1
|
Jiang S, Bukhari SMA, Krishnan A, Bera K, Sharma A, Caovan D, Rosipko B, Gupta A. Deployment of Artificial Intelligence in Radiology: Strategies for Success. AJR Am J Roentgenol 2024. [PMID: 39475198 DOI: 10.2214/ajr.24.31898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Radiology, as a highly technical and information-rich medical specialty, is well-suited for artificial intelligence (AI) product development, and many FDA-cleared AI medical devices are authorized for uses within the specialty. In this Clinical Perspective, we discuss the deployment of AI tools in radiology, exploring regulatory processes, the need for transparency, and other practical challenges. We further highlight the importance of rigorous validation, real-world testing, seamless workflow integration, and end-user education. We emphasize the role for continuous feedback and robust monitoring processes, to guide AI tools' adaptation and help ensure sustained performance. Traditional standalone and alternative platform-based approaches to radiology AI implementation are considered. The presented strategies will help achieve successful deployment and fully realize AI's potential benefits in radiology.
Collapse
Affiliation(s)
- Sirui Jiang
- 1Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106
| | | | | | - Kaustav Bera
- 1Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106
| | - Avishkar Sharma
- Department of Radiology, Jefferson Einstein Philadelphia Hospital, Philadelphia, PA 19141
| | - Danielle Caovan
- 1Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106
| | - Beverly Rosipko
- 1Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106
| | - Amit Gupta
- 1Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106
| |
Collapse
|
2
|
Hoskin PJ. The Use of Artificial Intelligence Technologies in Cancer Care. Clin Oncol (R Coll Radiol) 2024:S0936-6555(24)00381-9. [PMID: 39368900 DOI: 10.1016/j.clon.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 08/10/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
Artificial intelligence (AI) is already an essential tool in the handling of large data sets in epidemiology and basic research. Significant contributions to radiological diagnosis are emerging alongside increasing use of digital pathology. The future lies in integrating this information together with clinical data relevant to each individual patient. Linkage with clinical protocols will enable personalized management options to be presented to the oncologist of the future. Radiotherapy has the distinction of being the first to have a National Institute for Health and Care Excellence (NICE)-approved AI-based recommendation. There is the opportunity to revolutionize the workflow with many tasks currently undertaken by clinicians taken over by AI-based systems for volume outlining, planning, and quality assurance. Education and training will be essential to understand the AI processes and inputs. Clinicians will however have to feel confident interrogating the AI-derived information and in communicating AI-derived treatment plans to patients.
Collapse
Affiliation(s)
- P J Hoskin
- Mount Vernon Cancer Centre, Northwood, UK; Division of Cancer Sciences, University of Manchester, UK.
| |
Collapse
|
3
|
Hurley ME, Lang BH, Kostick-Quenet KM, Smith JN, Blumenthal-Barby J. Patient Consent and The Right to Notice and Explanation of AI Systems Used in Health Care. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2024:1-13. [PMID: 39288291 DOI: 10.1080/15265161.2024.2399828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Given the need for enforceable guardrails for artificial intelligence (AI) that protect the public and allow for innovation, the U.S. Government recently issued a Blueprint for an AI Bill of Rights which outlines five principles of safe AI design, use, and implementation. One in particular, the right to notice and explanation, requires accurately informing the public about the use of AI that impacts them in ways that are easy to understand. Yet, in the healthcare setting, it is unclear what goal the right to notice and explanation serves, and the moral importance of patient-level disclosure. We propose three normative functions of this right: (1) to notify patients about their care, (2) to educate patients and promote trust, and (3) to meet standards for informed consent. Additional clarity is needed to guide practices that respect the right to notice and explanation of AI in healthcare while providing meaningful benefits to patients.
Collapse
|
4
|
Buijs E, Maggioni E, Mazziotta F, Lega F, Carrafiello G. Clinical impact of AI in radiology department management: a systematic review. LA RADIOLOGIA MEDICA 2024:10.1007/s11547-024-01880-1. [PMID: 39243293 DOI: 10.1007/s11547-024-01880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
PURPOSE Artificial intelligence (AI) has revolutionized medical diagnosis and treatment. Breakthroughs in diagnostic applications make headlines, but AI in department administration (admin AI) likely deserves more attention. With the present study we conducted a systematic review of the literature on clinical impacts of admin AI in radiology. METHODS Three electronic databases were searched for studies published in the last 5 years. Three independent reviewers evaluated the records using a tailored version of the Critical Appraisal Skills Program. RESULTS Of the 1486 records retrieved, only six met the inclusion criteria for further analysis, signaling the scarcity of evidence for research into admin AI. CONCLUSIONS Despite the scarcity of studies, current evidence supports our hypothesis that admin AI holds promise for administrative application in radiology departments. Admin AI can directly benefit patient care and treatment outcomes by improving healthcare access and optimizing clinical processes. Furthermore, admin AI can be applied in error-prone administrative processes, allowing medical professionals to spend more time on direct clinical care. The scientific community should broaden its attention to include admin AI, as more real-world data are needed to quantify its benefits. LIMITATIONS This exploratory study lacks extensive quantitative data backing administrative AI. Further studies are warranted to quantify the impacts.
Collapse
Affiliation(s)
- Elvira Buijs
- University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy.
| | - Elena Maggioni
- University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | | | - Federico Lega
- University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Gianpaolo Carrafiello
- University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
- IRRCS Ospedale Policlinico Ca'Granda, Via Francesco Sforza 35, 20122, Milan, Italy
| |
Collapse
|
5
|
Sabeghi P, Kinkar KK, Castaneda GDR, Eibschutz LS, Fields BKK, Varghese BA, Patel DB, Gholamrezanezhad A. Artificial intelligence and machine learning applications for the imaging of bone and soft tissue tumors. FRONTIERS IN RADIOLOGY 2024; 4:1332535. [PMID: 39301168 PMCID: PMC11410694 DOI: 10.3389/fradi.2024.1332535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 08/01/2024] [Indexed: 09/22/2024]
Abstract
Recent advancements in artificial intelligence (AI) and machine learning offer numerous opportunities in musculoskeletal radiology to potentially bolster diagnostic accuracy, workflow efficiency, and predictive modeling. AI tools have the capability to assist radiologists in many tasks ranging from image segmentation, lesion detection, and more. In bone and soft tissue tumor imaging, radiomics and deep learning show promise for malignancy stratification, grading, prognostication, and treatment planning. However, challenges such as standardization, data integration, and ethical concerns regarding patient data need to be addressed ahead of clinical translation. In the realm of musculoskeletal oncology, AI also faces obstacles in robust algorithm development due to limited disease incidence. While many initiatives aim to develop multitasking AI systems, multidisciplinary collaboration is crucial for successful AI integration into clinical practice. Robust approaches addressing challenges and embodying ethical practices are warranted to fully realize AI's potential for enhancing diagnostic accuracy and advancing patient care.
Collapse
Affiliation(s)
- Paniz Sabeghi
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ketki K Kinkar
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | | | - Liesl S Eibschutz
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brandon K K Fields
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Bino A Varghese
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Dakshesh B Patel
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
6
|
Almanaa M. Trends and Public Perception of Artificial Intelligence in Medical Imaging: A Social Media Analysis. Cureus 2024; 16:e70008. [PMID: 39445247 PMCID: PMC11498353 DOI: 10.7759/cureus.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
The rapid advancement of artificial intelligence (AI) in medical imaging has generated significant interest and debate among healthcare professionals, researchers, and the general public. This study aims to explore trends and public perception of AI in medical imaging by analyzing social media discussions. Using a retrospective content analysis approach, social media posts from X (formerly known as Twitter) and Reddit were collected, covering discussions from 2019 to 2024. A total of 1,022 posts were analyzed after data cleaning, employing both qualitative and quantitative methods to examine sentiment, themes, and keyword frequencies. The sentiment analysis revealed that 55% of the comments expressed positive sentiments towards AI in medical imaging, emphasizing its potential to enhance diagnostic accuracy and efficiency. Neutral sentiments accounted for 35% of the posts, while 10% expressed negative sentiments, primarily focusing on concerns related to job displacement, ethical issues, and data privacy. Thematic analysis identified four primary themes: ethical and privacy concerns, job displacement, trust and reliability, and workflow efficiency. Keyword frequency analysis highlighted significant discussions around AI, imaging, and radiology. The results underscore both the optimism and concerns associated with AI in medical imaging, emphasizing the need for ongoing dialogue among technology developers, healthcare providers, and the public. Addressing ethical and privacy concerns, and integrating AI responsibly into clinical workflows, is crucial for maximizing its benefits and minimizing potential risks. These findings provide valuable insights into public perceptions and inform strategies for the effective and ethical implementation of AI technologies in healthcare.
Collapse
Affiliation(s)
- Mansour Almanaa
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, SAU
| |
Collapse
|
7
|
Visser JJ. The unquestionable marriage between AI and structured reporting. Eur Radiol 2024:10.1007/s00330-024-11038-2. [PMID: 39191995 DOI: 10.1007/s00330-024-11038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Affiliation(s)
- Jacob J Visser
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Wee NK, Git KA, Lee WJ, Raval G, Pattokhov A, Ho ELM, Chuapetcharasopon C, Tomiyama N, Ng KH, Tan CH. Position Statements of the Emerging Trends Committee of the Asian Oceanian Society of Radiology on the Adoption and Implementation of Artificial Intelligence for Radiology. Korean J Radiol 2024; 25:603-612. [PMID: 38942454 PMCID: PMC11214917 DOI: 10.3348/kjr.2024.0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 06/30/2024] Open
Abstract
Artificial intelligence (AI) is rapidly gaining recognition in the radiology domain as a greater number of radiologists are becoming AI-literate. However, the adoption and implementation of AI solutions in clinical settings have been slow, with points of contention. A group of AI users comprising mainly clinical radiologists across various Asian countries, including India, Japan, Malaysia, Singapore, Taiwan, Thailand, and Uzbekistan, formed the working group. This study aimed to draft position statements regarding the application and clinical deployment of AI in radiology. The primary aim is to raise awareness among the general public, promote professional interest and discussion, clarify ethical considerations when implementing AI technology, and engage the radiology profession in the ever-changing clinical practice. These position statements highlight pertinent issues that need to be addressed between care providers and care recipients. More importantly, this will help legalize the use of non-human instruments in clinical deployment without compromising ethical considerations, decision-making precision, and clinical professional standards. We base our study on four main principles of medical care-respect for patient autonomy, beneficence, non-maleficence, and justice.
Collapse
Affiliation(s)
- Nicole Kessa Wee
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, National Healthcare Group, Singapore
| | - Kim-Ann Git
- Department of Diagnostic Radiology, Pantai Hospital, Kuala Lumpur, Malaysia
| | - Wen-Jeng Lee
- Department of Diagnostic Radiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Gaurang Raval
- Department of Diagnostic Radiology, Workhardt Hospitals Limited, Mumbai, India
| | - Aziz Pattokhov
- Faculty of Medicine, Tashkent State Dental Institute, Tashkent, Uzbekistan
| | - Evelyn Lai Ming Ho
- Department of Diagnostic Radiology, ParkCity Medical Centre, Kuala Lumpur, Malaysia
| | | | - Noriyuki Tomiyama
- Department of Diagnostic and Interventional Radiology Suita, Osaka University Hospital, Osaka, Japan
| | - Kwan Hoong Ng
- Department of Biomedical Imaging and University of Malaya Research Imaging Centre, University of Malaya, Kuala Lumpur, Malaysia
- Faculty of Medicine and Health Sciences, UCSI University Springhill Campus, Port Dickson, Malaysia
| | - Cher Heng Tan
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, National Healthcare Group, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|
9
|
Lee JM, Bae JS. Enhancing diagnostic precision in liver lesion analysis using a deep learning-based system: opportunities and challenges. Nat Rev Clin Oncol 2024; 21:485-486. [PMID: 38519602 DOI: 10.1038/s41571-024-00887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Affiliation(s)
- Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea.
- Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea.
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea.
| | - Jae Seok Bae
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
10
|
Varghese BA, Cen SY, Jensen K, Levy J, Andersen HK, Schulz A, Lei X, Duddalwar VA, Goodenough DJ. Investigating the role of imaging factors in the variability of CT-based texture analysis metrics. J Appl Clin Med Phys 2024; 25:e14192. [PMID: 37962032 PMCID: PMC11005980 DOI: 10.1002/acm2.14192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/02/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
OBJECTIVE This study assesses the robustness of first-order radiomic texture features namely interquartile range (IQR), coefficient of variation (CV) and standard deviation (SD) derived from computed tomography (CT) images by varying dose, reconstruction algorithms and slice thickness using scans of a uniform water phantom, a commercial anthropomorphic liver phantom, and a human liver in-vivo. MATERIALS AND METHODS Scans were acquired on a 16 cm detector GE Revolution Apex Edition CT scanner with variations across three different nominal slice thicknesses: 0.625, 1.25, and 2.5 mm, three different dose levels: CTDIvol of 13.86 mGy for the standard dose, 40% reduced dose and 60% reduced dose and two different reconstruction algorithms: a deep learning image reconstruction (DLIR-high) algorithm and a hybrid iterative reconstruction (IR) algorithm ASiR-V50% (AV50) were explored, varying one at a time. To assess the effect of non-linear modifications of images by AV50 and DLIR-high, images of the water phantom were also reconstructed using filtered back projection (FBP). Quantitative measures of IQR, CV and SD were extracted from twelve pre-selected, circular (1 cm diameter) regions of interest (ROIs) capturing different texture patterns across all scans. RESULTS Across all scans, imaging, and reconstruction settings, CV, IQR and SD were observed to increase with reduction in dose and slice thickness. An exception to this observation was found when using FBP reconstruction. Lower values of CV, IQR and SD were observed in DLIR-high reconstructions compared to AV50 and FBP. The Poisson statistics were more stringently noted in FBP than DLIR-high and AV50, due to the non-linear nature of the latter two algorithms. CONCLUSION Variation in image noise due to dose reduction algorithms, tube current, and slice thickness show a consistent trend across phantom and patient scans. Prospective evaluation across multiple centers, scanners and imaging protocols is needed for establishing quality assurance standards of radiomics.
Collapse
Affiliation(s)
- Bino Abel Varghese
- Keck Medical CenterDepartment of RadiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Steven Yong Cen
- Keck Medical CenterDepartment of RadiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kristin Jensen
- Department of Physics and Computational RadiologyOsloNorway
| | | | | | - Anselm Schulz
- Department of Radiology and Nuclear MedicineOslo University HospitalOsloNorway
| | - Xiaomeng Lei
- Keck Medical CenterDepartment of RadiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Vinay Anant Duddalwar
- Keck Medical CenterDepartment of RadiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - David John Goodenough
- Department of RadiologyGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
11
|
Hesso I, Kayyali R, Zacharias L, Charalambous A, Lavdaniti M, Stalika E, Ajami T, Acampa W, Boban J, Gebara SN. Cancer care pathways across seven countries in Europe: What are the current obstacles? And how can artificial intelligence help? J Cancer Policy 2024; 39:100457. [PMID: 38008356 DOI: 10.1016/j.jcpo.2023.100457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/25/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Cancer poses significant challenges for healthcare professionals across the disease pathway including cancer imaging. This study constitutes part of the user requirement definition of INCISIVE EU project. The project has been designed to explore the full potential of artificial intelligence (AI)-based technologies in cancer imaging to streamline diagnosis and management. The study aimed to map cancer care pathways (breast, prostate, colorectal and lung cancers) across INCISIVE partner countries, and identify bottle necks within these pathways. METHODS Email interviews were conducted with ten oncology specialised healthcare professionals representing INCISIVE partner countries: Greece, Cyprus, Spain, Italy, Finland, the United Kingdom (UK) and Serbia. A purposive sampling strategy was employed for recruitment and data was collected between December 2020 and April 2021. Data was entered into Microsoft Excel spreadsheet to allow content examination and comparative analysis. RESULTS The analysed pathways all shared a common characteristic: inequalities in relation to delays in cancer diagnosis and treatment. All the studied countries, except the UK, lacked official national data about diagnostic and therapeutic delays. Furthermore, a considerable variation was noted regarding the availability of imaging and diagnostic services across the seven countries. Several concerns were also noted for inefficiencies/inequalities with regards to national screening for the four investigated cancer types. CONCLUSIONS Delays in cancer diagnosis and treatment are an ongoing challenge and a source for inequalities. It is important to have systematic reporting of diagnostic and therapeutic delays in all countries to allow the proper estimation of its magnitude and support needed to address it. Our findings also support the orientation of the current policies towards early detection and wide scale adoption and implementation of cancer screening, through research, innovation, and technology. Technologies involving AI can have a great potential to revolutionise cancer care delivery. POLICY SUMMARY This study highlights the widespread delay in cancer diagnosis across Europe and supports the need for, systematic reporting of delays, improved availability of imaging services, and optimised national screening programs. The goal is to enhance cancer care delivery, encourage early detection, and implement research, innovation, and AI-based technologies for improved cancer imaging.
Collapse
Affiliation(s)
- Iman Hesso
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, United Kingdom
| | - Reem Kayyali
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, United Kingdom
| | - Lithin Zacharias
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, United Kingdom
| | | | | | - Evangelia Stalika
- International Hellenic University, Thessaloniki, Greece; Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Tarek Ajami
- Urology Department, Hospital Clinic de Barcelona, Spain
| | - Wanda Acampa
- Department of Advanced Biomedical Science, University of Naples Federico II, Naples, Italy
| | - Jasmina Boban
- Department of Radiology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; Diagnostic Imaging Center, Oncology Institute of Vojvodine, Put dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Shereen Nabhani Gebara
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, United Kingdom.
| |
Collapse
|
12
|
Qian Y, Alhaskawi A, Dong Y, Ni J, Abdalbary S, Lu H. Transforming medicine: artificial intelligence integration in the peripheral nervous system. Front Neurol 2024; 15:1332048. [PMID: 38419700 PMCID: PMC10899496 DOI: 10.3389/fneur.2024.1332048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
In recent years, artificial intelligence (AI) has undergone remarkable advancements, exerting a significant influence across a multitude of fields. One area that has particularly garnered attention and witnessed substantial progress is its integration into the realm of the nervous system. This article provides a comprehensive examination of AI's applications within the peripheral nervous system, with a specific focus on AI-enhanced diagnostics for peripheral nervous system disorders, AI-driven pain management, advancements in neuroprosthetics, and the development of neural network models. By illuminating these facets, we unveil the burgeoning opportunities for revolutionary medical interventions and the enhancement of human capabilities, thus paving the way for a future in which AI becomes an integral component of our nervous system's interface.
Collapse
Affiliation(s)
- Yue Qian
- Rehabilitation Center, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Juemin Ni
- Rehabilitation Center, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou, China
| | - Sahar Abdalbary
- Department of Orthopedic Physical Therapy, Faculty of Physical Therapy, Nahda University in Beni Suef, Beni Suef, Egypt
| | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Ong W, Liu RW, Makmur A, Low XZ, Sng WJ, Tan JH, Kumar N, Hallinan JTPD. Artificial Intelligence Applications for Osteoporosis Classification Using Computed Tomography. Bioengineering (Basel) 2023; 10:1364. [PMID: 38135954 PMCID: PMC10741220 DOI: 10.3390/bioengineering10121364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Osteoporosis, marked by low bone mineral density (BMD) and a high fracture risk, is a major health issue. Recent progress in medical imaging, especially CT scans, offers new ways of diagnosing and assessing osteoporosis. This review examines the use of AI analysis of CT scans to stratify BMD and diagnose osteoporosis. By summarizing the relevant studies, we aimed to assess the effectiveness, constraints, and potential impact of AI-based osteoporosis classification (severity) via CT. A systematic search of electronic databases (PubMed, MEDLINE, Web of Science, ClinicalTrials.gov) was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A total of 39 articles were retrieved from the databases, and the key findings were compiled and summarized, including the regions analyzed, the type of CT imaging, and their efficacy in predicting BMD compared with conventional DXA studies. Important considerations and limitations are also discussed. The overall reported accuracy, sensitivity, and specificity of AI in classifying osteoporosis using CT images ranged from 61.8% to 99.4%, 41.0% to 100.0%, and 31.0% to 100.0% respectively, with areas under the curve (AUCs) ranging from 0.582 to 0.994. While additional research is necessary to validate the clinical efficacy and reproducibility of these AI tools before incorporating them into routine clinical practice, these studies demonstrate the promising potential of using CT to opportunistically predict and classify osteoporosis without the need for DEXA.
Collapse
Affiliation(s)
- Wilson Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore (A.M.); (X.Z.L.); (W.J.S.); (J.T.P.D.H.)
| | - Ren Wei Liu
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore (A.M.); (X.Z.L.); (W.J.S.); (J.T.P.D.H.)
| | - Andrew Makmur
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore (A.M.); (X.Z.L.); (W.J.S.); (J.T.P.D.H.)
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Xi Zhen Low
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore (A.M.); (X.Z.L.); (W.J.S.); (J.T.P.D.H.)
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Weizhong Jonathan Sng
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore (A.M.); (X.Z.L.); (W.J.S.); (J.T.P.D.H.)
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Jiong Hao Tan
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E Lower Kent Ridge Road, Singapore 119228, Singapore; (J.H.T.); (N.K.)
| | - Naresh Kumar
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E Lower Kent Ridge Road, Singapore 119228, Singapore; (J.H.T.); (N.K.)
| | - James Thomas Patrick Decourcy Hallinan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore (A.M.); (X.Z.L.); (W.J.S.); (J.T.P.D.H.)
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
14
|
Najjar R. Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging. Diagnostics (Basel) 2023; 13:2760. [PMID: 37685300 PMCID: PMC10487271 DOI: 10.3390/diagnostics13172760] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 09/10/2023] Open
Abstract
This comprehensive review unfolds a detailed narrative of Artificial Intelligence (AI) making its foray into radiology, a move that is catalysing transformational shifts in the healthcare landscape. It traces the evolution of radiology, from the initial discovery of X-rays to the application of machine learning and deep learning in modern medical image analysis. The primary focus of this review is to shed light on AI applications in radiology, elucidating their seminal roles in image segmentation, computer-aided diagnosis, predictive analytics, and workflow optimisation. A spotlight is cast on the profound impact of AI on diagnostic processes, personalised medicine, and clinical workflows, with empirical evidence derived from a series of case studies across multiple medical disciplines. However, the integration of AI in radiology is not devoid of challenges. The review ventures into the labyrinth of obstacles that are inherent to AI-driven radiology-data quality, the 'black box' enigma, infrastructural and technical complexities, as well as ethical implications. Peering into the future, the review contends that the road ahead for AI in radiology is paved with promising opportunities. It advocates for continuous research, embracing avant-garde imaging technologies, and fostering robust collaborations between radiologists and AI developers. The conclusion underlines the role of AI as a catalyst for change in radiology, a stance that is firmly rooted in sustained innovation, dynamic partnerships, and a steadfast commitment to ethical responsibility.
Collapse
Affiliation(s)
- Reabal Najjar
- Canberra Health Services, Australian Capital Territory 2605, Australia
| |
Collapse
|
15
|
Konopik J, Blunck D. Development of an Evidence-Based Conceptual Model of the Health Care Sector Under Digital Transformation: Integrative Review. J Med Internet Res 2023; 25:e41512. [PMID: 37289482 PMCID: PMC10288351 DOI: 10.2196/41512] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/14/2022] [Accepted: 04/07/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Digital transformation is currently one of the most influential developments. It is fundamentally changing consumers' expectations and behaviors, challenging traditional firms, and disrupting numerous markets. Recent discussions in the health care sector tend to assess the influence of technological implications but neglect other factors needed for a holistic view on the digital transformation. This calls for a reevaluation of the current state of digital transformation in health care. Consequently, there is a need for a holistic view on the complex interdependencies of digital transformation in the health care sector. OBJECTIVE This study aimed to examine the effects of digital transformation on the health care sector. This is accomplished by providing a conceptual model of the health care sector under digital transformation. METHODS First, the most essential stakeholders in the health care sector were identified by a scoping review and grounded theory approach. Second, the effects on these stakeholders were assessed. PubMed, Web of Science, and Dimensions were searched for relevant studies. On the basis of an integrative review and grounded theory methodology, the relevant academic literature was systematized and quantitatively and qualitatively analyzed to evaluate the impact on the value creation of, and the relationships among, the stakeholders. Third, the findings were synthesized into a conceptual model of the health care sector under digital transformation. RESULTS A total of 2505 records were identified from the database search; of these, 140 (5.59%) were included and analyzed. The results revealed that providers of medical treatments, patients, governing institutions, and payers are the most essential stakeholders in the health care sector. As for the individual stakeholders, patients are experiencing a technology-enabled growth of influence in the sector. Providers are becoming increasingly dependent on intermediaries for essential parts of the value creation and patient interaction. Payers are expected to try to increase their influence on intermediaries to exploit the enormous amounts of data while seeing their business models be challenged by emerging technologies. Governing institutions regulating the health care sector are increasingly facing challenges from new entrants in the sector. Intermediaries increasingly interconnect all these stakeholders, which in turn drives new ways of value creation. These collaborative efforts have led to the establishment of a virtually integrated health care ecosystem. CONCLUSIONS The conceptual model provides a novel and evidence-based perspective on the interrelations among actors in the health care sector, indicating that individual stakeholders need to recognize their role in the system. The model can be the basis of further evaluations of strategic actions of actors and their effects on other actors or the health care ecosystem itself.
Collapse
Affiliation(s)
- Jens Konopik
- Institute of Management, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Dominik Blunck
- Institute of Management, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| |
Collapse
|
16
|
Ozcelik N, Ozcelik AE, Guner Zirih NM, Selimoglu I, Gumus A. Deep learning for diagnosis of malign pleural effusion on computed tomography images. Clinics (Sao Paulo) 2023; 78:100210. [PMID: 37149920 DOI: 10.1016/j.clinsp.2023.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/01/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND The pleura is a serous membrane that surrounds the lungs. The visceral surface secretes fluid into the serous cavity and the parietal surface ensures a regular absorption of this fluid. If this balance is disturbed, fluid accumulation occurs in the pleural space called "Pleural Effusion". Today, accurate diagnosis of pleural diseases is becoming more critical, as advances in treatment protocols have contributed positively to prognosis. Our aim is to perform computer-aided numerical analysis of Computed Tomography (CT) images from patients showing pleural effusion images on CT and to examine the prediction of malignant/benign distinction using deep learning by comparing with the cytology results. METHODS The authors classified 408 CT images from 64 patients whose etiology of pleural effusion was investigated using the deep learning method. 378 of the images were used for the training of the system; 15 malignant and 15 benign CT images, which were not included in the training group, were used as the test. RESULTS Among the 30 test images evaluated in the system; 14 of 15 malignant patients and 13 of 15 benign patients were estimated with correct diagnosis (PPD: 93.3%, NPD: 86.67%, Sensitivity: 87.5%, Specificity: 92.86%). CONCLUSION Advances in computer-aided diagnostic analysis of CT images and obtaining a pre-diagnosis of pleural fluid may reduce the need for interventional procedures by guiding physicians about which patients may have malignancies. Thus, it is cost and time-saving in patient management, allowing earlier diagnosis and treatment.
Collapse
Affiliation(s)
- Neslihan Ozcelik
- Recep Tayyip Erdogan University, Faculty of Medicine, Training and Research Hospital, Chest Disease, Rize, Turkey.
| | - Ali Erdem Ozcelik
- Recep Tayyip Erdogan University, Engineering and Architecture Faculty, Department of Landscape Architecture (Geomatics Engineer), Rize, Turkey
| | - Nese Merve Guner Zirih
- Recep Tayyip Erdogan University, Faculty of Medicine, Training and Research Hospital, Chest Disease, Rize, Turkey
| | - Inci Selimoglu
- Recep Tayyip Erdogan University, Faculty of Medicine, Training and Research Hospital, Chest Disease, Rize, Turkey
| | - Aziz Gumus
- Recep Tayyip Erdogan University, Faculty of Medicine, Training and Research Hospital, Chest Disease, Rize, Turkey
| |
Collapse
|
17
|
Stoumpos AI, Kitsios F, Talias MA. Digital Transformation in Healthcare: Technology Acceptance and Its Applications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3407. [PMID: 36834105 PMCID: PMC9963556 DOI: 10.3390/ijerph20043407] [Citation(s) in RCA: 85] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 05/27/2023]
Abstract
Technological innovation has become an integral aspect of our daily life, such as wearable and information technology, virtual reality and the Internet of Things which have contributed to transforming healthcare business and operations. Patients will now have a broader range and more mindful healthcare choices and experience a new era of healthcare with a patient-centric culture. Digital transformation determines personal and institutional health care. This paper aims to analyse the changes taking place in the field of healthcare due to digital transformation. For this purpose, a systematic bibliographic review is performed, utilising Scopus, Science Direct and PubMed databases from 2008 to 2021. Our methodology is based on the approach by Wester and Watson, which classify the related articles based on a concept-centric method and an ad hoc classification system which identify the categories used to describe areas of literature. The search was made during August 2022 and identified 5847 papers, of which 321 fulfilled the inclusion criteria for further process. Finally, by removing and adding additional studies, we ended with 287 articles grouped into five themes: information technology in health, the educational impact of e-health, the acceptance of e-health, telemedicine and security issues.
Collapse
Affiliation(s)
- Angelos I. Stoumpos
- Healthcare Management Postgraduate Program, Open University Cyprus, P.O. Box 12794, Nicosia 2252, Cyprus
| | - Fotis Kitsios
- Department of Applied Informatics, University of Macedonia, 156 Egnatia Street, GR54636 Thessaloniki, Greece
| | - Michael A. Talias
- Healthcare Management Postgraduate Program, Open University Cyprus, P.O. Box 12794, Nicosia 2252, Cyprus
| |
Collapse
|
18
|
Li S, Zhou B. A review of radiomics and genomics applications in cancers: the way towards precision medicine. Radiat Oncol 2022; 17:217. [PMID: 36585716 PMCID: PMC9801589 DOI: 10.1186/s13014-022-02192-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The application of radiogenomics in oncology has great prospects in precision medicine. Radiogenomics combines large volumes of radiomic features from medical digital images, genetic data from high-throughput sequencing, and clinical-epidemiological data into mathematical modelling. The amalgamation of radiomics and genomics provides an approach to better study the molecular mechanism of tumour pathogenesis, as well as new evidence-supporting strategies to identify the characteristics of cancer patients, make clinical decisions by predicting prognosis, and improve the development of individualized treatment guidance. In this review, we summarized recent research on radiogenomics applications in solid cancers and presented the challenges impeding the adoption of radiomics in clinical practice. More standard guidelines are required to normalize radiomics into reproducible and convincible analyses and develop it as a mature field.
Collapse
Affiliation(s)
- Simin Li
- grid.412636.40000 0004 1757 9485Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Hospital of China Medical University, Shenyang, 110001 Liaoning People’s Republic of China
| | - Baosen Zhou
- grid.412636.40000 0004 1757 9485Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Hospital of China Medical University, Shenyang, 110001 Liaoning People’s Republic of China
| |
Collapse
|
19
|
Yang J, Ji Q, Ni M, Zhang G, Wang Y. Automatic assessment of knee osteoarthritis severity in portable devices based on deep learning. J Orthop Surg Res 2022; 17:540. [PMID: 36514158 PMCID: PMC9749242 DOI: 10.1186/s13018-022-03429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND For knee osteoarthritis, the commonly used radiology severity criteria Kellgren-Lawrence lead to variability among surgeons. Most existing diagnosis models require preprocessed radiographs and specific equipment. METHODS All enrolled patients diagnosed with KOA who met the criteria were obtained from **** Hospital. This study included 2579 images shot from posterior-anterior X-rays of 2,378 patients. We used RefineDet to train and validate this deep learning-based diagnostic model. After developing the model, 823 images of 697 patients were enrolled as the test set. The whole test set was assessed by up to 5 surgeons and this diagnostic model. To evaluate the model's performance we compared the results of the model with the KOA severity diagnoses of surgeons based on K-L scales. RESULTS Compared to the diagnoses of surgeons, the model achieved an overall accuracy of 0.977. Its sensitivity (recall) for K-L 0 to 4 was 1.0, 0.972, 0.979, 0.983 and 0.989, respectively; for these diagnoses, the specificity of this model was 0.992, 0.997, 0.994, 0.991 and 0.995. The precision and F1-score were 0.5 and 0.667 for K-L 0, 0.914 and 0.930 for K-L 1, 0.978 and 0.971 for K-L 2, 0.981 and 0.974 for K-L 3, and 0.988 and 0.985 for K-L 4, respectively. All K-L scales perform AUC > 0.90. The quadratic weighted Kappa coefficient between the diagnostic model and surgeons was 0.815 (P < 0.01, 95% CI 0.727-0.903). The performance of the model is comparable to the clinical diagnosis of KOA. This model improved the efficiency and avoided cumbersome image preprocessing. CONCLUSION The deep learning-based diagnostic model can be used to assess the severity of KOA in portable devices according to the Kellgren-Lawrence scale. On the premise of improving diagnostic efficiency, the results are highly reliable and reproducible.
Collapse
Affiliation(s)
- Jianfeng Yang
- grid.488137.10000 0001 2267 2324Medical School of Chinese PLA, Beijing, 100853 China ,grid.414252.40000 0004 1761 8894Department of Orthopedics, The First Medical Center, Chinese People’s Liberation Army General Hospital, Fuxing Road, Haidian District, Beijing, 100048 China ,grid.414252.40000 0004 1761 8894Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048 China
| | - Quanbo Ji
- grid.414252.40000 0004 1761 8894Department of Orthopedics, The First Medical Center, Chinese People’s Liberation Army General Hospital, Fuxing Road, Haidian District, Beijing, 100048 China ,grid.414252.40000 0004 1761 8894Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048 China
| | - Ming Ni
- grid.414252.40000 0004 1761 8894Department of Orthopedics, The First Medical Center, Chinese People’s Liberation Army General Hospital, Fuxing Road, Haidian District, Beijing, 100048 China ,grid.414252.40000 0004 1761 8894Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048 China
| | - Guoqiang Zhang
- grid.414252.40000 0004 1761 8894Department of Orthopedics, The First Medical Center, Chinese People’s Liberation Army General Hospital, Fuxing Road, Haidian District, Beijing, 100048 China ,grid.414252.40000 0004 1761 8894Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048 China
| | - Yan Wang
- grid.414252.40000 0004 1761 8894Department of Orthopedics, The First Medical Center, Chinese People’s Liberation Army General Hospital, Fuxing Road, Haidian District, Beijing, 100048 China ,grid.414252.40000 0004 1761 8894Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048 China
| |
Collapse
|
20
|
Kosaraju S, Park J, Lee H, Yang JW, Kang M. Deep learning-based framework for slide-based histopathological image analysis. Sci Rep 2022; 12:19075. [PMID: 36351997 PMCID: PMC9646838 DOI: 10.1038/s41598-022-23166-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Digital pathology coupled with advanced machine learning (e.g., deep learning) has been changing the paradigm of whole-slide histopathological images (WSIs) analysis. Major applications in digital pathology using machine learning include automatic cancer classification, survival analysis, and subtyping from pathological images. While most pathological image analyses are based on patch-wise processing due to the extremely large size of histopathology images, there are several applications that predict a single clinical outcome or perform pathological diagnosis per slide (e.g., cancer classification, survival analysis). However, current slide-based analyses are task-dependent, and a general framework of slide-based analysis in WSI has been seldom investigated. We propose a novel slide-based histopathology analysis framework that creates a WSI representation map, called HipoMap, that can be applied to any slide-based problems, coupled with convolutional neural networks. HipoMap converts a WSI of various shapes and sizes to structured image-type representation. Our proposed HipoMap outperformed existing methods in intensive experiments with various settings and datasets. HipoMap showed the Area Under the Curve (AUC) of 0.96±0.026 (5% improved) in the experiments for lung cancer classification, and c-index of 0.787±0.013 (3.5% improved) and coefficient of determination ([Formula: see text]) of 0.978±0.032 (24% improved) in survival analysis and survival prediction with TCGA lung cancer data respectively, as a general framework of slide-based analysis with a flexible capability. The results showed significant improvement comparing to the current state-of-the-art methods on each task. We further discussed experimental results of HipoMap as pathological viewpoints and verified the performance using publicly available TCGA datasets. A Python package is available at https://pypi.org/project/hipomap , and the package can be easily installed using Python PIP. The open-source codes in Python are available at: https://github.com/datax-lab/HipoMap .
Collapse
Affiliation(s)
- Sai Kosaraju
- grid.272362.00000 0001 0806 6926Department of Computer Science, University of Nevada, Las Vegas, Las Vegas, NV 89154 USA
| | - Jeongyeon Park
- grid.412859.30000 0004 0533 4202Department of Computer Science, Sun Moon University, Asan, 336708 South Korea
| | - Hyun Lee
- grid.412859.30000 0004 0533 4202Department of Computer Science, Sun Moon University, Asan, 336708 South Korea
| | - Jung Wook Yang
- grid.256681.e0000 0001 0661 1492Department of Pathology, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Mingon Kang
- grid.272362.00000 0001 0806 6926Department of Computer Science, University of Nevada, Las Vegas, Las Vegas, NV 89154 USA
| |
Collapse
|
21
|
Artificial intelligence and machine learning in cancer imaging. COMMUNICATIONS MEDICINE 2022; 2:133. [PMID: 36310650 PMCID: PMC9613681 DOI: 10.1038/s43856-022-00199-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
An increasing array of tools is being developed using artificial intelligence (AI) and machine learning (ML) for cancer imaging. The development of an optimal tool requires multidisciplinary engagement to ensure that the appropriate use case is met, as well as to undertake robust development and testing prior to its adoption into healthcare systems. This multidisciplinary review highlights key developments in the field. We discuss the challenges and opportunities of AI and ML in cancer imaging; considerations for the development of algorithms into tools that can be widely used and disseminated; and the development of the ecosystem needed to promote growth of AI and ML in cancer imaging.
Collapse
|
22
|
de Lima AD, Lopes AJ, do Amaral JLM, de Melo PL. Explainable machine learning methods and respiratory oscillometry for the diagnosis of respiratory abnormalities in sarcoidosis. BMC Med Inform Decis Mak 2022; 22:274. [PMID: 36266674 PMCID: PMC9583465 DOI: 10.1186/s12911-022-02021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In this work, we developed many machine learning classifiers to assist in diagnosing respiratory changes associated with sarcoidosis, based on results from the Forced Oscillation Technique (FOT), a non-invasive method used to assess pulmonary mechanics. In addition to accurate results, there is a particular interest in their interpretability and explainability, so we used Genetic Programming since the classification is made with intelligible expressions and we also evaluate the feature importance in different experiments to find the more discriminative features. METHODOLOGY/PRINCIPAL FINDINGS We used genetic programming in its traditional tree form and a grammar-based form. To check if interpretable results are competitive, we compared their performance to K-Nearest Neighbors, Support Vector Machine, AdaBoost, Random Forest, LightGBM, XGBoost, Decision Trees and Logistic Regressor. We also performed experiments with fuzzy features and tested a feature selection technique to bring even more interpretability. The data used to feed the classifiers come from the FOT exams in 72 individuals, of which 25 were healthy, and 47 were diagnosed with sarcoidosis. Among the latter, 24 showed normal conditions by spirometry, and 23 showed respiratory changes. The results achieved high accuracy (AUC > 0.90) in two analyses performed (controls vs. individuals with sarcoidosis and normal spirometry and controls vs. individuals with sarcoidosis and altered spirometry). Genetic Programming and Grammatical Evolution were particularly beneficial because they provide intelligible expressions to make the classification. The observation of which features were selected most frequently also brought explainability to the study of sarcoidosis. CONCLUSIONS The proposed system may provide decision support for clinicians when they are struggling to give a confirmed clinical diagnosis. Clinicians may reference the prediction results and make better decisions, improving the productivity of pulmonary function services by AI-assisted workflow.
Collapse
Affiliation(s)
- Allan Danilo de Lima
- Electronic Engineering Post-Graduation Program, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Agnaldo J Lopes
- Pulmonary Function Laboratory, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge Luis Machado do Amaral
- Department of Electronics and Telecommunications Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Pedro Lopes de Melo
- Biomedical Instrumentation Laboratory, Institute of Biology Roberto Alcantara Gomes and Laboratory of Clinical and Experimental Research in Vascular Biology (BioVasc), Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
23
|
Marotta A. When AI Is Wrong: Addressing Liability Challenges in Women’s Healthcare. JOURNAL OF COMPUTER INFORMATION SYSTEMS 2022. [DOI: 10.1080/08874417.2022.2089773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Pershin I, Kholiavchenko M, Maksudov B, Mustafaev T, Ibragimova D, Ibragimov B. Artificial Intelligence for the Analysis of Workload-Related Changes in Radiologists' Gaze Patterns. IEEE J Biomed Health Inform 2022; 26:4541-4550. [PMID: 35704540 DOI: 10.1109/jbhi.2022.3183299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Around 60-80% of radiological errors are attributed to overlooked abnormalities, the rate of which increases at the end of work shifts. In this study, we run an experiment to investigate if artificial intelligence (AI) can assist in detecting radiologists' gaze patterns that correlate with fatigue. A retrospective database of lung X-ray images with the reference diagnoses was used. The X-ray images were acquired from 400 subjects with a mean age of 49 ± 17, and 61% men. Four practicing radiologists read these images while their eye movements were recorded. The radiologists passed a series of concentration tests at prearranged breaks of the experiment. A U-Net neural network was adapted to annotate lung anatomy on X-rays and calculate coverage and information gain features from the radiologists' eye movements over lung fields. The lung coverage, information gain, and eye tracker-based features were compared with the cumulative work done (CDW) label for each radiologist. The gaze-traveled distance, X-ray coverage, and lung coverage statistically significantly (p < 0.01) deteriorated with cumulative work done (CWD) for three out of four radiologists. The reading time and information gain over lungs statistically significantly deteriorated for all four radiologists. We discovered a novel AI-based metric blending reading time, speed, and organ coverage, which can be used to predict changes in the fatigue-related image reading patterns.
Collapse
|
25
|
Fromherz MR, Makary MS. Artificial intelligence: Advances and new frontiers in medical imaging. Artif Intell Med Imaging 2022; 3:33-41. [DOI: 10.35711/aimi.v3.i2.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/20/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) has been entwined with the field of radiology ever since digital imaging began replacing films over half a century ago. These algorithms, ranging from simplistic speech-to-text dictation programs to automated interpretation neural networks, have continuously sought to revolutionize medical imaging. With the number of imaging studies outpacing the amount of trained of readers, AI has been implemented to streamline workflow efficiency and provide quantitative, standardized interpretation. AI relies on massive amounts of data for its algorithms to function, and with the wide-spread adoption of Picture Archiving and Communication Systems (PACS), imaging data is accumulating rapidly. Current AI algorithms using machine-learning technology, or computer aided-detection, have been able to successfully pool this data for clinical use, although the scope of these algorithms remains narrow. Many systems have been developed to assist the workflow of the radiologist through PACS optimization and imaging study triage, however interpretation has generally remained a human responsibility for now. In this review article, we will summarize the current successes and limitations of AI in radiology, and explore the exciting prospects that deep-learning technology offers for the future.
Collapse
Affiliation(s)
- Marc R Fromherz
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Mina S Makary
- Division of Vascular and Interventional Radiology, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| |
Collapse
|
26
|
Garau N, Orro A, Summers P, De Maria L, Bertolotti R, Bassis D, Minotti M, De Fiori E, Baroni G, Paganelli C, Rampinelli C. Integrating Biological and Radiological Data in a Structured Repository: a Data Model Applied to the COSMOS Case Study. J Digit Imaging 2022; 35:970-982. [PMID: 35296941 PMCID: PMC9485502 DOI: 10.1007/s10278-022-00615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
Integrating the information coming from biological samples with digital data, such as medical images, has gained prominence with the advent of precision medicine. Research in this field faces an ever-increasing amount of data to manage and, as a consequence, the need to structure these data in a functional and standardized fashion to promote and facilitate cooperation among institutions. Inspired by the Minimum Information About BIobank data Sharing (MIABIS), we propose an extended data model which aims to standardize data collections where both biological and digital samples are involved. In the proposed model, strong emphasis is given to the cause-effect relationships among factors as these are frequently encountered in clinical workflows. To test the data model in a realistic context, we consider the Continuous Observation of SMOking Subjects (COSMOS) dataset as case study, consisting of 10 consecutive years of lung cancer screening and follow-up on more than 5000 subjects. The structure of the COSMOS database, implemented to facilitate the process of data retrieval, is therefore presented along with a description of data that we hope to share in a public repository for lung cancer screening research.
Collapse
Affiliation(s)
- Noemi Garau
- Dipartimento Di Elettronica, Informazione E Bioingegneria, Politecnico Di Milano, Milano, Italy. .,Division of Radiology, IEO, European Institute of Oncology IRCCS, Milan, Italy.
| | - Alessandro Orro
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Paul Summers
- Division of Radiology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Lorenza De Maria
- Division of Radiology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Raffaella Bertolotti
- Division of Data Management, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Danny Bassis
- School of Medicine, University of Milan, Milan, Italy
| | - Marta Minotti
- Division of Radiology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Elvio De Fiori
- Division of Radiology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Guido Baroni
- Dipartimento Di Elettronica, Informazione E Bioingegneria, Politecnico Di Milano, Milano, Italy.,Bioengineering Unit, CNAO Foundation, Pavia, Italy
| | - Chiara Paganelli
- Dipartimento Di Elettronica, Informazione E Bioingegneria, Politecnico Di Milano, Milano, Italy
| | | |
Collapse
|
27
|
Attenberger U, Reiser MF. [Future perspectives: how does artificial intelligence influence the development of our profession?]. Radiologe 2022; 62:267-270. [PMID: 35166872 DOI: 10.1007/s00117-022-00969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Ulrike Attenberger
- Klinik für diagnostische und interventionelle Radiologie, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland.
| | - Maximilian F Reiser
- Klinik und Poliklinik für Radiologie, Klinikum der Universität München, München, Deutschland
| |
Collapse
|
28
|
Parmeggiani A, Miceli M, Errani C, Facchini G. State of the Art and New Concepts in Giant Cell Tumor of Bone: Imaging Features and Tumor Characteristics. Cancers (Basel) 2021; 13:6298. [PMID: 34944917 PMCID: PMC8699510 DOI: 10.3390/cancers13246298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 12/12/2022] Open
Abstract
Giant cell tumor of bone (GCTB) is classified as an intermediate malignant tumor due to its locally aggressive behavior, burdened by high local recurrence rate. GCTB accounts for about 4-5% of all primary bone tumors and typically arises in the metaphysis and epiphyses of the long tubular bones. Mutation of gene H3F3A is at the basis of GCTB etiopathogenesis, and its immunohistochemical expression is a valuable method for practical diagnosis, even if new biomarkers have been identified for early diagnosis and for potential tumor recurrence prediction. In the era of computer-aided diagnosis, imaging plays a key role in the assessment of GCTB for surgical planning, patients' prognosis prediction and post treatment evaluation. Cystic changes, penetrating irregular margins and adjacent soft tissue invasion on preoperative Magnetic Resonance Imaging (MRI) have been associated with a higher rate of local recurrence. Distance from the tumor edge to the articular surface and thickness of unaffected cortical bone around the tumor should be evaluated on Computed Tomography (CT) as related to local recurrence. Main features associated with local recurrence after curettage are bone resorption around the graft or cement, soft tissue mass formation and expansile destruction of bone. A denosumab positive response is represented by a peripherical well-defined osteosclerosis around the lesion and intralesional ossification. Radiomics has proved to offer a valuable contribution in aiding GCTB pre-operative diagnosis through clinical-radiomics models based on CT scans and multiparametric MR imaging, possibly guiding the choice of a patient-tailored treatment. Moreover, radiomics models based on texture analysis demonstrated to be a promising alternative solution for the assessment of GCTB response to denosumab both on conventional radiography and CT since the quantitative variation of some radiomics features after therapy has been correlated with tumor response, suggesting they might facilitate disease monitoring during post-denosumab surveillance.
Collapse
Affiliation(s)
- Anna Parmeggiani
- Diagnostic and Interventional Radiology Unit, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy; (M.M.); (G.F.)
| | - Marco Miceli
- Diagnostic and Interventional Radiology Unit, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy; (M.M.); (G.F.)
| | - Costantino Errani
- Department of Orthopaedic Oncology, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy;
| | - Giancarlo Facchini
- Diagnostic and Interventional Radiology Unit, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy; (M.M.); (G.F.)
| |
Collapse
|
29
|
Purnomo G, Yeo SJ, Liow MHL. Artificial intelligence in arthroplasty. ARTHROPLASTY 2021; 3:37. [PMID: 35236494 PMCID: PMC8796516 DOI: 10.1186/s42836-021-00095-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023] Open
Abstract
Artificial intelligence (AI) is altering the world of medicine. Given the rapid advances in technology, computers are now able to learn and improve, imitating humanoid cognitive function. AI applications currently exist in various medical specialties, some of which are already in clinical use. This review presents the potential uses and limitations of AI in arthroplasty to provide a better understanding of the existing technology and future direction of this field.Recent literature demonstrates that the utilization of AI in the field of arthroplasty has the potential to improve patient care through better diagnosis, screening, planning, monitoring, and prediction. The implementation of AI technology will enable arthroplasty surgeons to provide patient-specific management in clinical decision making, preoperative health optimization, resource allocation, decision support, and early intervention. While this technology presents a variety of exciting opportunities, it also has several limitations and challenges that need to be overcome to ensure its safety and effectiveness.
Collapse
Affiliation(s)
- Glen Purnomo
- St. Vincentius a Paulo Catholic Hospital, Surabaya, Indonesia.
- Adult Reconstruction Service, Department of Orthopaedic Surgery, Singapore General Hospital, Singapore, Singapore.
| | - Seng-Jin Yeo
- Adult Reconstruction Service, Department of Orthopaedic Surgery, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Ming Han Lincoln Liow
- Adult Reconstruction Service, Department of Orthopaedic Surgery, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
30
|
Mohammed S, Fiaidhi J. Establishment of a mindmap for medical e-Diagnosis as a service for graph-based learning and analytics. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-06200-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Mendo IR, Marques G, de la Torre Díez I, López-Coronado M, Martín-Rodríguez F. Machine Learning in Medical Emergencies: a Systematic Review and Analysis. J Med Syst 2021; 45:88. [PMID: 34410512 PMCID: PMC8374032 DOI: 10.1007/s10916-021-01762-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/04/2021] [Indexed: 12/23/2022]
Abstract
Despite the increasing demand for artificial intelligence research in medicine, the functionalities of his methods in health emergency remain unclear. Therefore, the authors have conducted this systematic review and a global overview study which aims to identify, analyse, and evaluate the research available on different platforms, and its implementations in healthcare emergencies. The methodology applied for the identification and selection of the scientific studies and the different applications consist of two methods. On the one hand, the PRISMA methodology was carried out in Google Scholar, IEEE Xplore, PubMed ScienceDirect, and Scopus. On the other hand, a review of commercial applications found in the best-known commercial platforms (Android and iOS). A total of 20 studies were included in this review. Most of the included studies were of clinical decisions (n = 4, 20%) or medical services or emergency services (n = 4, 20%). Only 2 were focused on m-health (n = 2, 10%). On the other hand, 12 apps were chosen for full testing on different devices. These apps dealt with pre-hospital medical care (n = 3, 25%) or clinical decision support (n = 3, 25%). In total, half of these apps are based on machine learning based on natural language processing. Machine learning is increasingly applicable to healthcare and offers solutions to improve the efficiency and quality of healthcare. With the emergence of mobile health devices and applications that can use data and assess a patient's real-time health, machine learning is a growing trend in the healthcare industry.
Collapse
Affiliation(s)
- Inés Robles Mendo
- Department of Signal Theory and Communications and Telematics Engineering, University of Valladolid, Paseo de Belén, 15, 47.011 Valladolid, Spain
| | - Gonçalo Marques
- Department of Signal Theory and Communications and Telematics Engineering, University of Valladolid, Paseo de Belén, 15, 47.011 Valladolid, Spain
- Polytechnic of Coimbra, ESTGOH, Rua General Santos Costa, 3400-124 Oliveira do Hospital, Portugal
| | - Isabel de la Torre Díez
- Department of Signal Theory and Communications and Telematics Engineering, University of Valladolid, Paseo de Belén, 15, 47.011 Valladolid, Spain
| | - Miguel López-Coronado
- Department of Signal Theory and Communications and Telematics Engineering, University of Valladolid, Paseo de Belén, 15, 47.011 Valladolid, Spain
| | - Francisco Martín-Rodríguez
- Advanced Clinical Simulation Center. Faculty of Medicine, University of Valladolid, Avda. Ramón Y Cajal, 7, 47.005 Valladolid, Spain
| |
Collapse
|
32
|
Abstract
Neurosurgeons receive extensive and lengthy training to equip themselves with various technical skills, and neurosurgery require a great deal of pre-, intra- and postoperative clinical data collection, decision making, care and recovery. The last decade has seen a significant increase in the importance of artificial intelligence (AI) in neurosurgery. AI can provide a great promise in neurosurgery by complementing neurosurgeons' skills to provide the best possible interventional and noninterventional care for patients by enhancing diagnostic and prognostic outcomes in clinical treatment and help neurosurgeons with decision making during surgical interventions to improve patient outcomes. Furthermore, AI is playing a pivotal role in the production, processing and storage of clinical and experimental data. AI usage in neurosurgery can also reduce the costs associated with surgical care and provide high-quality healthcare to a broader population. Additionally, AI and neurosurgery can build a symbiotic relationship where AI helps to push the boundaries of neurosurgery, and neurosurgery can help AI to develop better and more robust algorithms. This review explores the role of AI in interventional and noninterventional aspects of neurosurgery during pre-, intra- and postoperative care, such as diagnosis, clinical decision making, surgical operation, prognosis, data acquisition, and research within the neurosurgical arena.
Collapse
Affiliation(s)
- Mohammad Mofatteh
- Sir William Dunn School of Pathology, Medical Sciences Division, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
- Lincoln College, University of Oxford, Turl Street, Oxford OX1 3DR, United Kingdom
| |
Collapse
|
33
|
Spohn SK, Bettermann AS, Bamberg F, Benndorf M, Mix M, Nicolay NH, Fechter T, Hölscher T, Grosu R, Chiti A, Grosu AL, Zamboglou C. Radiomics in prostate cancer imaging for a personalized treatment approach - current aspects of methodology and a systematic review on validated studies. Theranostics 2021; 11:8027-8042. [PMID: 34335978 PMCID: PMC8315055 DOI: 10.7150/thno.61207] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer (PCa) is one of the most frequently diagnosed malignancies of men in the world. Due to a variety of treatment options in different risk groups, proper diagnostic and risk stratification is pivotal in treatment of PCa. The development of precise medical imaging procedures simultaneously to improvements in big data analysis has led to the establishment of radiomics - a computer-based method of extracting and analyzing image features quantitatively. This approach bears the potential to assess and improve PCa detection, tissue characterization and clinical outcome prediction. This article gives an overview on the current aspects of methodology and systematically reviews available literature on radiomics in PCa patients, showing its potential for personalized therapy approaches. The qualitative synthesis includes all imaging modalities and focuses on validated studies, putting forward future directions.
Collapse
Affiliation(s)
- Simon K.B. Spohn
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
- German Cancer Consortium (DKTK). Partner Site Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Germany
| | - Alisa S. Bettermann
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Fabian Bamberg
- Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Matthias Benndorf
- Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Nils H. Nicolay
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
- German Cancer Consortium (DKTK). Partner Site Freiburg, Germany
| | - Tobias Fechter
- Department of Radiation Oncology - Division of Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Tobias Hölscher
- Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Radu Grosu
- Institute of Computer Engineering, Vienne University of Technology, Vienna, Austria
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele - Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Anca L. Grosu
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
- German Cancer Consortium (DKTK). Partner Site Freiburg, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
- German Cancer Consortium (DKTK). Partner Site Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Germany
- German Oncology Center, European University of Cyprus, Limassol, Cyprus
| |
Collapse
|