1
|
Nicolas WJ, Gillman C, Weaver SJ, Clabbers MTB, Shiriaeva A, Her AS, Martynowycz MW, Gonen T. Comprehensive microcrystal electron diffraction sample preparation for cryo-EM. Nat Protoc 2024:10.1038/s41596-024-01088-7. [PMID: 39706914 DOI: 10.1038/s41596-024-01088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/09/2024] [Indexed: 12/23/2024]
Abstract
Microcrystal electron diffraction (MicroED) has advanced structural methods across a range of sample types, from small molecules to proteins. This cryogenic electron microscopy (cryo-EM) technique involves the continuous rotation of small 3D crystals in the electron beam, while a high-speed camera captures diffraction data in the form of a movie. The crystal structure is subsequently determined by using established X-ray crystallographic software. MicroED is a technique still under development, and hands-on expertise in sample preparation, data acquisition and processing is not always readily accessible. This comprehensive guide on MicroED sample preparation addresses commonly used methods for various sample categories, including room temperature solid-state small molecules and soluble and membrane protein crystals. Beyond detailing the steps of sample preparation for new users, and because every crystal requires unique growth and sample-preparation conditions, this resource provides instructions and optimization strategies for MicroED sample preparation. The protocol is suitable for users with expertise in biochemistry, crystallography, general cryo-EM and crystallography data processing. MicroED experiments, from sample vitrification to final structure, can take anywhere from one workday to multiple weeks, especially when cryogenic focused ion beam milling is involved.
Collapse
Affiliation(s)
- William J Nicolas
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Cody Gillman
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Sara J Weaver
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Max T B Clabbers
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Anna Shiriaeva
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Ampon Sae Her
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael W Martynowycz
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Tamir Gonen
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Department of Physiology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Danelius E, Patel K, Gonzalez B, Gonen T. MicroED in drug discovery. Curr Opin Struct Biol 2023; 79:102549. [PMID: 36821888 PMCID: PMC10023408 DOI: 10.1016/j.sbi.2023.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
The cryo-electron microscopy (cryo-EM) method microcrystal electron diffraction (MicroED) was initially described in 2013 and has recently gained attention as an emerging technique for research in drug discovery. As compared to other methods in structural biology, MicroED provides many advantages deriving from the use of nanocrystalline material for the investigations. Here, we review the recent advancements in the field of MicroED and show important examples of small molecule, peptide and protein structures that has contributed to the current development of this method as an important tool for drug discovery.
Collapse
Affiliation(s)
- Emma Danelius
- Department of Biological Chemistry, University of California Los Angeles, 615 Charles E.Young Drive South, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Khushboo Patel
- Department of Biological Chemistry, University of California Los Angeles, 615 Charles E.Young Drive South, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Brenda Gonzalez
- Department of Biological Chemistry, University of California Los Angeles, 615 Charles E.Young Drive South, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tamir Gonen
- Department of Biological Chemistry, University of California Los Angeles, 615 Charles E.Young Drive South, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Physiology, University of California Los Angeles, 615 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| |
Collapse
|
3
|
A Comparison of Structure Determination of Small Organic Molecules by 3D Electron Diffraction at Cryogenic and Room Temperature. Symmetry (Basel) 2021. [DOI: 10.3390/sym13112131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
3D electron diffraction (3D ED), also known as micro-crystal electron diffraction (MicroED), is a rapid, accurate, and robust method for structure determination of submicron-sized crystals. 3D ED has mainly been applied in material science until 2013, when MicroED was developed for studying macromolecular crystals. MicroED was considered as a cryo-electron microscopy method, as MicroED data collection is usually carried out in cryogenic conditions. As a result, some researchers may consider that 3D ED/MicroED data collection on crystals of small organic molecules can only be performed in cryogenic conditions. In this work, we determined the structure for sucrose and azobenzene tetracarboxylic acid (H4ABTC). The structure of H4ABTC is the first crystal structure ever reported for this molecule. We compared data quality and structure accuracy among datasets collected under cryogenic conditions and room temperature. With the improvement in data quality by data merging, it is possible to reveal hydrogen atom positions in small organic molecule structures under both temperature conditions. The experimental results showed that, if the sample is stable in the vacuum environment of a transmission electron microscope (TEM), the data quality of datasets collected under room temperature is at least as good as data collected under cryogenic conditions according to various indicators (resolution, I/σ(I), CC1/2 (%), R1, Rint, ADRA).
Collapse
|
4
|
Gruene T, Mugnaioli E. 3D Electron Diffraction for Chemical Analysis: Instrumentation Developments and Innovative Applications. Chem Rev 2021; 121:11823-11834. [PMID: 34533919 PMCID: PMC8517952 DOI: 10.1021/acs.chemrev.1c00207] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 01/26/2023]
Abstract
In the past few years, many exciting papers reported results based on crystal structure determination by electron diffraction. The aim of this review is to provide general and practical information to structural chemists interested in stepping into this emerging field. We discuss technical characteristics of electron microscopes for research units that would like to acquire their own instrumentation, as well as those practical aspects that appear different between X-ray and electron crystallography. We also include a discussion about applications where electron crystallography provides information that is different, and possibly complementary, with respect to what is available from X-ray crystallography.
Collapse
Affiliation(s)
- Tim Gruene
- University
of Vienna, Faculty of Chemistry,
Department of Inorganic Chemistry, AT-1090 Vienna, Austria
| | - Enrico Mugnaioli
- Center
for Nanotechnology Innovation@NEST, Istituto
Italiano di Tecnologia, Piazza S. Silvestro 12, IT-56127 Pisa, Italy
| |
Collapse
|
5
|
Ghosh R, Bu G, Nannenga BL, Sumner LW. Recent Developments Toward Integrated Metabolomics Technologies (UHPLC-MS-SPE-NMR and MicroED) for Higher-Throughput Confident Metabolite Identifications. Front Mol Biosci 2021; 8:720955. [PMID: 34540897 PMCID: PMC8445028 DOI: 10.3389/fmolb.2021.720955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/17/2021] [Indexed: 02/03/2023] Open
Abstract
Metabolomics has emerged as a powerful discipline to study complex biological systems from a small molecule perspective. The success of metabolomics hinges upon reliable annotations of spectral features obtained from MS and/or NMR. In spite of tremendous progress with regards to analytical instrumentation and computational tools, < 20% of spectral features are confidently identified in most untargeted metabolomics experiments. This article explores the integration of multiple analytical instruments such as UHPLC-MS/MS-SPE-NMR and the cryo-EM method MicroED to achieve large-scale and confident metabolite identifications in a higher-throughput manner. UHPLC-MS/MS-SPE allows for the simultaneous automated purification of metabolites followed by offline structure elucidation and structure validation by NMR and MicroED. Large-scale study of complex metabolomes such as that of the model plant legume Medicago truncatula can be achieved using an integrated UHPLC-MS/MS-SPE-NMR metabolomics platform. Additionally, recent developments in MicroED to study structures of small organic molecules have enabled faster, easier and precise structure determinations of metabolites. A MicroED small molecule structure elucidation workflow (e.g., crystal screening, sample preparation, data collection and data processing/structure determination) has been described. Ongoing MicroED methods development and its future scope related to structure elucidation of specialized metabolites and metabolomics are highlighted. The incorporation of MicroED with a UHPLC-MS/MS-SPE-NMR instrumental ensemble offers the potential to accelerate and achieve higher rates of metabolite identification.
Collapse
Affiliation(s)
- Rajarshi Ghosh
- Division of Biochemistry, University of Missouri, Columbia, MO, United States
- MU Metabolomics Center, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, SC, United States
- Interdisciplinary Plant Group, University of Missouri, Columbia, SC, United States
| | - Guanhong Bu
- Chemical Engineering, School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Brent L. Nannenga
- Chemical Engineering, School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Lloyd W. Sumner
- Division of Biochemistry, University of Missouri, Columbia, MO, United States
- MU Metabolomics Center, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, SC, United States
- Interdisciplinary Plant Group, University of Missouri, Columbia, SC, United States
| |
Collapse
|
6
|
Hall CL, Andrusenko I, Potticary J, Gao S, Liu X, Schmidt W, Marom N, Mugnaioli E, Gemmi M, Hall SR. 3D Electron Diffraction Structure Determination of Terrylene, a Promising Candidate for Intermolecular Singlet Fission. Chemphyschem 2021; 22:1631-1637. [PMID: 34117821 PMCID: PMC8457070 DOI: 10.1002/cphc.202100320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/05/2021] [Indexed: 12/13/2022]
Abstract
Herein we demonstrate the prowess of the 3D electron diffraction approach by unveiling the structure of terrylene, the third member in the series of peri‐condensed naphthalene analogues, which has eluded structure determination for 65 years. The structure was determined by direct methods using electron diffraction data and corroborated by dispersion‐inclusive density functional theory optimizations. Terrylene crystalizes in the monoclinic space group P21/a, arranging in a sandwich‐herringbone packing motif, similar to analogous compounds. Having solved the crystal structure, we use many‐body perturbation theory to evaluate the excited‐state properties of terrylene in the solid‐state. We find that terrylene is a promising candidate for intermolecular singlet fission, comparable to tetracene and rubrene.
Collapse
Affiliation(s)
- Charlie L Hall
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Iryna Andrusenko
- Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation@NEST, Pisa, 56127, Italy
| | - Jason Potticary
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Siyu Gao
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Xingyu Liu
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | - Noa Marom
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Enrico Mugnaioli
- Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation@NEST, Pisa, 56127, Italy
| | - Mauro Gemmi
- Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation@NEST, Pisa, 56127, Italy
| | - Simon R Hall
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| |
Collapse
|