1
|
Chi MH, Bourgeois JA, Santos E, Kim K, Ponzini MD, Mendoza G, Schneider A, Hessl D, Tassone F, Hagerman RJ. Psychiatric Manifestations in Early to Middle Stages of Fragile X-Associated Tremor-Ataxia Syndrome (FXTAS). J Neuropsychiatry Clin Neurosci 2024:appineuropsych20230215. [PMID: 39113493 DOI: 10.1176/appi.neuropsych.20230215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
OBJECTIVE The purpose of the present study was to assess the psychiatric manifestations of early to middle stages of fragile X-associated tremor-ataxia syndrome (FXTAS) and their relationship with executive function and FMR1 cytosine-guanine-guanine (CGG) repeat numbers across genders. METHODS Cross-sectional data from 100 participants (62 men, 38 women; mean±SD age=67.11±7.90 years) with FXTAS stage 1, 2, or 3 were analyzed, including demographic information, cognitive measures, psychiatric assessments (Symptom Checklist-90-Revised and Behavioral Dyscontrol Scale-II [BDS-II]), and CGG repeat number. RESULTS Participants with FXTAS stage 3 exhibited significantly worse psychiatric outcomes compared with participants with either stage 1 or 2, with distinct gender-related differences. Men showed differences in anxiety and hostility between stage 3 and combined stages 1 and 2, whereas women exhibited differences in anxiety, depression, interpersonal sensitivity, obsessive-compulsive symptoms, and somatization, as well as in the Global Severity Index, the Positive Symptom Distress Index, and the Positive Symptom Total. Among male participants, negative correlations were observed between BDS-II total scores and obsessive-compulsive symptoms, as well as between anxiety and CGG repeat number. CONCLUSIONS These findings suggest that even at early FXTAS stages, patients have significant cognitive and other psychiatric symptoms, with notable gender-specific differences. This study underscores the clinical and prognostic relevance of comorbid psychiatric conditions in FXTAS, highlighting the need for early intervention and targeted support for individuals with relatively mild motor deficits.
Collapse
Affiliation(s)
- Mei Hung Chi
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Health, Sacramento (Chi, Santos, Kim, Ponzini, Schneider, Hessl, Tassone, Hagerman); Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan (Chi); Departments of Psychiatry and Behavioral Sciences (Bourgeois, Hessl), Pediatrics (Santos, Schneider, Hagerman), Public Health Sciences (Kim, Ponzini), and Biochemistry and Molecular Medicine (Mendoza, Tassone), University of California, Davis School of Medicine, Sacramento
| | - James A Bourgeois
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Health, Sacramento (Chi, Santos, Kim, Ponzini, Schneider, Hessl, Tassone, Hagerman); Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan (Chi); Departments of Psychiatry and Behavioral Sciences (Bourgeois, Hessl), Pediatrics (Santos, Schneider, Hagerman), Public Health Sciences (Kim, Ponzini), and Biochemistry and Molecular Medicine (Mendoza, Tassone), University of California, Davis School of Medicine, Sacramento
| | - Ellery Santos
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Health, Sacramento (Chi, Santos, Kim, Ponzini, Schneider, Hessl, Tassone, Hagerman); Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan (Chi); Departments of Psychiatry and Behavioral Sciences (Bourgeois, Hessl), Pediatrics (Santos, Schneider, Hagerman), Public Health Sciences (Kim, Ponzini), and Biochemistry and Molecular Medicine (Mendoza, Tassone), University of California, Davis School of Medicine, Sacramento
| | - Kyoungmi Kim
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Health, Sacramento (Chi, Santos, Kim, Ponzini, Schneider, Hessl, Tassone, Hagerman); Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan (Chi); Departments of Psychiatry and Behavioral Sciences (Bourgeois, Hessl), Pediatrics (Santos, Schneider, Hagerman), Public Health Sciences (Kim, Ponzini), and Biochemistry and Molecular Medicine (Mendoza, Tassone), University of California, Davis School of Medicine, Sacramento
| | - Matt Dominic Ponzini
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Health, Sacramento (Chi, Santos, Kim, Ponzini, Schneider, Hessl, Tassone, Hagerman); Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan (Chi); Departments of Psychiatry and Behavioral Sciences (Bourgeois, Hessl), Pediatrics (Santos, Schneider, Hagerman), Public Health Sciences (Kim, Ponzini), and Biochemistry and Molecular Medicine (Mendoza, Tassone), University of California, Davis School of Medicine, Sacramento
| | - Guadalupe Mendoza
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Health, Sacramento (Chi, Santos, Kim, Ponzini, Schneider, Hessl, Tassone, Hagerman); Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan (Chi); Departments of Psychiatry and Behavioral Sciences (Bourgeois, Hessl), Pediatrics (Santos, Schneider, Hagerman), Public Health Sciences (Kim, Ponzini), and Biochemistry and Molecular Medicine (Mendoza, Tassone), University of California, Davis School of Medicine, Sacramento
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Health, Sacramento (Chi, Santos, Kim, Ponzini, Schneider, Hessl, Tassone, Hagerman); Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan (Chi); Departments of Psychiatry and Behavioral Sciences (Bourgeois, Hessl), Pediatrics (Santos, Schneider, Hagerman), Public Health Sciences (Kim, Ponzini), and Biochemistry and Molecular Medicine (Mendoza, Tassone), University of California, Davis School of Medicine, Sacramento
| | - David Hessl
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Health, Sacramento (Chi, Santos, Kim, Ponzini, Schneider, Hessl, Tassone, Hagerman); Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan (Chi); Departments of Psychiatry and Behavioral Sciences (Bourgeois, Hessl), Pediatrics (Santos, Schneider, Hagerman), Public Health Sciences (Kim, Ponzini), and Biochemistry and Molecular Medicine (Mendoza, Tassone), University of California, Davis School of Medicine, Sacramento
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Health, Sacramento (Chi, Santos, Kim, Ponzini, Schneider, Hessl, Tassone, Hagerman); Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan (Chi); Departments of Psychiatry and Behavioral Sciences (Bourgeois, Hessl), Pediatrics (Santos, Schneider, Hagerman), Public Health Sciences (Kim, Ponzini), and Biochemistry and Molecular Medicine (Mendoza, Tassone), University of California, Davis School of Medicine, Sacramento
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Health, Sacramento (Chi, Santos, Kim, Ponzini, Schneider, Hessl, Tassone, Hagerman); Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan (Chi); Departments of Psychiatry and Behavioral Sciences (Bourgeois, Hessl), Pediatrics (Santos, Schneider, Hagerman), Public Health Sciences (Kim, Ponzini), and Biochemistry and Molecular Medicine (Mendoza, Tassone), University of California, Davis School of Medicine, Sacramento
| |
Collapse
|
2
|
Reiner J, Rosenblum LS, Xin W, Zhou Z, Zhu H, Leach N. Incidental molecular diagnoses and heterozygous risk alleles in a carrier screening cohort. Genet Med 2023; 25:100317. [PMID: 36459106 DOI: 10.1016/j.gim.2022.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 12/05/2022] Open
Abstract
PURPOSE Expanded pan-ethnic carrier screening is an effective tool for the management of reproductive risk. However, growth in the number of conditions screened, in combination with increasingly more comprehensive test methodologies, can lead to the detection of genetic findings that may affect the health of the tested individual. The objective of this study was to investigate the frequency of pathogenic genotypes in a presumed healthy carrier screening cohort to facilitate broader discussions regarding disclosure of genetic information from carrier screening. METHODS A retrospective analysis of 73,755 targeted carrier screens was performed to identify individuals with pathogenic genotypes and heterozygous risk alleles. RESULTS In this study, we identified 79 individuals (0.11%) with pathogenic genotypes associated with moderate to profound autosomal recessive or X-linked conditions. In addition, 10 cases had chromosome X dosage abnormalities suggestive of a sex chromosome abnormality. Heterozygote risk alleles represented the majority of ancillary findings in this cohort, including 280 female carriers of FMR1 premutation alleles, 15 heterozygous females with pathogenic DMD variants, and 174 heterozygotes with pathogenic variants in genes that may confer increased risk for somatic malignancies in the heterozygous state. CONCLUSION These data suggest that nearly 1% of individuals undergoing carrier screening will have a finding that may require clinical evaluation or surveillance.
Collapse
|
3
|
Giulivi C, Wang JY, Hagerman RJ. Artificial neural network applied to fragile X-associated tremor/ataxia syndrome stage diagnosis based on peripheral mitochondrial bioenergetics and brain imaging outcomes. Sci Rep 2022; 12:21382. [PMID: 36496525 PMCID: PMC9741636 DOI: 10.1038/s41598-022-25615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
No proven prognosis is available for the neurodegenerative disorder fragile X-associated tremor/ataxia syndrome (FXTAS). Artificial neural network analyses (ANN) were used to predict FXTAS progression using data from 127 adults (noncarriers and FMR1 premutation carriers with and without FXTAS) with five outcomes from brain MRI imaging and 22 peripheral bioenergetic outcomes from two cell types. Diagnosis accuracy by ANN predictions ranged from 41.7 to 86.3% (depending on the algorithm used), and those misclassified usually presented a higher FXTAS stage. ANN prediction of FXTAS stages was based on a combination of two imaging findings (white matter hyperintensity and whole-brain volumes adjusted for intracranial volume) and four bioenergetic outcomes. Those at Stage 3 vs. 0-2 showed lower mitochondrial mass, higher oxidative stress, and an altered electron transfer consistent with mitochondrial unfolded protein response activation. Those at Stages 4-5 vs. 3 had higher oxidative stress and glycerol-3-phosphate-linked ATP production, suggesting that targeting mGPDH activity may prevent a worse prognosis. This was confirmed by the bioenergetic improvement of inhibiting mGPDH with metformin in affected fibroblasts. ANN supports the prospect of an unbiased molecular definition in diagnosing FXTAS stages while identifying potential targets for personalized medicine.
Collapse
Affiliation(s)
- Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
- MIND Institute, University of California at Davis Medical Center, Sacramento, CA, USA.
| | - Jun Yi Wang
- MIND Institute, University of California at Davis Medical Center, Sacramento, CA, USA
- Center for Mind and Brain, University of California Davis, Davis, CA, USA
| | - Randi J Hagerman
- MIND Institute, University of California at Davis Medical Center, Sacramento, CA, USA
- Department of Pediatrics, University of California at Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
4
|
Aishworiya R, Protic D, Hagerman R. Autism spectrum disorder in the fragile X premutation state: possible mechanisms and implications. J Neurol 2022; 269:4676-4683. [PMID: 35723724 DOI: 10.1007/s00415-022-11209-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022]
Abstract
There is increasing recognition of the heterogeneity of origin of cases of autism spectrum disorder (ASD) with multiple forms of ASD having been identified over the decades. Among these, a genetic etiology can be identified in 20-40% of cases when a full genetic work-up is completed. The Fragile X premutation state (characterized by the presence of 55-200 CGG repeats in the FMR1 gene) is a relatively newly identified disease state that has since been associated with several disorders including fragile X-associated tremor ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI) and most recently, fragile X-associated neurodevelopmental disorders (FXAND) which commonly includes anxiety and depression. In addition to these associated disorders, extant literature and clinical observations have suggested an association between the premutation state and ASD. In this paper, we review the literature pertinent to this and discuss possible molecular mechanisms that may explain this association. This includes lowered levels of the FMR1 Protein (FMRP), GABA deficits, mitochondrial dysfunction and secondary genetic abnormalities that is seen in premutation carriers as well as their increased vulnerability to environmental stressors. Understanding these mechanisms can facilitate development of targeted treatment for specific sub-groups of ASD and premutation disorders in future.
Collapse
Affiliation(s)
- Ramkumar Aishworiya
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA. .,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore. .,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Singapore.
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA.,Department of Pediatrics, University of California Davis School of Medicine, 4610 X St, Sacramento, CA, 95817, USA
| |
Collapse
|
5
|
Orsucci D, Lorenzetti L, Baldinotti F, Rossi A, Vitolo E, Gheri FL, Napolitano A, Tintori G, Vista M. Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS): A Gender Perspective. J Clin Med 2022; 11:jcm11041002. [PMID: 35207276 PMCID: PMC8876035 DOI: 10.3390/jcm11041002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 11/22/2022] Open
Abstract
Although larger trinucleotide expansions give rise to a neurodevelopmental disorder called fragile X syndrome, fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder caused by a “premutation” (55–200 CGG repeats) in the FMR1 gene. FXTAS is one of the more common single-gene forms of late-onset ataxia and tremor that may have a more complex development in women, with atypical presentations. After a brief presentation of the atypical case of an Italian woman with FXTAS, who had several paroxysmal episodes suggestive of acute cerebellar and/or brainstem dysfunction, this article will revise the phenotype of FXTAS in women. Especially in females, FXTAS has a broad spectrum of symptoms, ranging from relatively severe diseases in mid-adulthood to mild cases beginning in later life. Female FXTAS and male FXTAS have a different symptomatic spectrum, and studies on the fragile X premutation should be conducted separately on women or men. Hopefully, a better understanding of the molecular processes involved in the polymorphic features of FXTAS will lead to more specific and effective therapies for this complex disorder.
Collapse
Affiliation(s)
- Daniele Orsucci
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy;
- Correspondence: or
| | - Lucia Lorenzetti
- Unit of Internal Medicine, Santa Croce Hospital, 55032 Castelnuovo Garfagnana, Lucca, Italy; (L.L.); (E.V.); (F.L.G.); (G.T.)
| | - Fulvia Baldinotti
- Laboratory of Molecular Genetics, University Hospital of Pisa, 56126 Pisa, Italy;
| | - Andrea Rossi
- Medical Affairs and Scientific Communications, 1260 Nyon, Switzerland;
| | - Edoardo Vitolo
- Unit of Internal Medicine, Santa Croce Hospital, 55032 Castelnuovo Garfagnana, Lucca, Italy; (L.L.); (E.V.); (F.L.G.); (G.T.)
| | - Fabio Luigi Gheri
- Unit of Internal Medicine, Santa Croce Hospital, 55032 Castelnuovo Garfagnana, Lucca, Italy; (L.L.); (E.V.); (F.L.G.); (G.T.)
| | | | - Giancarlo Tintori
- Unit of Internal Medicine, Santa Croce Hospital, 55032 Castelnuovo Garfagnana, Lucca, Italy; (L.L.); (E.V.); (F.L.G.); (G.T.)
| | - Marco Vista
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy;
| |
Collapse
|
6
|
Salcedo-Arellano MJ, Hagerman RJ. Recent research in fragile X-associated tremor/ataxia syndrome. Curr Opin Neurobiol 2021; 72:155-159. [PMID: 34890957 DOI: 10.1016/j.conb.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a cytosine-guanine-guanine repeat expansion neurological disease that occurs in a subset of aging carriers of the premutation (55-200 cytosine-guanine-guanine repeats) in the FMR1 gene located on the X chromosome. The clinical core involves intention tremor and gait ataxia. Current research seeks to clarify the pathophysiology and neuropathology of FXTAS, as well as the development of useful biomarkers to track the progression of FXTAS. Efforts to implement quantitative measures of clinical features, such as kinematics and cognitive measures, are of special interest, in addition to characterize the differences in progression in males compared with females and the efficacy of new treatments.
Collapse
Affiliation(s)
- Maria Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis, Sacramento, CA, USA; Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA
| | - Randi J Hagerman
- Department of Pediatrics, University of California Davis, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
7
|
Fisher PR, Allan CY, Sanislav O, Atkinson A, Ngoei KRW, Kemp BE, Storey E, Loesch DZ, Annesley SJ. Relationships between Mitochondrial Function, AMPK, and TORC1 Signaling in Lymphoblasts with Premutation Alleles of the FMR1 Gene. Int J Mol Sci 2021; 22:10393. [PMID: 34638732 PMCID: PMC8508849 DOI: 10.3390/ijms221910393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
The X-linked FMR1 gene contains a non-coding trinucleotide repeat in its 5' region that, in normal, healthy individuals contains 20-44 copies. Large expansions of this region (>200 copies) cause fragile X syndrome (FXS), but expansions of 55-199 copies (referred to as premutation alleles) predispose carriers to a neurodegenerative disease called fragile X-associated tremor/ataxia syndrome (FXTAS). The cytopathological mechanisms underlying FXTAS are poorly understood, but abnormalities in mitochondrial function are believed to play a role. We previously reported that lymphoblastoid cell lines (LCLs, or lymphoblasts) of premutation carriers have elevated mitochondrial respiratory activities. In the carriers, especially those not clinically affected with FXTAS, AMP-activated protein kinase (AMPK) activity was shown to be elevated. In the FXTAS patients, however, it was negatively correlated with brain white matter lesions, suggesting a protective role in the molecular mechanisms. Here, we report an enlarged and extended study of mitochondrial function and associated cellular stress-signaling pathways in lymphoblasts isolated from male and female premutation carriers, regardless of their clinical status, and healthy controls. The results confirmed the elevation of AMPK and mitochondrial respiratory activities and reduction in reactive O2 species (ROS) levels in premutation cells and revealed for the first time that target of rapamycin complex I (TORC1) activities are reduced. Extensive correlation, multiple regression, and principal components analysis revealed the best fitting statistical explanations of these changes in terms of the other variables measured. These suggested which variables might be the most "proximal" regulators of the others in the extensive network of known causal interactions amongst the measured parameters of mitochondrial function and cellular stress signaling. In the resulting model, the premutation alleles activate AMPK and inhibit both TORC1 and ROS production, the reduced TORC1 activity contributes to activation of AMPK and of nonmitochondrial metabolism, and the higher AMPK activity results in elevated catabolic metabolism, mitochondrial respiration, and ATP steady state levels. In addition, the results suggest a separate CGG repeat number-dependent elevation of TORC1 activity that is insufficient to overcome the inhibition of TORC1 in premutation cells but may presage the previously reported activation of TORC1 in FXS cells.
Collapse
Affiliation(s)
- Paul R. Fisher
- Department of Physiology Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia; (C.Y.A.); (O.S.); (S.J.A.)
| | - Claire Y. Allan
- Department of Physiology Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia; (C.Y.A.); (O.S.); (S.J.A.)
| | - Oana Sanislav
- Department of Physiology Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia; (C.Y.A.); (O.S.); (S.J.A.)
| | - Anna Atkinson
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC 3086, Australia; (A.A.); (D.Z.L.)
| | - Kevin R. W. Ngoei
- St. Vincent’s Institute of Medical Research, Department of Medicine, University of Melbourne, Fitzroy, VIC 3065, Australia; (K.R.W.N.); (B.E.K.)
| | - Bruce E. Kemp
- St. Vincent’s Institute of Medical Research, Department of Medicine, University of Melbourne, Fitzroy, VIC 3065, Australia; (K.R.W.N.); (B.E.K.)
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| | - Elsdon Storey
- Department of Medicine, Alfred Hospital Campus, Monash University, Commercial Road, Melbourne, VIC 3004, Australia;
| | - Danuta Z. Loesch
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC 3086, Australia; (A.A.); (D.Z.L.)
| | - Sarah J. Annesley
- Department of Physiology Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia; (C.Y.A.); (O.S.); (S.J.A.)
| |
Collapse
|
8
|
Napoli E, Flores A, Mansuri Y, Hagerman RJ, Giulivi C. Sulforaphane improves mitochondrial metabolism in fibroblasts from patients with fragile X-associated tremor and ataxia syndrome. Neurobiol Dis 2021; 157:105427. [PMID: 34153466 PMCID: PMC8475276 DOI: 10.1016/j.nbd.2021.105427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 02/09/2023] Open
Abstract
CGG expansions between 55 and 200 in the 5'-untranslated region of the fragile-X mental retardation gene (FMR1) increase the risk of developing the late-onset debilitating neuromuscular disease Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS). While the science behind this mutation, as a paradigm for RNA-mediated nucleotide triplet repeat expansion diseases, has progressed rapidly, no treatment has proven effective at delaying the onset or decreasing morbidity, especially at later stages of the disease. Here, we demonstrated the beneficial effect of the phytochemical sulforaphane (SFN), exerted through NRF2-dependent and independent manner, on pathways relevant to brain function, bioenergetics, unfolded protein response, proteosome, antioxidant defenses, and iron metabolism in fibroblasts from FXTAS-affected subjects at all disease stages. This study paves the way for future clinical studies with SFN in the treatment of FXTAS, substantiated by the established use of this agent in clinical trials of diseases with NRF2 dysregulation and in which age is the leading risk factor.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Amanda Flores
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616;,Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Yasmeen Mansuri
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Randi J. Hagerman
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA;,Medical Investigations of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis, CA 95817
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, United States of America; Medical Investigations of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis, CA 95817, USA.
| |
Collapse
|
9
|
Wang J, Napoli E, Kim K, McLennan YA, Hagerman RJ, Giulivi C. Brain Atrophy and White Matter Damage Linked to Peripheral Bioenergetic Deficits in the Neurodegenerative Disease FXTAS. Int J Mol Sci 2021; 22:9171. [PMID: 34502080 PMCID: PMC8431233 DOI: 10.3390/ijms22179171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder affecting subjects (premutation carriers) with a 55-200 CGG-trinucleotide expansion in the 5'UTR of the fragile X mental retardation 1 gene (FMR1) typically after age 50. As both the presence of white matter hyperintensities (WMHs) and atrophied gray matter on magnetic resonance imaging (MRI) are linked to age-dependent decline in cognition, here we tested whether MRI outcomes (WMH volume (WMHV) and brain volume) were correlated with mitochondrial bioenergetics from peripheral blood monocytic cells in 87 carriers with and without FXTAS. As a parameter assessing cumulative damage, WMHV was correlated to both FXTAS stages and age, and brain volume discriminated between carriers and non-carriers. Similarly, mitochondrial mass and ATP production showed an age-dependent decline across all participants, but in contrast to WMHV, only FADH2-linked ATP production was significantly reduced in carriers vs. non-carriers. In carriers, WMHV negatively correlated with ATP production sustained by glucose-glutamine and FADH2-linked substrates, whereas brain volume was positively associated with the latter and mitochondrial mass. The observed correlations between peripheral mitochondrial bioenergetics and MRI findings-and the lack of correlations with FXTAS diagnosis/stages-may stem from early brain bioenergetic deficits even before overt FXTAS symptoms and/or imaging findings.
Collapse
Affiliation(s)
- Junyi Wang
- Center for Mind and Brain, University of California Davis, Davis, CA 95618, USA;
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Kyoungmi Kim
- The MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (K.K.); (Y.A.M.)
- Department of Public Health Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Yingratana A. McLennan
- The MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (K.K.); (Y.A.M.)
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Randi J. Hagerman
- The MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (K.K.); (Y.A.M.)
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
- The MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (K.K.); (Y.A.M.)
| |
Collapse
|
10
|
Molecular Pathogenesis and Peripheral Monitoring of Adult Fragile X-Associated Syndromes. Int J Mol Sci 2021; 22:ijms22168368. [PMID: 34445074 PMCID: PMC8395059 DOI: 10.3390/ijms22168368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
Abnormal trinucleotide expansions cause rare disorders that compromise quality of life and, in some cases, lifespan. In particular, the expansions of the CGG-repeats stretch at the 5’-UTR of the Fragile X Mental Retardation 1 (FMR1) gene have pleiotropic effects that lead to a variety of Fragile X-associated syndromes: the neurodevelopmental Fragile X syndrome (FXS) in children, the late-onset neurodegenerative disorder Fragile X-associated tremor-ataxia syndrome (FXTAS) that mainly affects adult men, the Fragile X-associated primary ovarian insufficiency (FXPOI) in adult women, and a variety of psychiatric and affective disorders that are under the term of Fragile X-associated neuropsychiatric disorders (FXAND). In this review, we will describe the pathological mechanisms of the adult “gain-of-function” syndromes that are mainly caused by the toxic actions of CGG RNA and FMRpolyG peptide. There have been intensive attempts to identify reliable peripheral biomarkers to assess disease progression and onset of specific pathological traits. Mitochondrial dysfunction, altered miRNA expression, endocrine system failure, and impairment of the GABAergic transmission are some of the affectations that are susceptible to be tracked using peripheral blood for monitoring of the motor, cognitive, psychiatric and reproductive impairment of the CGG-expansion carriers. We provided some illustrative examples from our own cohort. Understanding the association between molecular pathogenesis and biomarkers dynamics will improve effective prognosis and clinical management of CGG-expansion carriers.
Collapse
|
11
|
Loesch DZ, Tassone F, Atkinson A, Stimpson P, Trost N, Pountney DL, Storey E. Differential Progression of Motor Dysfunction Between Male and Female Fragile X Premutation Carriers Reveals Novel Aspects of Sex-Specific Neural Involvement. Front Mol Biosci 2021; 7:577246. [PMID: 33511153 PMCID: PMC7835843 DOI: 10.3389/fmolb.2020.577246] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Expansions of the CGG repeat in the non-coding segment of the FMR1 X-linked gene are associated with a variety of phenotypic changes. Large expansions (>200 repeats), which cause a severe neurodevelopmental disorder, the fragile x syndrome (FXS), are transmitted from the mothers carrying smaller, unstable expansions ranging from 55 to 200 repeats, termed the fragile X premutation. Female carriers of this premutation may themselves experience a wide range of clinical problems throughout their lifespan, the most severe being the late onset neurodegenerative condition called "Fragile X-Associated Tremor Ataxia Syndrome" (FXTAS), occurring between 8 and 16% of these carriers. Male premutation carriers, although they do not transmit expanded alleles to their daughters, have a much higher risk (40-50%) of developing FXTAS. Although this disorder is more prevalent and severe in male than female carriers, specific sex differences in clinical manifestations and progress of the FXTAS spectrum have been poorly documented. Here we compare the pattern and rate of progression (per year) in three motor scales including tremor/ataxia (ICARS), tremor (Clinical Tremor Rating scale, CRST), and parkinsonism (UPDRS), and in several cognitive and psychiatric tests scores, between 13 female and 9 male carriers initially having at least one of the motor scores ≥10. Moreover, we document the differences in each of the clinical and cognitive measures between the cross-sectional samples of 21 female and 24 male premutation carriers of comparable ages with FXTAS spectrum disorder (FSD), that is, who manifest one or more features of FXTAS. The results of progression assessment showed that it was more than twice the rate in male than in female carriers for the ICARS-both gait ataxia and kinetic tremor domains and twice as high in males on the CRST scale. In contrast, sex difference was negligible for the rate of progress in UPDRS, and all the cognitive measures. The overall psychiatric pathology score (SCL-90), as well as Anxiety and Obsessive/Compulsive domain scores, showed a significant increase only in the female sample. The pattern of sex differences for progression in motor scores was consistent with the results of comparison between larger, cross-sectional samples of male and female carriers affected with the FSD. These results were in concert with sex-specific distribution of MRI T2 white matter hyperintensities: all males, but no females, showed the middle cerebellar peduncle white matter hyperintensities (MCP sign), although the distribution and severity of these hyperintensities in the other brain regions were not dissimilar between the two sexes. In conclusion, the magnitude and specific pattern of sex differences in manifestations and progression of clinically recorded changes in motor performance and MRI lesion distribution support, on clinical grounds, the possibility of certain sex-limited factor(s) which, beyond the predictable effect of the second, normal FMR1 alleles in female premutation carriers, may have neuroprotective effects, specifically concerning the cerebellar circuitry.
Collapse
Affiliation(s)
- Danuta Z. Loesch
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
- MIND Institute, University of California Davis Medical Center, Davis, CA, United States
| | - Anna Atkinson
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia
| | - Paige Stimpson
- Wellness and Recovery Centre, Monash Medical Centre, Clayton, VIC, Australia
| | - Nicholas Trost
- Medical Imaging Department, St Vincent's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Dean L. Pountney
- Neurodegeneration Research Group, School of Medical Science, Griffith University, Gold Coast Campus, Southport, NC, Australia
| | - Elsdon Storey
- Department of Medicine (Neuroscience), Monash University, Alfred Hospital Campus, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Loesch DZ, Kemp BE, Bui MQ, Fisher PR, Allan CY, Sanislav O, Ngoei KRW, Atkinson A, Tassone F, Annesley SJ, Storey E. Cellular Bioenergetics and AMPK and TORC1 Signalling in Blood Lymphoblasts Are Biomarkers of Clinical Status in FMR1 Premutation Carriers. Front Psychiatry 2021; 12:747268. [PMID: 34880790 PMCID: PMC8645580 DOI: 10.3389/fpsyt.2021.747268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Fragile X Associated Tremor/Ataxia Syndrome (FXTAS) is a neurodegenerative disorder affecting carriers of premutation alleles (PM) of the X-linked FMR1 gene, which contain CGG repeat expansions of 55-200 range in a non-coding region. This late-onset disorder is characterised by the presence of tremor/ataxia and cognitive decline, associated with the white matter lesions throughout the brain, especially involving the middle cerebellar peduncles. Nearly half of older male and ~ 20% of female PM carriers develop FXTAS. While there is evidence for mitochondrial dysfunction in neural and some peripheral tissues from FXTAS patients (though less obvious in the non-FXTAS PM carriers), the results from peripheral blood mononuclear cells (PBMC) are still controversial. Motor, cognitive, and neuropsychiatric impairments were correlated with measures of mitochondrial and non-mitochondrial respiratory activity, AMPK, and TORC1 cellular stress-sensing protein kinases, and CGG repeat size, in a sample of adult FXTAS male and female carriers. Moreover, the levels of these cellular measures, all derived from Epstein- Barr virus (EBV)- transformed and easily accessible blood lymphoblasts, were compared between the FXTAS (N = 23) and non-FXTAS (n = 30) subgroups, and with baseline data from 33 healthy non-carriers. A significant hyperactivity of cellular bioenergetics components as compared with the baseline data, more marked in the non-FXTAS PMs, was negatively correlated with repeat numbers at the lower end of the CGG-PM distribution. Significant associations of these components with motor impairment measures, including tremor-ataxia and parkinsonism, and neuropsychiatric changes, were prevalent in the FXTAS subgroup. Moreover, a striking elevation of AMPK activity, and a decrease in TORC1 levels, especially in the non-FXTAS carriers, were related to the size of CGG expansion. The bioenergetics changes in blood lymphoblasts are biomarkers of the clinical status of FMR1 carriers. The relationship between these changes and neurological involvement in the affected carriers suggests that brain bioenergetic alterations are reflected in this peripheral tissue. A possible neuroprotective role of stress sensing kinase, AMPK, in PM carriers, should be addressed in future longitudinal studies. A decreased level of TORC1-the mechanistic target of the rapamycin complex, suggests a possible future approach to therapy in FXTAS.
Collapse
Affiliation(s)
- Danuta Z Loesch
- School of Psychology and Public Health, La Trobe University, Bundoora, VA, Australia
| | - Bruce E Kemp
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VA, Australia.,St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, VA, Australia
| | - Minh Q Bui
- Centre for Molecular, Environmental, Genetic and Analytic, Epidemiology, University of Melbourne, Parkville, VA, Australia
| | - Paul R Fisher
- Department of Physiology Anatomy and Microbiology, La Trobe University, Bundoora, VA, Australia
| | - Claire Y Allan
- Department of Physiology Anatomy and Microbiology, La Trobe University, Bundoora, VA, Australia
| | - Oana Sanislav
- Department of Physiology Anatomy and Microbiology, La Trobe University, Bundoora, VA, Australia
| | - Kevin R W Ngoei
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, VA, Australia
| | - Anna Atkinson
- School of Psychology and Public Health, La Trobe University, Bundoora, VA, Australia
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States.,Department of Biochemistry and Molecular Medicine M.I.N.D. Institute, University of California Davis Medical Center, Davis, Sacramento, CA, United States
| | - Sarah J Annesley
- Department of Physiology Anatomy and Microbiology, La Trobe University, Bundoora, VA, Australia
| | - Elsdon Storey
- Department of Medicine (Neuroscience), Monash University, Alfred Hospital Campus, Melbourne, VIC, Australia
| |
Collapse
|