1
|
Elbakary M, Hammad SF, Youseif SH, Soliman HSM. Revealing the diversity of Jojoba-associated fungi using amplicon metagenome approach and assessing the in vitro biocontrol activity of its cultivable community. World J Microbiol Biotechnol 2024; 40:205. [PMID: 38755302 DOI: 10.1007/s11274-024-03986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/13/2024] [Indexed: 05/18/2024]
Abstract
Jojoba shrubs are wild plants cultivated in arid and semiarid lands and characterized by tolerance to drought, salinity, and high temperatures. Fungi associated with such plants may be attributed to the tolerance of host plants against biotic stress in addition to the promotion of plant growth. Previous studies showed the importance of jojoba as jojoba oil in the agricultural field; however, no prior study discussed the role of jojoba-associated fungi (JAF) in reflecting plant health and the possibility of using JAF in biocontrol. Here, the culture-independent and culture-dependent approaches were performed to study the diversity of the jojoba-associated fungi. Then, the cultivable fungi were evaluated for in-vitro antagonistic activity and in vitro plant growth promotion assays. The metagenome analysis revealed the existence of four fungal phyla: Ascomycota, Aphelidiomycota, Basidiomycota, and Mortierellomycota. The phylum Ascomycota was the most common and had the highest relative abundance in soil, root, branch, and fruit samples (59.7%, 50.7%, 49.8%, and 52.4%, respectively). Alternaria was the most abundant genus in aboveground tissues: branch (43.7%) and fruit (32.1%), while the genus Discosia had the highest abundance in the underground samples: soil (24%) and root (30.7%). For the culture-dependent method, a total of 14 fungi were isolated, identified, and screened for their chitinolytic and antagonist activity against three phytopathogenic fungi (Fusarium oxysporum, Alternaria alternata and Rhizoctonia solani) as well as their in vitro plant growth promotion (PGP) activity. Based on ITS sequence analysis, the selected potent isolates were identified as Aspergillus stellatusEJ-JFF3, Aspergillus flavus EJ-JFF4, Stilbocrea sp. EJ-JLF1, Fusarium solani EJ-JRF3, and Amesia atrobrunneaEJ-JSF4. The endophyte strain A. flavus EJ-JFF4 exhibited the highest chitinolytic activity (9 Enzyme Index) and antagonistic potential against Fusarium oxysporum, Alternaria alternata, and Rhizoctonia solani phytopathogens with inhibitory percentages of 72, 70, and 80 respectively. Also, A. flavus EJ-JFF4 had significant multiple PGP properties, including siderophore production (69.3%), phosphate solubilization (95.4 µg ml-1). The greatest production of Indol-3-Acetic Acid was belonged to A. atrobrunnea EJ-JSF4 (114.5 µg ml-1). The analysis of FUNGuild revealed the abundance of symbiotrophs over other trophic modes, and the guild of endophytes was commonly assigned in all samples. For the first time, this study uncovered fungal diversity associated with jojoba plants using a culture-independent approach and in-vitro assessed the roles of cultivable fungal strains in promoting plant growth and biocontrol. The present study indicated the significance of jojoba shrubs as a potential source of diverse fungi with high biocontrol and PGP activities.
Collapse
Affiliation(s)
- Mustafa Elbakary
- Biotechnology Program, Basic and Applied Science Institute, Egypt-Japan University of Science and Technology, Alexandria, 21934, Egypt.
- Department of Nucleic Acids and Protein Structure, Agricultural Research Center, Agricultural Genetic Engineering Research Institute, Giza, 12619, Egypt.
| | - Sherif F Hammad
- Pharm D Program, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, 21934, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo, 11795, Egypt
| | - Sameh H Youseif
- School of Biotechnology, Nile University, Giza, 12677, Egypt.
- Department of Microbial Genetic Resources, Agricultural Research Center (ARC), National Gene Bank, Giza, 12619, Egypt.
| | - Hesham S M Soliman
- Pharm D Program, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, 21934, Egypt
- Pharmacognosy Department, Helwan University, Ain-Helwan, Cairo, 11795, Egypt
| |
Collapse
|
2
|
Choque-Quispe BM, Vásquez-Velásquez C, Gonzales GF. Evaluation of dietary composition between hemoglobin categories, total body iron content and adherence to multi-micronutrients in preschooler residents of the highlands of Puno, Peru. BMC Nutr 2024; 10:28. [PMID: 38347656 PMCID: PMC10860272 DOI: 10.1186/s40795-024-00837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/05/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The anemia prevalence is higher in highlands populations. It is assumed that iron deficiency anemia (IDA) in children is mainly due to low dietary intake. However, other suggest that high prevalence of anemia is due to an inappropriate hemoglobin (Hb) adjustment for altitude. MATERIALS AND METHODS Cross-sectional study conducted in 338 preschoolers (PSC) from Puno-Peru. Hb was measured in whole blood, and ferritin, Soluble transferrin receptor, and Interleukin 6 in serum.The dietary iron intake was assessed by 24-h dietary recall, using NutriCap Software. Hb concentration was assessed as adjusted or unadjusted for altitude. RESULTS With unadjusted Hb, the anemia prevalence was 4.7%, whereas after Hb correction, the prevalence raised-up to 65.6% (p < 0.001). Reciprocally, erythrocytosis proportion decreased from 20.35 to 0.30% (p < 0.001). Total Body Iron (TBI) showed that 7.44% had ID and 0.32% had IDA. PSC with normal unadjusted Hb levels have more protein and micronutrients intake than anemic ones. PSC with erythrocytosis consumed less fat, and more niacin and ascorbic acid than anemics. Total iron intake was lower in anemic than the other groups, but without statistical significance due to the standard deviation of the data in a small number of anemic PSC (n = 16). TBI, unadjusted Hb, and adjusted Hb were not different between groups consuming or not multimicronutrients. CONCLUSIONS The consumption of iron and iron status in children who live at high altitude is adequate, and that anemia could be due to other micronutrient deficiencies and/or that the adjustment of Hb by altitude is inappropriate.
Collapse
Affiliation(s)
| | - Cinthya Vásquez-Velásquez
- Laboratorio de Endocrinología y Reproducción (Laboratorios de Investigación y Desarrollo), Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru.
- Instituto de Investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Gustavo F Gonzales
- Laboratorio de Endocrinología y Reproducción (Laboratorios de Investigación y Desarrollo), Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
3
|
Pourhanifeh MH, Hosseinzadeh A, Koosha F, Reiter RJ, Mehrzadi S. Therapeutic Effects of Melatonin in the Regulation of Ferroptosis: A Review of Current Evidence. Curr Drug Targets 2024; 25:543-557. [PMID: 38706348 DOI: 10.2174/0113894501284110240426074746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 05/07/2024]
Abstract
Ferroptosis is implicated in the pathogenesis of multiple diseases, including neurodegenerative diseases, cardiovascular diseases, kidney pathologies, ischemia-reperfusion injury, and cancer. The current review article highlights the involvement of ferroptosis in traumatic brain injury, acute kidney damage, ethanol-induced liver injury, and PM2.5-induced lung injury. Melatonin, a molecule produced by the pineal gland and many other organs, is well known for its anti- aging, anti-inflammatory, and anticancer properties and is used in the treatment of different diseases. Melatonin's ability to activate anti-ferroptosis pathways including sirtuin (SIRT)6/p- nuclear factor erythroid 2-related factor 2 (Nrf2), Nrf2/ antioxidant responsive element (ARE)/ heme oxygenase (HO-1)/SLC7A11/glutathione peroxidase (GPX4)/ prostaglandin-endoperoxide synthase 2 (PTGS2), extracellular signal-regulated kinase (ERK)/Nrf2, ferroportin (FPN), Hippo/ Yes-associated protein (YAP), Phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) and SIRT6/ nuclear receptor coactivator 4 (NCOA4)/ ferritin heavy chain 1 (FTH1) signaling pathways suggests that it could serve as a valuable therapeutic agent for preventing cell death associated with ferroptosis in various diseases. Further research is needed to fully understand the precise mechanisms by which melatonin regulates ferroptosis and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cellular & Structural Biology, University of Texas, Health Science Center, San Antonio, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Lynch J, Wang Y, Li Y, Kavdia K, Fukuda Y, Ranjit S, Robinson CG, Grace CR, Xia Y, Peng J, Schuetz JD. A PPIX-binding probe facilitates discovery of PPIX-induced cell death modulation by peroxiredoxin. Commun Biol 2023; 6:673. [PMID: 37355765 PMCID: PMC10290680 DOI: 10.1038/s42003-023-05024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 06/07/2023] [Indexed: 06/26/2023] Open
Abstract
While heme synthesis requires the formation of a potentially lethal intermediate, protoporphyrin IX (PPIX), surprisingly little is known about the mechanism of its toxicity, aside from its phototoxicity. The cellular protein interactions of PPIX might provide insight into modulators of PPIX-induced cell death. Here we report the development of PPB, a biotin-conjugated, PPIX-probe that captures proteins capable of interacting with PPIX. Quantitative proteomics in a diverse panel of mammalian cell lines reveal a high degree of concordance for PPB-interacting proteins identified for each cell line. Most differences are quantitative, despite marked differences in PPIX formation and sensitivity. Pathway and quantitative difference analysis indicate that iron and heme metabolism proteins are prominent among PPB-bound proteins in fibroblasts, which undergo PPIX-mediated death determined to occur through ferroptosis. PPB proteomic data (available at PRIDE ProteomeXchange # PXD042631) reveal that redox proteins from PRDX family of glutathione peroxidases interact with PPIX. Targeted gene knockdown of the mitochondrial PRDX3, but not PRDX1 or 2, enhance PPIX-induced death in fibroblasts, an effect blocked by the radical-trapping antioxidant, ferrostatin-1. Increased PPIX formation and death was also observed in a T-lymphoblastoid ferrochelatase-deficient leukemia cell line, suggesting that PPIX elevation might serve as a potential strategy for killing certain leukemias.
Collapse
Affiliation(s)
- John Lynch
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yao Wang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yuxin Li
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yu Fukuda
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Sabina Ranjit
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Camenzind G Robinson
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Christy R Grace
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Youlin Xia
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
5
|
Guette-Marquet S, Roques C, Bergel A. Direct electrochemical detection of trans-plasma membrane electron transfer: A possible alternative pathway for cell respiration. Biosens Bioelectron 2022; 220:114896. [DOI: 10.1016/j.bios.2022.114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
|
6
|
The (Bio)Chemistry of Non-Transferrin-Bound Iron. Molecules 2022; 27:molecules27061784. [PMID: 35335148 PMCID: PMC8951307 DOI: 10.3390/molecules27061784] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
In healthy individuals, virtually all blood plasma iron is bound by transferrin. However, in several diseases and clinical conditions, hazardous non-transferrin-bound iron (NTBI) species occur. NTBI represents a potentially toxic iron form, being a direct cause of oxidative stress in the circulating compartment and tissue iron loading. The accumulation of these species can cause cellular damage in several organs, namely, the liver, spleen, and heart. Despite its pathophysiological relevance, the chemical nature of NTBI remains elusive. This has precluded its use as a clinical biochemical marker and the development of targeted therapies. Herein, we make a critical assessment of the current knowledge of NTBI speciation. The currently accepted hypotheses suggest that NTBI is mostly iron bound to citric acid and iron bound to serum albumin, but the chemistry of this system remains fuzzy. We explore the complex chemistry of iron complexation by citric acid and its implications towards NTBI reactivity. Further, the ability of albumin to bind iron is revised and the role of protein post-translational modifications on iron binding is discussed. The characterization of the NTBI species structure may be the starting point for the development of a standardized analytical assay, the better understanding of these species’ reactivity or the identification of NTBI uptake mechanisms by different cell types, and finally, to the development of new therapies.
Collapse
|
7
|
Xue J, Li G, Ji X, Liu ZH, Wang HL, Xiao G. Drosophila ZIP13 overexpression or transferrin1 RNAi influences the muscle degeneration of Pink1 RNAi by elevating iron levels in mitochondria. J Neurochem 2022; 160:540-555. [PMID: 35038358 DOI: 10.1111/jnc.15574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/01/2022]
Abstract
Disruption of iron homeostasis in the brain of Parkinson's disease (PD) patients has been reported for many years, but the underlying mechanisms remain unclear. To investigate iron metabolism genes related to PTEN-induced kinase 1 (Pink1) and parkin (E3 ubiquitin ligase), two PD-associated proteins that function to coordinate mitochondrial turnover via induction of selective mitophagy, we conducted a genetic screen in Drosophila and found that altered expression of genes involved in iron metabolism, such as Drosophila ZIP13 (dZIP13) or transferrin1 (Tsf1), significantly influences the disease progression related to Pink1 but not parkin. Several phenotypes of Pink1 mutant and Pink1 RNAi but not parkin mutant were significantly rescued by overexpression (OE) of dZIP13 (dZIP13 OE) or silencing of Tsf1 (Tsf1 RNAi) in the flight muscles. The rescue effects of dZIP13 OE or Tsf1 RNAi were not exerted through mitochondrial disruption or mitophagy, instead, the iron levels in mitochondira were significantly increased, resulting in enhanced activity of enzymes participating in respiration and increased ATP synthesis. Consistently, the rescue effects of dZIP13 OE or Tsf1 RNAi on Pink1 RNAi can be inhibited by decreasing the iron levels in mitochondria through mitoferrin (dmfrn) RNAi. This study suggests that dZIP13, Tsf1 and dmfrn might act independently of parkin in a parallel pathway downstream of Pink1 by modulating respiration and indicates that manipulation of iron levels in mitochondria may provide a novel therapeutic strategy for PD associated with Pink1.
Collapse
Affiliation(s)
- Jinsong Xue
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Guangying Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Xiaowen Ji
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Zhi-Hua Liu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Hui-Li Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Guiran Xiao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| |
Collapse
|
8
|
Zeidan RS, Han SM, Leeuwenburgh C, Xiao R. Iron homeostasis and organismal aging. Ageing Res Rev 2021; 72:101510. [PMID: 34767974 DOI: 10.1016/j.arr.2021.101510] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
Iron is indispensable for normal body functions across species because of its critical roles in red blood cell function and many essential proteins and enzymes required for numerous physiological processes. Regulation of iron homeostasis is an intricate process involving multiple modulators at the systemic, cellular, and molecular levels. Interestingly, emerging evidence has demonstrated that many modulators of iron homeostasis contribute to organismal aging and longevity. On the other hand, the age-related dysregulation of iron homeostasis is often associated with multiple age-related pathologies including bone resorption and neurodegenerative diseases such as Alzheimer's disease. Thus, a thorough understanding on the interconnections between systemic and cellular iron balance and organismal aging may help decipher the etiologies of multiple age-related diseases, which could ultimately lead to developing therapeutic strategies to delay aging and treat various age-related diseases. Here we present the current understanding on the mechanisms of iron homeostasis. We also discuss the impacts of aging on iron homeostatic processes and how dysregulated iron metabolism may affect aging and organismal longevity.
Collapse
|
9
|
Abbasi U, Abbina S, Gill A, Bhagat V, Kizhakkedathu JN. A facile colorimetric method for the quantification of labile iron pool and total iron in cells and tissue specimens. Sci Rep 2021; 11:6008. [PMID: 33727584 PMCID: PMC7971025 DOI: 10.1038/s41598-021-85387-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Quantification of iron is an important step to assess the iron burden in patients suffering from iron overload diseases, as well as tremendous value in understanding the underlying role of iron in the pathophysiology of these diseases. Current iron determination of total or labile iron, requires extensive sample handling and specialized instruments, whilst being time consuming and laborious. Moreover, there is minimal to no overlap between total iron and labile iron quantification methodologies-i.e. requiring entirely separate protocols, techniques and instruments. Herein, we report a unified-ferene (u-ferene) assay that enables a 2-in-1 quantification of both labile and total iron from the same preparation of a biological specimen. We demonstrate that labile iron concentrations determined from the u-ferene assay is in agreement with confocal laser scanning microscopy techniques employed within the literature. Further, this assay offers the same sensitivity as the current gold standard, inductively coupled plasma mass spectrometry (ICP-MS), for total iron measurements. The new u-ferene assay will have tremendous value for the wider scientific community as it offers an economic and readily accessible method for convenient 2-in-1 measurement of total and labile iron from biological samples, whilst maintaining the precision and sensitivity, as compared to ICP-MS.
Collapse
Affiliation(s)
- Usama Abbasi
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Srinivas Abbina
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Arshdeep Gill
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada.,Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Vriti Bhagat
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Jayachandran N Kizhakkedathu
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada. .,Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada. .,Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada. .,The School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Oleic acid magnetic iron oxide nanoparticles improve iron uptake by the modification of NADH-HCF (III) oxidoreductase without affecting cellular viability. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Liu M, Lyte M. Pyruvate is required for catecholamine-stimulated growth of different strains of Campylobacter jejuni. PeerJ 2020; 8:e10011. [PMID: 33062434 PMCID: PMC7528810 DOI: 10.7717/peerj.10011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/31/2020] [Indexed: 01/10/2023] Open
Abstract
Humans and food-producing animals are constantly exposed to and affected by stress. As a consequence of stress, the release of stress-related catecholamines, such as norepinephrine (NE) and dopamine (DA), from nerve terminals in the gastrointestinal tract potentiates both the growth and the virulence of pathogenic bacteria. This may lead to the enhancement of gastrointestinal infections in humans or food-producing animals. Compared with foodborne bacterial pathogens such as Escherichia coli and Salmonella spp., less is known about the effect of stress catecholamines on Campylobacter jejuni subsp. jejuni. The present study focuses on the effect(s) of stress catecholamines DA and NE in iron-restricted media and how they affect the growth of different C. jejuni strains NCTC 11168, 81-176, and ML2126. Results demonstrated that DA- and NE-enhanced growth of C. jejuni in iron-restricted media may involve different mechanisms that cannot be explained by current understanding which relies on catecholamine-mediated iron delivery. Specifically, we found that DA-enhanced growth requires pyruvate, whereas NE-enhanced growth does not. We further report significant strain-specific dependence of C. jejuni growth on various catecholamines in the presence or absence of pyruvate. These data provide novel insights into the effect(s) of stress catecholamines on the in vitro growth of C. jejuni in iron-restricted environments, such as the intestinal tract. They suggest a mechanism by which stress-related catecholamines affect the growth of C. jejuni in the intestinal tract of food-producing animals, which in turn may influence colonization and transmission to humans.
Collapse
Affiliation(s)
- Meicen Liu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Mark Lyte
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
12
|
Przybyło M, Langner M. On the physiological and cellular homeostasis of ascorbate. Cell Mol Biol Lett 2020; 25:32. [PMID: 32514268 PMCID: PMC7257198 DOI: 10.1186/s11658-020-00223-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Recent interest in the role of ascorbate in crucial metabolic processes is driven by the growing number of medical reports that show beneficial effects of ascorbate supplementation for maintaining general well-being and recovery from a variety of medical conditions. The effect of ascorbate on the local body environment highly depends on its local concentration; at low concentrations it can cause the reduction of reactive oxygen and facilitate activities of enzymes, while at high concentrations it generates free radicals by reducing ferric ions. Ascorbate serving as an electron donor assists the iron-containing proteins and the iron transfer between various aqueous compartments. These functions require effective and adjustable mechanisms responsible for ascorbate biodistribution. In the paper we propose a new biophysical model of ascorbate redistribution between various aqueous body compartments. It combines recent experimental evidence regarding the ability of ascorbate to cross the lipid bilayer by unassisted diffusion, with active transport by well-characterized sodium vitamin C transporter (SVCT) membrane proteins. In the model, the intracellular concentration of ascorbate is maintained by the balance of two opposing fluxes: fast active and slow passive transport. The model provides a mechanistic understanding of ascorbate flux across the epidermal barrier in the gut as well as the role of astrocytes in ascorbate recycling in the brain. In addition, ascorbate passive diffusion across biological membranes, which depends on membrane electric potentials and pH gradients, provides the rationale for the correlation between ascorbate distribution and the transfer of iron ions inside a cell. The proposed approach provides, for the first time, a mechanistic account of processes leading to ascorbate physiological and cellular distribution, which helps to explain numerous experimental and clinical observations.
Collapse
Affiliation(s)
- Magdalena Przybyło
- Faculty of Biomedical Engineering, Wrocław University of Sciences and Technology, 50-370 Wrocław, Poland
- Lipid Systems Ltd, Krzemieniecka 48C, 54-613 Wrocław, Poland
| | - Marek Langner
- Faculty of Biomedical Engineering, Wrocław University of Sciences and Technology, 50-370 Wrocław, Poland
- Lipid Systems Ltd, Krzemieniecka 48C, 54-613 Wrocław, Poland
| |
Collapse
|
13
|
Abstract
Exoelectrogens are able to transfer electrons extracellularly, enabling them to respire on insoluble terminal electron acceptors. Extensively studied exoelectrogens, such as Geobacter sulfurreducens and Shewanella oneidensis, are Gram negative. More recently, it has been reported that Gram-positive bacteria, such as Listeria monocytogenes and Enterococcus faecalis, also exhibit the ability to transfer electrons extracellularly, although it is still unclear whether this has a function in respiration or in redox control of the environment, for instance, by reducing ferric iron for iron uptake. In this issue of Journal of Bacteriology, Hederstedt and colleagues report on experiments that directly compare extracellular electron transfer (EET) pathways for ferric iron reduction and respiration and find a clear difference (L. Hederstedt, L. Gorton, and G. Pankratova, J Bacteriol 202:e00725-19, 2020, https://doi.org/10.1128/JB.00725-19), providing further insights and new questions into the function and metabolic pathways of EET in Gram-positive bacteria.
Collapse
|
14
|
Alizadeh K, Sun Q, McGuire T, Thompson T, Prato FS, Koropatnick J, Gelman N, Goldhawk DE. Hepcidin-mediated Iron Regulation in P19 Cells is Detectable by Magnetic Resonance Imaging. Sci Rep 2020; 10:3163. [PMID: 32081948 PMCID: PMC7035373 DOI: 10.1038/s41598-020-59991-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/04/2020] [Indexed: 01/25/2023] Open
Abstract
Magnetic resonance imaging can be used to track cellular activities in the body using iron-based contrast agents. However, multiple intrinsic cellular iron handling mechanisms may also influence the detection of magnetic resonance (MR) contrast: a need to differentiate among those mechanisms exists. In hepcidin-mediated inflammation, for example, downregulation of iron export in monocytes and macrophages involves post-translational degradation of ferroportin. We examined the influence of hepcidin endocrine activity on iron regulation and MR transverse relaxation rates in multi-potent P19 cells, which display high iron import and export activities, similar to alternatively-activated macrophages. Iron import and export were examined in cultured P19 cells in the presence and absence of iron-supplemented medium, respectively. Western blots indicated the levels of transferrin receptor, ferroportin and ubiquitin in the presence and absence of extracellular hepcidin. Total cellular iron was measured by inductively-coupled plasma mass spectrometry and correlated to transverse relaxation rates at 3 Tesla using a gelatin phantom. Under varying conditions of iron supplementation, the level of ferroportin in P19 cells responds to hepcidin regulation, consistent with degradation through a ubiquitin-mediated pathway. This response of P19 cells to hepcidin is similar to that of classically-activated macrophages. The correlation between total cellular iron content and MR transverse relaxation rates was different in hepcidin-treated and untreated P19 cells: slope, Pearson correlation coefficient and relaxation rate were all affected. These findings may provide a tool to non-invasively distinguish changes in endogenous iron contrast arising from hepcidin-ferroportin interactions, with potential utility in monitoring of different macrophage phenotypes involved in pro- and anti-inflammatory signaling. In addition, this work demonstrates that transverse relaxivity is not only influenced by the amount of cellular iron but also by its metabolism.
Collapse
Affiliation(s)
- Kobra Alizadeh
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada
| | - Qin Sun
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada
| | - Tabitha McGuire
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
| | - Terry Thompson
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Medical Imaging, Western University, London, Ontario, Canada
- Physics and Astronomy, Western University, London, Ontario, Canada
| | - Frank S Prato
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada
- Medical Imaging, Western University, London, Ontario, Canada
- Physics and Astronomy, Western University, London, Ontario, Canada
| | - Jim Koropatnick
- London Regional Cancer Program, London, Ontario, Canada
- Oncology, Western University, London, Ontario, Canada
| | - Neil Gelman
- Imaging, Lawson Health Research Institute, London, Ontario, Canada
- Medical Biophysics, Western University, London, Ontario, Canada
- Medical Imaging, Western University, London, Ontario, Canada
| | - Donna E Goldhawk
- Imaging, Lawson Health Research Institute, London, Ontario, Canada.
- Medical Biophysics, Western University, London, Ontario, Canada.
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada.
| |
Collapse
|
15
|
Evolution of Distinct Responses to Low NAD + Stress by Rewiring the Sir2 Deacetylase Network in Yeasts. Genetics 2020; 214:855-868. [PMID: 32071196 DOI: 10.1534/genetics.120.303087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/12/2020] [Indexed: 01/20/2023] Open
Abstract
Evolutionary adaptation increases the fitness of a species in its environment. It can occur through rewiring of gene regulatory networks, such that an organism responds appropriately to environmental changes. We investigated whether sirtuin deacetylases, which repress transcription and require NAD+ for activity, serve as transcriptional rewiring points that facilitate the evolution of potentially adaptive traits. If so, bringing genes under the control of sirtuins could enable organisms to mount appropriate responses to stresses that decrease NAD+ levels. To explore how the genomic targets of sirtuins shift over evolutionary time, we compared two yeast species, Saccharomyces cerevisiae and Kluyveromyces lactis, that display differences in cellular metabolism and life cycle timing in response to nutrient availability. We identified sirtuin-regulated genes through a combination of chromatin immunoprecipitation and RNA expression. In both species, regulated genes were associated with NAD+ homeostasis, mating, and sporulation, but the specific genes differed. In addition, regulated genes in K. lactis were associated with other processes, including utilization of nonglucose carbon sources, detoxification of arsenic, and production of the siderophore pulcherrimin. Consistent with the species-restricted regulation of these genes, sirtuin deletion affected relevant phenotypes in K. lactis but not S. cerevisiae Finally, sirtuin-regulated gene sets were depleted for broadly conserved genes, consistent with sirtuins regulating processes restricted to a few species. Taken together, these results are consistent with the notion that sirtuins serve as rewiring points that allow species to evolve distinct responses to low NAD+ stress.
Collapse
|
16
|
Kaneko M, Ishikawa M, Ishihara K, Nakanishi S. Cell-Membrane Permeable Redox Phospholipid Polymers Induce Apoptosis in MDA-MB-231 Human Breast Cancer Cells. Biomacromolecules 2019; 20:4447-4456. [DOI: 10.1021/acs.biomac.9b01184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Masahiro Kaneko
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masahito Ishikawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Graduate School of Engineering Science Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
17
|
Ironing the mitochondria: Relevance to its dynamics. Mitochondrion 2019; 50:82-87. [PMID: 31669623 DOI: 10.1016/j.mito.2019.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/18/2019] [Accepted: 09/18/2019] [Indexed: 01/18/2023]
Abstract
The mitochondrion is "jack of many trades and master of one". Despite being a master in energy generation, it plays a significant role in other cellular processes, including calcium homeostasis, cell death, and iron metabolism. Since mitochondria employ the majority of cellular iron, it plays a central role in the iron homeostasis. Iron could be a major regulator of mitochondrial dynamics as the excess of iron leads to oxidative stress, which causes a disturbance in mitochondrial dynamics. Remarkably, abnormal iron accumulation has been observed in the brain regions of the neurodegenerative disorders patients. These neurodegenerative disorders are also often associated with the abnormal mitochondrial dynamics. Here in this article, we will mainly discuss the studies focused on unravelling the role of iron in mitochondrial dynamics.
Collapse
|
18
|
Lewis BE, Mason Z, Rodrigues AV, Nuth M, Dizin E, Cowan JA, Stemmler TL. Unique roles of iron and zinc binding to the yeast Fe-S cluster scaffold assembly protein "Isu1". Metallomics 2019; 11:1820-1835. [PMID: 31532427 DOI: 10.1039/c9mt00172g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mitochondrial Fe-S cluster biosynthesis is accomplished within yeast utilizing the biophysical attributes of the "Isu1" scaffold assembly protein. As a member of a highly homologous protein family, Isu1 has sequence conservation between orthologs and a conserved ability to assemble [2Fe-2S] clusters. Regardless of species, scaffold orthologs have been shown to exist in both "disordered" and "structured" conformations, a structural architecture that is directly related to conformations utilized during Fe-S cluster assembly. During assembly, the scaffold helps direct the delivery and utilization of Fe(ii) and persulfide substrates to produce [2Fe-2S] clusters, however Zn(ii) binding alters the activity of the scaffold while at the same time stabilizes the protein in its structured state. Additional studies confirm Zn binds to the scaffold's Cys rich active site, and has an impact on the protein's ability to make Fe-S clusters. Understanding the interplay between Fe(ii) and Zn(ii) binding to Isu1 in vitro may help clarify metal loading events that occur during Fe-S cluster assembly in vivo. Here we determine the metal : protein stoichiometry for Isu1 Zn and Fe binding to be 1 : 1 and 2 : 1, respectively. As expected, while Zn binding shifts the Isu1 to its structured state, folding is not influenced by Fe(ii) binding. X-ray absorption spectroscopy (XAS) confirms Zn(ii) binds to the scaffold's cysteine rich active site but Fe(ii) binds at a location distinct from the active site. XAS results show Isu1 binding initially of either Fe(ii) or Zn(ii) does not significantly perturb the metal site structure of alternate metal. XAS confirmed that four scaffold orthologs bind iron as high-spin Fe(ii) at a site composed of ca. 6 oxygen and nitrogen nearest neighbor ligands. Finally, in our report Zn binding dramatically reduces the Fe-S cluster assembly activity of Isu1 even in the presence of frataxin. Given the Fe-binding activity we report for Isu1 and its orthologs here, a possible mechanism involving Fe(ii) transport to the scaffold's active site during cluster assembly has been considered.
Collapse
Affiliation(s)
- Brianne E Lewis
- Department of Pharmaceutical Science, Wayne State University, Detroit, MI 48201, USA.
| | - Zachary Mason
- Department of Pharmaceutical Science, Wayne State University, Detroit, MI 48201, USA.
| | - Andria V Rodrigues
- Department of Pharmaceutical Science, Wayne State University, Detroit, MI 48201, USA.
| | - Manunya Nuth
- Department of Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Eric Dizin
- Department of Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | - J A Cowan
- Department of Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Timothy L Stemmler
- Department of Pharmaceutical Science, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|