing BSIs and UTIs, respectively. CC258 (28.3%) prevailed in UTI pathogens, whereas CC307 (15.0%) was the most common CC among BSI isolates. Conclusions This study provides a benchmark for the distribution of β-lactamase genes and the population structure information for the most common Enterobacteriaceae species responsible for BSIs and UTIs in US medical centers during the 2016 SENTRY Program.
Collapse
Affiliation(s)
| | | | | | - Vincent Cattoir
- University Hospital of Rennes, Department of Clinical Microbiology, Rennes, France.,National Reference Center for Antimicrobial Resistance, Rennes, France.,University of Rennes 1, Unit Inserm U1230, Rennes, France
| | | |
Collapse
|
44
|
Mizdal CR, Stefanello ST, Nogara PA, Antunes Soares FA, de Lourenço Marques L, de Campos MMA. Molecular docking, and anti-biofilm activity of gold-complexed sulfonamides on Pseudomonas aeruginosa. Microb Pathog 2018; 125:393-400. [DOI: 10.1016/j.micpath.2018.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 01/07/2023]
|