1
|
Frampton S, Smith R, Ferson L, Gibson J, Hollox EJ, Cragg MS, Strefford JC. Fc gamma receptors: Their evolution, genomic architecture, genetic variation, and impact on human disease. Immunol Rev 2024. [PMID: 39345014 DOI: 10.1111/imr.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Fc gamma receptors (FcγRs) are a family of receptors that bind IgG antibodies and interface at the junction of humoral and innate immunity. Precise regulation of receptor expression provides the necessary balance to achieve healthy immune homeostasis by establishing an appropriate immune threshold to limit autoimmunity but respond effectively to infection. The underlying genetics of the FCGR gene family are central to achieving this immune threshold by regulating affinity for IgG, signaling efficacy, and receptor expression. The FCGR gene locus was duplicated during evolution, retaining very high homology and resulting in a genomic region that is technically difficult to study. Here, we review the recent evolution of the gene family in mammals, its complexity and variation through copy number variation and single-nucleotide polymorphism, and impact of these on disease incidence, resolution, and therapeutic antibody efficacy. We also discuss the progress and limitations of current approaches to study the region and emphasize how new genomics technologies will likely resolve much of the current confusion in the field. This will lead to definitive conclusions on the impact of genetic variation within the FCGR gene locus on immune function and disease.
Collapse
Affiliation(s)
- Sarah Frampton
- Cancer Genomics Group, Faculty of Medicine, School of Cancer Sciences, University of Southampton, Southampton, UK
| | - Rosanna Smith
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Lili Ferson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer Sciences, University of Southampton, Southampton, UK
| | - Jane Gibson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer Sciences, University of Southampton, Southampton, UK
| | - Edward J Hollox
- Department of Genetics, Genomics and Cancer Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Jonathan C Strefford
- Cancer Genomics Group, Faculty of Medicine, School of Cancer Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
2
|
Zhu J, Zou Z, Li D, Xiao W, Yu J, Chen B, Yang H. Comparative transcriptomes reveal different tolerance mechanisms to Streptococcus agalactiae in hybrid tilapia, nile tilapia, and blue tilapia. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109121. [PMID: 37802264 DOI: 10.1016/j.fsi.2023.109121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
Tilapia is one of the most economically important freshwater fish farmed in China. Streptococcosis outbreaks have been extensively documented in farmed tilapia species. Hybrid tilapia (Oreochromis niloticus ♀ × O. aureus ♂) exhibit greater disease resistance than Nile tilapia (O. niloticus) and blue tilapia (O. aureus). However, the molecular mechanism underlying the enhanced tolerance of hybrid tilapia is still poorly understood. In this study, comparative transcriptome analysis was performed to reveal the different tolerance mechanisms to Streptococcus agalactiae in the three tilapia lines. In total, 1982, 2355, and 2076 differentially expressed genes were identified at 48 h post-infection in hybrid tilapia, Nile tilapia, and blue tilapia, respectively. Functional enrichment analysis indicated that numerous metabolic and immune-related pathways were activated in all three tilapia lines. The differential expression of specific genes associated with phagosome, focal adhesion, cytokine-cytokine receptor interaction, and toll-like receptor signaling pathways contributed to the resistance of hybrid tilapia. Notably, immune response genes in hybrid tilapia, such as P38, TLR5, CXCR3, CXCL12, PSTPIP1, and TFR, were generally suppressed under normal conditions but selectively induced following pathogen challenge. These results expand our knowledge of the molecular mechanisms underlying S. agalactiae tolerance in hybrid tilapia and provide valuable insights for tilapia breeding programs.
Collapse
Affiliation(s)
- Jinglin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214128, China.
| | - Zhiying Zou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214128, China.
| | - Dayu Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Wei Xiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214128, China.
| | - Jie Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Binglin Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Hong Yang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
3
|
Bae SG, Kim HJ, Kim MY, Kim DDH, Shin SI, Ahn JS, Park J. Identification of Cell Type-Specific Effects of DNMT3A Mutations on Relapse in Acute Myeloid Leukemia. Mol Cells 2023; 46:611-626. [PMID: 37853686 PMCID: PMC10590706 DOI: 10.14348/molcells.2023.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 10/20/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease caused by distinctive mutations in individual patients; therefore, each patient may display different cell-type compositions. Although most patients with AML achieve complete remission (CR) through intensive chemotherapy, the likelihood of relapse remains high. Several studies have attempted to characterize the genetic and cellular heterogeneity of AML; however, our understanding of the cellular heterogeneity of AML remains limited. In this study, we performed single-cell RNA sequencing (scRNAseq) of bone marrow-derived mononuclear cells obtained from same patients at different AML stages (diagnosis, CR, and relapse). We found that hematopoietic stem cells (HSCs) at diagnosis were abnormal compared to normal HSCs. By improving the detection of the DNMT3A R882 mutation with targeted scRNAseq, we identified that DNMT3A-mutant cells that mainly remained were granulocyte-monocyte progenitors (GMPs) or lymphoid-primed multipotential progenitors (LMPPs) from CR to relapse and that DNMT3A-mutant cells have gene signatures related to AML and leukemic cells. Copy number variation analysis at the single-cell level indicated that the cell type that possesses DNMT3A mutations is an important factor in AML relapse and that GMP and LMPP cells can affect relapse in patients with AML. This study advances our understanding of the role of DNMT3A in AML relapse and our approach can be applied to predict treatment outcomes.
Collapse
Affiliation(s)
- Seo-Gyeong Bae
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Hyeoung-Joon Kim
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Hwasun 58128, Korea
- Genomic Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea
| | - Mi Yeon Kim
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Hwasun 58128, Korea
| | - Dennis Dong Hwan Kim
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - So-I Shin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Jae-Sook Ahn
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Hwasun 58128, Korea
- Genomic Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
4
|
Zhang Y, Shi W, Sun Y. A functional gene module identification algorithm in gene expression data based on genetic algorithm and gene ontology. BMC Genomics 2023; 24:76. [PMID: 36797662 PMCID: PMC9936134 DOI: 10.1186/s12864-023-09157-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Since genes do not function individually, the gene module is considered an important tool for interpreting gene expression profiles. In order to consider both functional similarity and expression similarity in module identification, GMIGAGO, a functional Gene Module Identification algorithm based on Genetic Algorithm and Gene Ontology, was proposed in this work. GMIGAGO is an overlapping gene module identification algorithm, which mainly includes two stages: In the first stage (initial identification of gene modules), Improved Partitioning Around Medoids Based on Genetic Algorithm (PAM-GA) is used for the initial clustering on gene expression profiling, and traditional gene co-expression modules can be obtained. Only similarity of expression levels is considered at this stage. In the second stage (optimization of functional similarity within gene modules), Genetic Algorithm for Functional Similarity Optimization (FSO-GA) is used to optimize gene modules based on gene ontology, and functional similarity within gene modules can be improved. Without loss of generality, we compared GMIGAGO with state-of-the-art gene module identification methods on six gene expression datasets, and GMIGAGO identified the gene modules with the highest functional similarity (much higher than state-of-the-art algorithms). GMIGAGO was applied in BRCA, THCA, HNSC, COVID-19, Stem, and Radiation datasets, and it identified some interesting modules which performed important biological functions. The hub genes in these modules could be used as potential targets for diseases or radiation protection. In summary, GMIGAGO has excellent performance in mining molecular mechanisms, and it can also identify potential biomarkers for individual precision therapy.
Collapse
Affiliation(s)
- Yan Zhang
- grid.440686.80000 0001 0543 8253College of Environmental Science and Engineering, Dalian Maritime University, 116026 Dalian, Liaoning China
| | - Weiyu Shi
- grid.440686.80000 0001 0543 8253College of Maritime Economics & Management, Dalian Maritime University, 116026 Dalian, Liaoning China
| | - Yeqing Sun
- College of Environmental Science and Engineering, Dalian Maritime University, 116026, Dalian, Liaoning, China.
| |
Collapse
|
5
|
Sansone C, Pistelli L, Calabrone L, Del Mondo A, Fontana A, Festa M, Noonan DM, Albini A, Brunet C. The Carotenoid Diatoxanthin Modulates Inflammatory and Angiogenesis Pathways In Vitro in Prostate Cancer Cells. Antioxidants (Basel) 2023; 12:antiox12020359. [PMID: 36829917 PMCID: PMC9952135 DOI: 10.3390/antiox12020359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Xanthophylls, a group of carotenoids, have attracted attention as human health benefit compounds thanks to their functionality and bioavailability. The great antioxidant and anti-inflammatory abilities of diatoxanthin (Dt), a photoprotective xanthophyll synthetized by diatoms, were recently documented. This study investigates the capacity of Dt to intercept prostate cancer progression in vitro on different human cell lines, exploring its role against cancer proliferation and angiogenesis. Our results highlighted the chemopreventive role of Dt already at low concentration (44.1 pM) and suggest that the Dt-induced cancer cell death occurred through oxidative stress mechanisms. This hypothesis was supported by variations on the expression of key genes and proteins. Oxidative stress cell deaths (e.g., ferroptosis) are recently described types of cell death that are closely related to the pathophysiological processes of many diseases, such as tumors. Nonetheless, the interest of Dt was further strengthened by its ability to inhibit angiogenesis. The results are discussed considering the actual progress and requirements in cancer therapy, notably for prostate cancer.
Collapse
Affiliation(s)
- Clementina Sansone
- Stazione Zoologica Anton Dohrn, Sede Molosiglio Marina Acton, 80133 Napoli, Italy
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, 20138 Milan, Italy
- Correspondence: (C.S.); (C.B.)
| | - Luigi Pistelli
- Stazione Zoologica Anton Dohrn, Sede Molosiglio Marina Acton, 80133 Napoli, Italy
| | - Luana Calabrone
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, 20138 Milan, Italy
| | - Angelo Del Mondo
- Stazione Zoologica Anton Dohrn, Sede Molosiglio Marina Acton, 80133 Napoli, Italy
| | - Angelo Fontana
- Institute of Biomolecular Chemistry, Italian National Research Council (CNR), 80078 Pozzuoli, Italy
| | - Marco Festa
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, 20138 Milan, Italy
| | - Douglas M. Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20138 Milan, Italy
| | - Adriana Albini
- IRCSS European Institute of Oncology (IEO), 20141 Milan, Italy
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, Sede Molosiglio Marina Acton, 80133 Napoli, Italy
- Correspondence: (C.S.); (C.B.)
| |
Collapse
|
6
|
Zhou CD, Pettersson A, Plym A, Tyekucheva S, Penney KL, Sesso HD, Kantoff PW, Mucci LA, Stopsack KH. Differences in Prostate Cancer Transcriptomes by Age at Diagnosis: Are Primary Tumors from Older Men Inherently Different? Cancer Prev Res (Phila) 2022; 15:815-825. [PMID: 36125434 PMCID: PMC9722523 DOI: 10.1158/1940-6207.capr-22-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 01/31/2023]
Abstract
Older age at diagnosis is consistently associated with worse clinical outcomes in prostate cancer. We sought to characterize gene expression profiles of prostate tumor tissue by age at diagnosis. We conducted a discovery analysis in The Cancer Genome Atlas prostate cancer dataset (n = 320; 29% of men >65 years at diagnosis), using linear regressions of age at diagnosis and mRNA expression and adjusting for TMPRSS2:ERG fusion status and race. This analysis identified 13 age-related candidate genes at FDR < 0.1, six of which were also found in an analysis additionally adjusted for Gleason score. We then validated the 13 age-related genes in a transcriptome study nested in the Health Professionals Follow-up Study and Physicians' Health Study (n = 374; 53% of men >65 years). Gene expression differences by age in the 13 candidate genes were directionally consistent, and age at diagnosis was weakly associated with the 13-gene score. However, the age-related genes were not consistently associated with risk of metastases and prostate cancer-specific death. Collectively, these findings argue against tumor genomic differences as a main explanation for age-related differences in prostate cancer prognosis. PREVENTION RELEVANCE Older age at diagnosis is consistently associated with worse clinical outcomes in prostate cancer. This study with independent discovery and validation sets and long-term follow-up suggests that prevention of lethal prostate cancer should focus on implementing appropriate screening, staging, and treatment among older men without expecting fundamentally different tumor biology.
Collapse
Affiliation(s)
- Charlie D. Zhou
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Andreas Pettersson
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Anna Plym
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden,Department of Urology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Svitlana Tyekucheva
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kathryn L. Penney
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Howard D. Sesso
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Division of Preventative Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Philip W. Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Convergent Therapeutics Inc., Cambridge, MA, USA
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Konrad H. Stopsack
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
7
|
Ascoli C, Schott CA, Huang Y, Turturice BA, Wang W, Ecanow N, Sweiss NJ, Perkins DL, Finn PW. Altered transcription factor targeting is associated with differential peripheral blood mononuclear cell proportions in sarcoidosis. Front Immunol 2022; 13:848759. [PMID: 36311769 PMCID: PMC9608777 DOI: 10.3389/fimmu.2022.848759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionIn sarcoidosis, peripheral lymphopenia and anergy have been associated with increased inflammation and maladaptive immune activity, likely promoting development of chronic and progressive disease. However, the molecular mechanisms that lead to reduced lymphocyte proportions, particularly CD4+ T-cells, have not been fully elucidated. We posit that paradoxical peripheral lymphopenia is characterized by a dysregulated transcriptomic network associated with cell function and fate that results from altered transcription factor targeting activity.MethodsMessenger RNA-sequencing (mRNA-seq) was performed on peripheral blood mononuclear cells (PBMCs) from ACCESS study subjects with sarcoidosis and matched controls and findings validated on a sarcoidosis case-control cohort and a sarcoidosis case series. Preserved PBMC transcriptomic networks between case-control cohorts were assessed to establish cellular associations with gene modules and define regulatory targeting involved in sarcoidosis immune dysregulation utilizing weighted gene co-expression network analysis and differential transcription factor involvement analysis. Network centrality measures identified master transcriptional regulators of subnetworks related to cell proliferation and death. Predictive models of differential PBMC proportions constructed from ACCESS target gene expression corroborated the relationship between aberrant transcription factor regulatory activity and imputed and clinical PBMC populations in the validation cohorts.ResultsWe identified two unique and preserved gene modules significantly associated with sarcoidosis immune dysregulation. Strikingly, increased expression of a monocyte-driven, and not a lymphocyte-driven, gene module related to innate immunity and cell death was the best predictor of peripheral CD4+ T-cell proportions. Within the gene network of this monocyte-driven module, TLE3 and CBX8 were determined to be master regulators of the cell death subnetwork. A core gene signature of differentially over-expressed target genes of TLE3 and CBX8 involved in cellular communication and immune response regulation accurately predicted imputed and clinical monocyte expansion and CD4+ T-cell depletion.ConclusionsAltered transcriptional regulation associated with aberrant gene expression of a monocyte-driven transcriptional network likely influences lymphocyte function and survival. Although further investigation is warranted, this indicates that crosstalk between hyperactive monocytes and lymphocytes may instigate peripheral lymphopenia and underlie sarcoidosis immune dysregulation and pathogenesis. Future therapies selectively targeting master regulators, or their targets, may mitigate dysregulated immune processes in sarcoidosis and disease progression.
Collapse
Affiliation(s)
- Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Cody A. Schott
- University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Yue Huang
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Wangfei Wang
- Department of Bioengineering, University of Illinois at Chicago College of Engineering and Medicine, Chicago, IL, United States
| | - Naomi Ecanow
- University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Nadera J. Sweiss
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - David L. Perkins
- Division of Nephrology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Patricia W. Finn
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Patricia W. Finn,
| |
Collapse
|
8
|
Xing J, Jia Z, Li Y, Han Y. Construction of immunotherapy-related prognostic gene signature and small molecule drug prediction for cutaneous melanoma. Front Oncol 2022; 12:939385. [PMID: 35957907 PMCID: PMC9358033 DOI: 10.3389/fonc.2022.939385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Background Cutaneous melanoma (CM), a kind of skin cancer with a high rate of advanced mortality, exhibits a wide variety of driver and transmitter gene alterations in the immunological tumor microenvironment (TME) associated with tumor cell survival and proliferation. Methods We analyzed the immunological infiltration of TME cells in normal and malignant tissues using 469 CM and 556 normal skin samples. We used a single sample gene set enrichment assay (ssGSEA) to quantify the relative abundance of 28 cells, then used the LASSO COX regression model to develop a riskScore prognostic model, followed by a small molecule drug screening and molecular docking validation, which was then validated using qRT-PCR and IHC. Results We developed a prognosis model around seven essential protective genes for the first time, dramatically elevated in tumor tissues, as did immune cell infiltration. Multivariate Cox regression results indicated that riskScore is an independent and robust prognostic indicator, and its predictive value in immunotherapy was verified. Additionally, we identified Gabapentin as a possible small molecule therapeutic for CM. Conclusions A riskScore model was developed in this work to analyze patient prognosis, TME cell infiltration features, and treatment responsiveness. The development of this model not only aids in predicting patient response to immunotherapy but also has significant implications for the development of novel immunotherapeutic agents and the promotion of tailored treatment regimens.
Collapse
Affiliation(s)
- Jiahua Xing
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Ziqi Jia
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Li
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Yan Han, ; Yan Li,
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Yan Han, ; Yan Li,
| |
Collapse
|
9
|
Sun K, Fei X, Xu M, Xu R, Xu M. FCGR3A Is a Prognostic Biomarker and Correlated with Immune Infiltrates in Lower-Grade Glioma. JOURNAL OF ONCOLOGY 2022; 2022:9499317. [PMID: 39280892 PMCID: PMC11401682 DOI: 10.1155/2022/9499317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/22/2022] [Accepted: 05/31/2022] [Indexed: 09/18/2024]
Abstract
Low-grade gliomas (LGGs) are primary invasive brain tumors that grow slowly but are incurable and eventually develop into high malignant glioma. Fc fragment of IgG receptor IIIa (FCGR3A) gene polymorphism may correlate with some cancers' treatment responses. However, the expression and prognosis value of FCGR3A and correlation with tumor-immune infiltrate in LGG remain unclear. FCGR3A mRNA expression in gastric cancer (GC) was examined using TIMER and GEPIA databases. Correlations between FCGR3A expression and clinicopathological parameters were analyzed using ULACAN and CGGA databases. GEPIA, OncoLnc, and ULACAN databases were used to examine the clinical prognostic significance of FCGR3A in LGG. TIMER was used to analyze the correlations among FCGR3A and tumor-infiltrating immune cells. Signaling pathways related to FCGR3A expression were identified by LinkedOmics. We found that FCGR3A expression was higher in LGG than in normal tissue and was correlated with various clinical parameters. In addition, high FCGR3A expression predicted poor overall survival in LGG. More importantly, FCGR3A expression positively correlated with immune checkpoint molecules, including PD1, PD-L1, PD-L2, CTLA4, LAG-3 and TIM-3, and tumor-associated macrophage (TAM) gene markers in LGG. GO and KEGG pathway analyses indicated that TUBA1C may potentially regulate the pathogenesis of LGG through immune-related pathways. These findings indicated that FCGR3A plays a vital role in the infiltration of immune cells and could constitute a promising prognostic biomarker in LGG patients.
Collapse
Affiliation(s)
- Kai Sun
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiaowei Fei
- Department of Neurosurgery, The First Affiliated Hospital of the Fourth Military Medical University, Xi'an 710032, China
| | - Mingwei Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Minhui Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
10
|
Liu C, Liu D, Wang F, Xie J, Liu Y, Wang H, Rong J, Xie J, Wang J, Zeng R, Xie Y. The Interferon Gamma-Related Long Noncoding RNA Signature Predicts Prognosis and Indicates Immune Microenvironment Infiltration in Colon Adenocarcinoma. Front Oncol 2022; 12:876660. [PMID: 35747790 PMCID: PMC9211770 DOI: 10.3389/fonc.2022.876660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/16/2022] [Indexed: 12/17/2022] Open
Abstract
Colon adenocarcinoma (COAD) is one of the most common clinically malignant tumours of the digestive system, with high incidence and mortality and poor prognosis. Interferon-gamma (IFN-γ) and long noncoding RNAs (lncRNAs) have prognostic values and were closely associated with immune microenvironment in COAD. Thus, identifying IFN-γ-related lncRNAs may be valuable in predicting the survival of patients with COAD. In this study, we identified IFN-γ-related lncRNAs and divided COAD patients from the Cancer Genome Atlas (TCGA) database into training and validation sets. Pearson’s correlation analysis and least absolute shrinkage and selection operator (LASSO) Cox regression were performed to select IFN-γ-related lncRNA-associated prognoses. Thirteen lncRNAs (AC025165.8, AC091633.3, FENDRR, LINC00882, LINC01828, LINC01829, MYOSLID, RP11-154H23.4, RP11-20J15.3, RP11-324L17.1, RP11-342A23.2, RP11-805I24.3, SERTAD4-AS1) were identified to construct an IFN-γ-related lncRNA prognostic signature in TCGA training (n =213) and validation (n =213) cohorts. COAD patient risk scores were calculated and classified into high- and low-risk groups based on the median value of the risk scores in each dataset. We compared the overall survival (OS) of patients stratified by age, gender, and stage. The OS in the high-risk group was significantly shorter than that in the low-risk group. In addition, the clinical nomogram incorporating the prognostic signature and clinical features showed a high concordance index of 0.78 and accurately predicted 1-, 3-, and 5-year survival times among COAD patients in the high- and low-risk groups. Based on the risk model, the high- and low-risk groups exhibited distinct differences in the immune system by gene set enrichment analysis (GSEA) functional annotation, and differentially expressed genes (DEGs) between the high- and low-risk groups were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. We investigated the expression of multiple immune checkpoint genes in the high- and low-risk groups and plotted Kaplan-Meier survival curves, indicating that immune checkpoint genes, such as LAG3 and PD. L1, STING and TIM 3, were also expressed differently between the two risk groups. Subsequently, there were dramatic differences in mutated genes, SNV (single nucleotide variants) classes, variant types and variant allele frequencies between low- and high-risk patients with COAD. Patients stratified by risk scores had different sensitivities to common chemotherapeutic agents. Finally, we used quantitative real-time polymerase chain reaction (qRT-PCR) assays to demonstrate that three lncRNAs were significantly differentially expressed in COAD tissues and adjacent normal tissues. Considered together, a thirteen-lncRNA prognostic signature has great potential to be a prognostic biomarker and could play an essential role in the immune microenvironment of COAD.
Collapse
Affiliation(s)
- Cong Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, China
| | - Dingwei Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, China
| | - Fangfei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, China
| | - Jun Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, China
| | - Yang Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, China
| | - Huan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, China
| | - Jianfang Rong
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, China
| | - Jinliang Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, China
| | - Jinyun Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, China
| | - Rong Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, China
| | - Yong Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, China
- *Correspondence: Yong Xie,
| |
Collapse
|
11
|
Bamodu OA, Wang YH, Yeh CT, Ho CH, Chiang YT, Kao WT, Liu CH, Wu CC. Concomitant High Apoptosis Inhibitor of Macrophage (AIM) and Low Prostate-Specific Antigen (PSA) Indicates Activated T Cell-Mediated Anticancer Immunity, Enhance Sensitivity to Pembrolizumab, and Elicit Good Prognosis in Prostate Cancer. Biomedicines 2021; 9:biomedicines9091225. [PMID: 34572412 PMCID: PMC8469063 DOI: 10.3390/biomedicines9091225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Despite its widespread use, the use of prostate-specific antigen (PSA) alone as a screening biomarker for prostate cancer (PCa) leads often to unwarranted prostate biopsy, over-diagnosis, and consequently, over-treatment, because of its limited specificity. There are reports that the apoptosis inhibitor of macrophage (AIM), secreted mainly by macrophages and epithelial cells, is upregulated during inflammation and facilitates immune recognition of cancerous cells by blocking human regulator of complement activation. OBJECTIVE These controversies around the PSA utility necessitate a reexamination of its use as a screening tool. More so, despite the suggested implication of AIM in anticancer immunosurveillance, there is a dearth of information on its role in therapy response, disease progression, and clinical outcomes of patients with PCa. These inform the present study to probe the nature and role of AIM/PSA signaling in anticancer immunity and prognosis in PCa. METHODS A combination of bioinformatics-aided statistical analyses, gene function annotation, and immune infiltrate analyses, coupled with tissue staining, and function assays, namely migration, invasion, and clonogenicity assays, we employed. RESULTS We demonstrated that AIM and PSA expression levels are inversely correlated in PCa clinical samples and cell lines, with AIMlowPSAhigh defining PCa, compared to AIMhighPSAlow in normal samples. Concomitant aberrant PSA and significantly suppressed AIM expression levels positively correlated with high-grade disease and characterized by advanced stage prostate cancer, regardless of mutation status. We found that a high PSA/AIM ratio is associated with disease recurrence in patients with prostate cancer but is equivocal for overall survival. In addition, PSA-associated AIM suppression is implicated in the enhanced 'metastability' of PCa and a high AIM/PSA ratio is associated with strong castration-induced regression. CRISPR-mediated AIM knockout was associated with higher PSA expression while ectopic expression of AIM significantly attenuated the migration and invasive capability of PC3 and DU145 cells. Interestingly, compared to normal samples, we observed that AIM, biomarkers of T-cell activation and M1 phenotype markers are co-suppressed in PCa samples. CONCLUSION Herein, we demonstrate that AIM/CD5L binds to PSA and that a high PSA/AIM ratio defines advanced stage PCa (regardless of mutation status), is implicated in enhanced metastability, and associated with disease recurrence, while a high AIM/PSA ratio is associated with strong castration-induced regression. More so, the ectopic expression of AIM significantly enhances the anticancer effect of Pembrolizumab and elicits an increased CD8+ T-cell count in AIMhiPSAloPDL1+ PCa cases that are respondent to Pembrolizumab treatment.
Collapse
Affiliation(s)
- Oluwaseun Adebayo Bamodu
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (O.A.B.); (Y.-T.C.); (W.-T.K.); (C.-H.L.)
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (Y.-H.W.); (C.-T.Y.)
- Cancer Center, Department of Hematology and Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Yuan-Hung Wang
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (Y.-H.W.); (C.-T.Y.)
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei 110, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (Y.-H.W.); (C.-T.Y.)
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu City 300, Taiwan
| | - Chen-Hsun Ho
- Division of Urology, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan;
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yi-Te Chiang
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (O.A.B.); (Y.-T.C.); (W.-T.K.); (C.-H.L.)
- TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei 110, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Tang Kao
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (O.A.B.); (Y.-T.C.); (W.-T.K.); (C.-H.L.)
- TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Hung Liu
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (O.A.B.); (Y.-T.C.); (W.-T.K.); (C.-H.L.)
- TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei 110, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Chang Wu
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (O.A.B.); (Y.-T.C.); (W.-T.K.); (C.-H.L.)
- TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei 110, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-02-224-900-88 (ext. 8111); Fax: +886-02-22490088
| |
Collapse
|
12
|
Zhao L, Jia Y, Liu Y, Han B, Wang J, Jiang X. Integrated Bioinformatics Analysis of DNA Methylation Biomarkers in Thyroid Cancer Based on TCGA Database. Biochem Genet 2021; 60:629-639. [PMID: 34387764 DOI: 10.1007/s10528-021-10117-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022]
Abstract
Previous studies have reported a cluster of aberrant promoter methylation changes associated with silencing of tumor suppressor genes in thyroid cancer (TC), but these results of individual genes are far from enough. In this work, we aimed to investigate the onset and pattern of methylation changes during the progression of TC by informatics analysis. We downloaded the DNA methylation and RNA sequencing datasets from The Cancer Genome Atlas focusing on TC. Abnormally methylated differentially expressed genes (DEGs) were sorted and pathways were analyzed. The KEGG and GO were then used to perform enrichment and functional analysis of identified pathways and genes. Gene-drug interaction network and human protein atlas were applied to obtain feature DNA methylation biomarkers. In total, we identified 2170 methylation-driven DEGs, including 1054 hypermethylatedlow-expression DEGs and 1116 hypomethylated-high-expression DEGs at the screening step. Further analysis screened total of eight feature DNA methylation biomarkers (RXRG, MET, PDGFRA, FCGR3A, VEGFA, CSF1R, FCGR1A and C1QA). Pathway analysis showed that aberrantly methylated DEGs mainly associated with transcriptional misregulation in cancer, MAPK signaling, and intrinsic apoptotic signaling in TC. Taken together, we have identified novel aberrantly methylated genes and pathways linked to TC, which might serve as novel biomarkers for precision diagnosis and disease treatment.
Collapse
Affiliation(s)
- Lifeng Zhao
- Department of Endocrinology, Tianjin First Center Hospital, No. 24, Fu-Kang Road, Nankai District, Tianjin, 300192, China.
| | - Yuanyuan Jia
- Department of Endocrinology, Tianjin First Center Hospital, No. 24, Fu-Kang Road, Nankai District, Tianjin, 300192, China
| | - Ying Liu
- Department of Endocrinology, Tianjin First Center Hospital, No. 24, Fu-Kang Road, Nankai District, Tianjin, 300192, China
| | - Baoling Han
- Department of Endocrinology, Tianjin First Center Hospital, No. 24, Fu-Kang Road, Nankai District, Tianjin, 300192, China
| | - Jian Wang
- Department of Endocrinology, Tianjin First Center Hospital, No. 24, Fu-Kang Road, Nankai District, Tianjin, 300192, China
| | - Xia Jiang
- Department of Endocrinology, Tianjin First Center Hospital, No. 24, Fu-Kang Road, Nankai District, Tianjin, 300192, China
| |
Collapse
|
13
|
Huang X, Tang T, Zhang G, Liang T. Identification of tumor antigens and immune subtypes of cholangiocarcinoma for mRNA vaccine development. Mol Cancer 2021; 20:50. [PMID: 33685460 PMCID: PMC7938044 DOI: 10.1186/s12943-021-01342-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The mRNA-based cancer vaccine has been considered a promising strategy and the next hotspot in cancer immunotherapy. However, its application on cholangiocarcinoma remains largely uncharacterized. This study aimed to identify potential antigens of cholangiocarcinoma for development of anti-cholangiocarcinoma mRNA vaccine, and determine immune subtypes of cholangiocarcinoma for selection of suitable patients from an extremely heterogeneous population. METHODS Gene expression profiles and corresponding clinical information were collected from GEO and TCGA, respectively. cBioPortal was used to visualize and compare genetic alterations. GEPIA2 was used to calculate the prognostic index of the selected antigens. TIMER was used to visualize the correlation between the infiltration of antigen-presenting cells and the expression of the identified antigens. Consensus clustering analysis was performed to identify the immune subtypes. Graph learning-based dimensionality reduction analysis was conducted to visualize the immune landscape of cholangiocarcinoma. RESULTS Three tumor antigens, such as CD247, FCGR1A, and TRRAP, correlated with superior prognoses and infiltration of antigen-presenting cells were identified in cholangiocarcinoma. Cholangiocarcinoma patients were stratified into two immune subtypes characterized by differential molecular, cellular and clinical features. Patients with the IS1 tumor had immune "hot" and immunosuppressive phenotype, whereas those with the IS2 tumor had immune "cold" phenotype. Interestingly, patients with the IS2 tumor had a superior survival than those with the IS1 tumor. Furthermore, distinct expression of immune checkpoints and immunogenic cell death modulators was observed between different immune subtype tumors. Finally, the immune landscape of cholangiocarcinoma revealed immune cell components in individual patient. CONCLUSIONS CD247, FCGR1A, and TRRAP are potential antigens for mRNA vaccine development against cholangiocarcinoma, specifically for patients with IS2 tumors. Therefore, this study provides a theoretical basis for the anti-cholangiocarcinoma mRNA vaccine and defines suitable patients for vaccination.
Collapse
Affiliation(s)
- Xing Huang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.,Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310003, Zhejiang Province, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310003, Zhejiang, China
| | - Tianyu Tang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.,Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310003, Zhejiang Province, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310003, Zhejiang, China
| | - Gang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.,Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310003, Zhejiang Province, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310003, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China. .,Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310003, Zhejiang Province, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China. .,Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|