1
|
Alkhalefa N, Khaliel S, Tahoon A, Shaban H, Magouz A, Ghabban H, Lokman MS, Elmahallawy EK. In vitro investigation of the antiviral activity of propolis and chitosan nanoparticles against the genotype VII Newcastle disease virus. Front Vet Sci 2022; 9:947641. [PMID: 36090167 PMCID: PMC9453155 DOI: 10.3389/fvets.2022.947641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
The Newcastle disease virus (NDV) is considered a serious threat to global poultry production. Despite the availability of vaccines, it remains a major devastating epidemic responsible for great economic losses. The development of novel virus-controlling strategies is therefore an urgent need. The present study investigated for the first time the antiviral efficacy of propolis and chitosan nanoparticles against two NDV isolates, MW881875 and MW881876, recovered from vaccinated commercial broiler farms in KafrEl Sheikh Governorate, Egypt. The polygenetic analysis focused on the F and M genes, with one isolate having a 97% identity with the genotype VII NDV Israeli strain. On the other hand, the identified isolates showed high genetic variation and only 76% identity with the LaSota vaccine (genotype II). More interestingly, the cell cytotoxic concentrations of chitosan, propolis, and a propolis–chitosan mixture against Vero cells were 327.41 ± 12.63, 109.48 ± 8.36, and 231.78 ± 11.46 μg/ml, respectively. The median tissue culture infectious dose (TCID50) assay demonstrated that the nanoparticles have antiviral effects after NDV exposure resulting in significant decrease in viral titer (TCID50) by 2, 2.66, and 2.5 log10 at 62 μg/ml of chitosan, 13 μg/ml of propolis, and 30 μg/ml of the propolis–chitosan mixture, respectively, compared with the control TCID50 value of 4 log10. Taken together, the results provide novel insights into the potentially promising roles of propolis and chitosan as novel, safe, and effective antiviral agents against NDV.
Collapse
Affiliation(s)
- Noura Alkhalefa
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheik University, Kafr El-Sheikh, Egypt
| | - Samy Khaliel
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Abdelnaby Tahoon
- Animal Health Research Institute, Kafrelsheik Lab, Agriculture Research Center (ARC), Giza, Egypt
| | - Hanan Shaban
- Animal Health Research Institute, Kafrelsheik Lab, Agriculture Research Center (ARC), Giza, Egypt
| | - Asmaa Magouz
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheik University, Kafr El-Sheikh, Egypt
| | - Hanaa Ghabban
- Department of Biology, Faculty of Science, Tabuk University, Tabuk, Saudi Arabia
| | - Maha S. Lokman
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
- *Correspondence: Ehab Kotb Elmahallawy
| |
Collapse
|
2
|
Honey as an Adjuvant in the Treatment of COVID-19 Infection: A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since ancestor times, honey has been used to promote human health due to its medicinal, and nutritious properties, mainly due to bioactive compounds present, such as phenolic compounds. The emergence of COVID-19, caused by the SARS-CoV-2 virus, led to the pursuit of solutions for the treatment of symptoms and/or disease. Honey has proven to be effective against viral infections, principally due to its potential antioxidant and anti-inflammatory activities that attenuate oxidative damage induced by pathogens, and by improving the immune system. Therefore, the aim of this review is to overview the abilities of honey to attenuate different COVID-19 symptoms, highlighting the mechanisms associated with these actions and relating the with the different bioactive compounds present. A brief, detailed approach to SARS-CoV-2 mechanism of action is first overviewed to allow readers a deep understanding. Additionally, the compounds and beneficial properties of honey, and its previously application in other similar diseases, are detailed in depth. Despite the already reported efficacy of honey against different viruses and their complications, further studies are urgently needed to explain the molecular mechanisms of activity against COVID-19 and, most importantly, clinical trials enrolling COVID-19 patients.
Collapse
|
3
|
Gareh A, Hassan D, Essa A, Kotb S, Karmi M, Mohamed AEHH, Alkhaibari AM, Elbaz E, Elhawary NM, Hassanen EAA, Lokman MS, El-Gohary FA, Elmahallawy EK. Acaricidal Properties of Four Neem Seed Extracts (Azadirachta indica) on the Camel Tick Hyalomma dromedarii (Acari: Ixodidae). Front Vet Sci 2022; 9:946702. [PMID: 35937305 PMCID: PMC9354004 DOI: 10.3389/fvets.2022.946702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Tick infestation remains one of the major health problems that affect the productivity and comfort of camels. The control of ticks mainly relies on using chemical acaracides. Limited information is available on the potential benefits and activity of various neem extracts on Hyalomma ticks. The present study investigated the acaricidal activity of neem seed extracts at different concentrations against developmental stages of the camel tick Hyalomma dromedarii in comparison to Butox and diazinon. The acaricidal activity of three extracts, namely, hexane extract (HE), methyl chloride extract (MCE), and methanol extract (ME), of neem seeds (Azadirachta indica) were tested at varying concentrations of 5, 10, 15, and 20% on engorged H. dromedarii female ticks at days 1, 3, 5, 7, 12, 16, 20, 28, 37, and 43 after treatment (DPT). Interestingly, results of applying different neem seed extracts to engorged H. dromedarii female ticks showed that the most effective extract was hexane at concentration 20%, causing 100% mortality at 1st day post-application, while methanol extract at 20% and dichloromethane extract at 20% caused the death of all ticks at 28th day posttreatment as compared to Butox® 5.0 and Diazinon-60, which resulted in mortality of all ticks at 3 and 5 DPT, respectively. In addition, no mortality was reported with the application of aqueous extract (AE), which served as the control group. Furthermore, the neem hexane extract exhibited high efficacy against reproductive performance of female ticks, whereas no fertility or oviposition was reported at all of their concentrations. Additionally, no hatchability occurred using all neem extracts, except the aqueous extract, which showing no effect. In the present study, larvae responded more rapidly to the plant extracts, whereas mortality of all larvae was recorded at 24 h after treatment with 5% hexane. Taken together, this study pointed out that the acaricidal effect of hexane extract of neem seeds was more effective and could be economically used for controlling H. dromedarii ticks.
Collapse
Affiliation(s)
- Ahmed Gareh
- Department of Parasitology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Dalia Hassan
- Department of Animal and Poultry Hygiene, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Asmaa Essa
- Department of Animal and Poultry Hygiene, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Saber Kotb
- Department of Animal and Poultry Hygiene, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mohammed Karmi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | | | | | - Elzahara Elbaz
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Nagwa M. Elhawary
- Department of Parasitology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Eman A. A. Hassanen
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Maha S. Lokman
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Fatma A. El-Gohary
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
- *Correspondence: Ehab Kotb Elmahallawy
| |
Collapse
|
4
|
Apitherapy and Periodontal Disease: Insights into In Vitro, In Vivo, and Clinical Studies. Antioxidants (Basel) 2022; 11:antiox11050823. [PMID: 35624686 PMCID: PMC9137511 DOI: 10.3390/antiox11050823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Periodontal diseases are caused mainly by inflammation of the gums and bones surrounding the teeth or by dysbiosis of the oral microbiome, and the Global Burden of Disease study (2019) reported that periodontal disease affects 20-50% of the global population. In recent years, more preference has been given to natural therapies compared to synthetic drugs in the treatment of periodontal disease, and several oral care products, such as toothpaste, mouthwash, and dentifrices, have been developed comprising honeybee products, such as propolis, honey, royal jelly, and purified bee venom. In this study, we systematically reviewed the literature on the treatment of periodontitis using honeybee products. A literature search was performed using various databases, including PubMed, Web of Science, ScienceDirect, Scopus, clinicaltrials.gov, and Google Scholar. A total of 31 studies were reviewed using eligibility criteria published between January 2016 and December 2021. In vitro, in vivo, and clinical studies (randomized clinical trials) were included. Based on the results of these studies, honeybee products, such as propolis and purified bee venom, were concluded to be effective and safe for use in the treatment of periodontitis mainly due to their antimicrobial and anti-inflammatory activities. However, to obtain reliable results from randomized clinical trials assessing the effectiveness of honeybee products in periodontal treatment with long-term follow-up, a broader sample size and assessment of various clinical parameters are needed.
Collapse
|
5
|
Sberna G, Biagi M, Marafini G, Nardacci R, Biava M, Colavita F, Piselli P, Miraldi E, D'Offizi G, Capobianchi MR, Amendola A. In vitro Evaluation of Antiviral Efficacy of a Standardized Hydroalcoholic Extract of Poplar Type Propolis Against SARS-CoV-2. Front Microbiol 2022; 13:799546. [PMID: 35350622 PMCID: PMC8958028 DOI: 10.3389/fmicb.2022.799546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/27/2022] [Indexed: 12/23/2022] Open
Abstract
Except for specific vaccines and monoclonal antibodies, effective prophylactic or post-exposure therapeutic treatments are currently limited for COVID-19. Propolis, a honeybee’s product, has been suggested as a potential candidate for treatment of COVID-19 for its immunomodulatory properties and for its powerful activity against various types of viruses, including common coronaviruses. However, direct evidence regarding the antiviral activities of this product still remains poorly documented. VERO E6 and CALU3 cell lines were infected with SARS-CoV-2 and cultured in the presence of 12.5 or 25 μg/ml of a standardized Hydroalcoholic Extract acronym (sHEP) of Eurasian poplar type propolis and analyzed for viral RNA transcription, for cell damage by optical and electron microscopy, and for virus infectivity by viral titration at 2, 24, 48, and 72 h post-infection. The three main components of sHEP, caffeic acid phenethyl ester, galangin, and pinocembrin, were tested for the antiviral power, either alone or in combination. On both cell lines, sHEP showed significant effects mainly on CALU3 up to 48 h, i.e., some protection from cytopathic effects and consistent reduction of infected cell number, fewer viral particles inside cellular vesicles, reduction of viral titration in supernatants, dramatic drop of N gene negative sense RNA synthesis, and lower concentration of E gene RNA in cell extracts. Interestingly, pre-treatment of cells with sHEP before virus inoculation induced these same effects described previously and was not able to block virus entry. When used in combination, the three main constituents of sHEP showed antiviral activity at the same levels of sHEP. sHEP has a remarkable ability to hinder the replication of SARS-CoV-2, to limit new cycles of infection, and to protect host cells against the cytopathic effect, albeit with rather variable results. However, sHEP do not block the virus entry into the cells. The antiviral activity observed with the three main components of sHEP used in combination highlights that the mechanism underlying the antiviral activity of sHEP is probably the result of a synergistic effect. These data add further emphasis on the possible therapeutic role of this special honeybee’s product as an adjuvant to official treatments of COVID-19 patients for its direct antiviral activity.
Collapse
Affiliation(s)
- Giuseppe Sberna
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Giovanni Marafini
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Roberta Nardacci
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Clinical Department, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Mirella Biava
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesca Colavita
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Pierluca Piselli
- Epidemiology Department, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Elisabetta Miraldi
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Gianpiero D'Offizi
- Clinical Department, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Saint Camillus International University of Health Sciences, Rome, Italy
| | - Maria Rosaria Capobianchi
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Saint Camillus International University of Health Sciences, Rome, Italy
| | - Alessandra Amendola
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
6
|
Bakour M, Laaroussi H, Ousaaid D, El Ghouizi A, Es-safi I, Mechchate H, Lyoussi B. New Insights into Potential Beneficial Effects of Bioactive Compounds of Bee Products in Boosting Immunity to Fight COVID-19 Pandemic: Focus on Zinc and Polyphenols. Nutrients 2022; 14:nu14050942. [PMID: 35267917 PMCID: PMC8912813 DOI: 10.3390/nu14050942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 02/01/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is an epidemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). Populations at risk as well as those who can develop serious complications are people with chronic diseases such as diabetes, hypertension, and the elderly. Severe symptoms of SARS-CoV-2 infection are associated with immune failure and dysfunction. The approach of strengthening immunity may be the right choice in order to save lives. This review aimed to provide an overview of current information revealing the importance of bee products in strengthening the immune system against COVID-19. We highlighted the immunomodulatory and the antiviral effects of zinc and polyphenols, which may actively contribute to improving symptoms and preventing complications caused by COVID-19 and can counteract viral infections. Thus, this review will pave the way for conducting advanced experimental research to evaluate zinc and polyphenols-rich bee products to prevent and reduce the severity of COVID-19 symptoms.
Collapse
Affiliation(s)
- Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Driss Ousaaid
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Asmae El Ghouizi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Imane Es-safi
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland;
| | - Hamza Mechchate
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland;
- Correspondence:
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| |
Collapse
|
7
|
Cilia G, Bortolotti L, Albertazzi S, Ghini S, Nanetti A. Honey bee (Apis mellifera L.) colonies as bioindicators of environmental SARS-CoV-2 occurrence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150327. [PMID: 34543793 PMCID: PMC8438869 DOI: 10.1016/j.scitotenv.2021.150327] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 05/07/2023]
Abstract
SARS-CoV-2 is responsible for the COVID-19 pandemic. Airflows sustain the infection spread, and in densely urbanized areas airborne particulate matters (PMs) are deemed to aggravate the viral transmission. Apis mellifera colonies are used as bioindicators as they allow environmental sampling of different nature, PMs included. This experiment demonstrates for the first time the possible use of honey bee colonies in the SARS-CoV-2 monitoring. The trial was conducted in Bologna on 18 March 2021, when the third wave of the Italian pandemic was at its peak and environmental conditions allowed high PM concentrations in the air. Sterile swabs were lined up at the hive entrance to sample the dusty material on the body of returning foragers. All of them resulted positive for the target genes of viral SARS-CoV-2 RNA. Likewise, internal samples were taken, but they resulted in no amplification of the target sequences. This experiment does not support speculations about the role of honey bees or their products in SARS-CoV-2 transmission. However, it indicates a novel use of A. mellifera colonies in the environmental detection of airborne human pathogens, at least in a densely urbanized area, deserving better understanding and possible integration with data from automatic air samplers.
Collapse
Affiliation(s)
- Giovanni Cilia
- CREA Research Centre for Agriculture and Environment, Via di Saliceto 80, 40128 Bologna, Italy.
| | - Laura Bortolotti
- CREA Research Centre for Agriculture and Environment, Via di Saliceto 80, 40128 Bologna, Italy
| | - Sergio Albertazzi
- CREA Research Centre for Agriculture and Environment, Via di Saliceto 80, 40128 Bologna, Italy
| | - Severino Ghini
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum - Università di Bologna, Italy
| | - Antonio Nanetti
- CREA Research Centre for Agriculture and Environment, Via di Saliceto 80, 40128 Bologna, Italy
| |
Collapse
|
8
|
Ali SAA, Diab SSEM, Elmahallawy EK. Exploring the Psychological Stress, Anxiety Factors, and Coping Mechanisms of Critical Care Unit Nurses During the COVID-19 Outbreak in Saudi Arabia. Front Public Health 2021; 9:767517. [PMID: 34900913 PMCID: PMC8661107 DOI: 10.3389/fpubh.2021.767517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022] Open
Abstract
Background: The spread of coronavirus disease 2019 (COVID-19) throughout the world leads to a series of modifications of several National Health Service organizations, with a potential series of psychological consequences among nurses. Methods: This study was undertaken to assess the psychological stress, anxiety factors, and coping mechanisms of critical care unit nurses during the COVID-19 outbreak. A cross-sectional research design was employed, and the convenience sample consisted of 469 nurses working at several hospitals in Saudi Arabia during the period from July to September 2020. This study used the Generalized Anxiety Disorder, Coping Mechanism, and Nursing Stress scale. Results: Interestingly, more than one-third and one-quarter of the studied nurses had severe and moderate anxiety levels, respectively. In addition, the most anxiety-causing factors included providing care for their infected colleagues and worrying about infecting their families. More than one-quarter and slightly less than half of the studied nurses had high and moderate stress levels, respectively. Furthermore, more than half of the participants had low coping mechanisms and one-quarter had moderate coping mechanisms. In addition, there was a strong positive correlation between anxiety and stress levels, and there was a strong negative correlation between coping mechanisms and stress and anxiety levels. Conclusions: Collectively, this study explored the psychological stress, anxiety factors, and coping mechanisms among critical care unit nurses during the COVID-19 outbreak in Saudi Arabia. Continuous educational programs for nurses on using coping mechanisms should be developed in combination with teaching preventive measures for defining a psychological intervention plan within a mandatory occupational health surveillance program. This study recommends that constructive planning and necessary provision of supportive measures by the legal authorities and policymakers protect nurses and minimize their psychological stress to fulfill high-quality nursing care.
Collapse
Affiliation(s)
- Shaimaa Ahmed Awad Ali
- Department of Nursing, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia.,Critical Care and Emergency Nursing Department, Faculty of Nursing, Mansoura University, Mansoura, Egypt
| | - Samar Salah Eldin Mohamed Diab
- Department of Nursing, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia.,Nursing Department, Faculty of Nursing, Menoufia University, Menoufia, Egypt
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|