1
|
Zhang C, Shao Q, Zhang Y, Liu W, Kang J, Jin Z, Huang N, Ning B. Therapeutic application of nicotinamide: As a potential target for inhibiting fibrotic scar formation following spinal cord injury. CNS Neurosci Ther 2024; 30:e14826. [PMID: 38973179 PMCID: PMC11228357 DOI: 10.1111/cns.14826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024] Open
Abstract
AIM We aimed to confirm the inhibitory effect of nicotinamide on fibrotic scar formation following spinal cord injury in mice using functional metabolomics. METHODS We proposed a novel functional metabolomics strategy to establish correlations between gene expression changes and metabolic phenotypes using integrated multi-omics analysis. Through the integration of quantitative metabolites analysis and assessments of differential gene expression, we identified nicotinamide as a functional metabolite capable of inhibiting fibrotic scar formation and confirmed the effect in vivo using a mouse model of spinal cord injury. Furthermore, to mimic fibrosis models in vitro, primary mouse embryonic fibroblasts and spinal cord fibroblasts were stimulated by TGFβ, and the influence of nicotinamide on TGFβ-induced fibrosis-associated genes and its underlying mechanism were examined. RESULTS Administration of nicotinamide led to a reduction in fibrotic lesion area and promoted functional rehabilitation following spinal cord injury. Nicotinamide effectively downregulated the expression of fibrosis genes, including Col1α1, Vimentin, Col4α1, Col1α2, Fn1, and Acta2, by repressing the TGFβ/SMADs pathway. CONCLUSION Our functional metabolomics strategy identified nicotinamide as a metabolite with the potential to inhibit fibrotic scar formation following SCI by suppressing the TGFβ/SMADs signaling. This finding provides new therapeutic strategies and new ideas for clinical treatment.
Collapse
Affiliation(s)
- Ce Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qiang Shao
- Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Ying Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenjing Liu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Jianning Kang
- Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Zhengxin Jin
- Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Nana Huang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bin Ning
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
2
|
Wang Y, Hu D, Wan L, Yang S, Liu S, Wang Z, Li J, Li J, Zheng Z, Cheng C, Wang Y, Wang H, Tian X, Chen W, Li S, Zhang J, Zha X, Chen J, Zhang H, Xu KF. GOLM1 Promotes Pulmonary Fibrosis through Upregulation of NEAT1. Am J Respir Cell Mol Biol 2024; 70:178-192. [PMID: 38029327 DOI: 10.1165/rcmb.2023-0151oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal progressive disease with elusive molecular mechanisms and limited therapeutic options. Aberrant activation of fibroblasts is a central hallmark of lung fibrosis. Here, we report that Golgi membrane protein 1 (GOLM1, also known as GP73 or GOLPH2) was increased in the lungs of patients with pulmonary fibrosis and mice with bleomycin (BLM)-induced pulmonary fibrosis. Loss of GOLM1 inhibited proliferation, differentiation, and extracellular matrix deposition of fibroblasts, whereas overexpression of GOLM1 exerted the opposite effects. Similarly, worsening pulmonary fibrosis after BLM treatment was observed in GOLM1-knock-in mice, whereas BLM-treated Golm1-knockout mice exhibited alleviated pulmonary fibrosis and collagen deposition. Furthermore, we identified long noncoding RNA NEAT1 downstream of GOLM1 as a potential mediator of pulmonary fibrosis through increased GOLM1 expression. Depletion of NEAT1 inhibited fibroblast proliferation and extracellular matrix production and reversed the profibrotic effects of GOLM1 overexpression. Additionally, we identified KLF4 as a downstream mediator of GOLM1 signaling to NEAT1. Our findings suggest that GOLM1 plays a pivotal role in promoting pulmonary fibrosis through the GOLM1-KLF4-NEAT1 signaling axis. Targeting GOLM1 and its downstream pathways may represent a novel therapeutic strategy for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Yani Wang
- Department of Pulmonary and Critical Care Medicine and
| | - Danjing Hu
- Department of Pulmonary and Critical Care Medicine and
| | - Linyan Wan
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institutes of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuhui Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institutes of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Song Liu
- Medical Science Center, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zixi Wang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Jie Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institutes of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia Li
- Department of Pulmonary and Critical Care Medicine and
| | - Zhoude Zheng
- Department of Pulmonary and Critical Care Medicine and
| | | | - Yanan Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institutes of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hanghang Wang
- Department of Pulmonary and Critical Care Medicine and
| | - Xinlun Tian
- Department of Pulmonary and Critical Care Medicine and
| | - Wenhui Chen
- Department of Lung Transplantation, Centre for Lung Transplantation, Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; and
| | - Ji Zhang
- Lung Transplantation Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Jingyu Chen
- Lung Transplantation Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Hongbing Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institutes of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai-Feng Xu
- Department of Pulmonary and Critical Care Medicine and
| |
Collapse
|
3
|
Ge S, Guo Z, Xiao T, Sun P, Yang B, Ying Y. Qingfei Tongluo Mixture Attenuates Bleomycin-Induced Pulmonary Inflammation and Fibrosis through mTOR-Dependent Autophagy in Rats. Mediators Inflamm 2024; 2024:5573353. [PMID: 38361765 PMCID: PMC10869187 DOI: 10.1155/2024/5573353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024] Open
Abstract
As an interstitial fibrosis disease characterized by diffuse alveolitis and structural alveolar disorders, idiopathic pulmonary fibrosis (IPF) has high lethality but lacks limited therapeutic drugs. A hospital preparation used for the treatment of viral pneumonia, Qingfei Tongluo mixture (QFTL), is rumored to have protective effects against inflammatory and respiratory disease. This study aims to confirm whether it has a therapeutic effect on bleomycin-induced IPF in rats and to elucidate its mechanism of action. Male SD rats were randomly divided into the following groups: control, model, CQ + QFTL (84 mg/kg chloroquine (CQ) + 3.64 g/kg QFTL), QFTL-L, M, H (3.64, 7.28, and 14.56 g/kg, respectively) and pirfenidone (PFD 420 mg/kg). After induction modeling and drug intervention, blood samples and lung tissue were collected for further detection. Body weight and lung coefficient were examined, combined with hematoxylin and eosin (H&E) and Masson staining to observe lung tissue lesions. The enzyme-linked immunosorbent assay (ELISA) and the hydroxyproline (HYP) assay kit were used to detect changes in proinflammatory factors (transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β)) and HYP. Immunohistochemistry and Western blotting were performed to observe changes in proteins related to pulmonary fibrosis (α-smooth muscle actin (α-SMA) and matrix metalloproteinase 12 (MMP12)) and autophagy (P62 and mechanistic target of rapamycin (mTOR)). Treatment with QFTL significantly improved the adverse effects of bleomycin on body weight, lung coefficient, and pathological changes. Then, QFTL reduced bleomycin-induced increases in proinflammatory mediators and HYP. The expression changes of pulmonary fibrosis and autophagy marker proteins are attenuated by QFTL. Furthermore, the autophagy inhibitor CQ significantly reversed the downward trend in HYP levels and α-SMA protein expression, which QFTL improved in BLM-induced pulmonary fibrosis rats. In conclusion, QFTL could effectively attenuate bleomycin-induced inflammation and pulmonary fibrosis through mTOR-dependent autophagy in rats. Therefore, QFTL has the potential to be an alternative treatment for IPF in clinical practice.
Collapse
Affiliation(s)
- Shuyu Ge
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhenghong Guo
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Ting Xiao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
| | - Pingping Sun
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Bo Yang
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yin Ying
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
4
|
Zheng Y, Schupp JC, Adams T, Clair G, Justet A, Ahangari F, Yan X, Hansen P, Carlon M, Cortesi E, Vermant M, Vos R, De Sadeleer LJ, Rosas IO, Pineda R, Sembrat J, Königshoff M, McDonough JE, Vanaudenaerde BM, Wuyts WA, Kaminski N, Ding J. Unagi: Deep Generative Model for Deciphering Cellular Dynamics and In-Silico Drug Discovery in Complex Diseases. RESEARCH SQUARE 2023:rs.3.rs-3676579. [PMID: 38196613 PMCID: PMC10775382 DOI: 10.21203/rs.3.rs-3676579/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Human diseases are characterized by intricate cellular dynamics. Single-cell sequencing provides critical insights, yet a persistent gap remains in computational tools for detailed disease progression analysis and targeted in-silico drug interventions. Here, we introduce UNAGI, a deep generative neural network tailored to analyze time-series single-cell transcriptomic data. This tool captures the complex cellular dynamics underlying disease progression, enhancing drug perturbation modeling and discovery. When applied to a dataset from patients with Idiopathic Pulmonary Fibrosis (IPF), UNAGI learns disease-informed cell embeddings that sharpen our understanding of disease progression, leading to the identification of potential therapeutic drug candidates. Validation via proteomics reveals the accuracy of UNAGI's cellular dynamics analyses, and the use of the Fibrotic Cocktail treated human Precision-cut Lung Slices confirms UNAGI's predictions that Nifedipine, an antihypertensive drug, may have antifibrotic effects on human tissues. UNAGI's versatility extends to other diseases, including a COVID dataset, demonstrating adaptability and confirming its broader applicability in decoding complex cellular dynamics beyond IPF, amplifying its utility in the quest for therapeutic solutions across diverse pathological landscapes.
Collapse
Affiliation(s)
- Yumin Zheng
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jonas C. Schupp
- Pulmonary, Critical Care and Sleep Medicine, Yale University, School of Medicine, New Haven, CT, United States
| | - Taylor Adams
- Pulmonary, Critical Care and Sleep Medicine, Yale University, School of Medicine, New Haven, CT, United States
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Aurelien Justet
- Pulmonary, Critical Care and Sleep Medicine, Yale University, School of Medicine, New Haven, CT, United States
| | - Farida Ahangari
- Pulmonary, Critical Care and Sleep Medicine, Yale University, School of Medicine, New Haven, CT, United States
| | - Xiting Yan
- Pulmonary, Critical Care and Sleep Medicine, Yale University, School of Medicine, New Haven, CT, United States
| | - Paul Hansen
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Marianne Carlon
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - Emanuela Cortesi
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - Marie Vermant
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - Robin Vos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - Laurens J. De Sadeleer
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - Ivan O Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ricardo Pineda
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Sembrat
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Melanie Königshoff
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John E. McDonough
- Pulmonary, Critical Care and Sleep Medicine, Yale University, School of Medicine, New Haven, CT, United States
| | - Bart M. Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - Wim A. Wuyts
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale University, School of Medicine, New Haven, CT, United States
| | - Jun Ding
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
| |
Collapse
|
5
|
Li Q, Wang Y, Ji L, He J, Liu H, Xue W, Yue H, Dong R, Liu X, Wang D, Zhang H. Cellular and molecular mechanisms of fibrosis and resolution in bleomycin-induced pulmonary fibrosis mouse model revealed by spatial transcriptome analysis. Heliyon 2023; 9:e22461. [PMID: 38125541 PMCID: PMC10730595 DOI: 10.1016/j.heliyon.2023.e22461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
The bleomycin-induced pulmonary fibrosis mouse model is commonly used in idiopathic pulmonary fibrosis research, but its cellular and molecular changes and efficiency as a model at the molecular level are not fully understood. In this study, we used spatial transcriptome technology to investigate the cellular and molecular changes in the lungs of bleomycin-induced pulmonary fibrosis mouse models. Our analyses revealed cell dynamics during fibrosis in epithelial cells, mesenchymal cells, immunocytes, and erythrocytes with their spatial distribution available. We confirmed the differentiation of the alveolar type II (AT2) cell type expressing Krt8, and we inferred their trajectories from both the AT2 cells and club cells. In addition to the fibrosis process, we also noticed evidence of self-resolving, especially to identify possible self-resolving related genes, including Prkca. Our findings provide insights into the cellular and molecular mechanisms underlying fibrosis resolution and represent the first spatiotemporal transcriptome dataset of the bleomycin-induced fibrosis mouse model.
Collapse
Affiliation(s)
| | - Yue Wang
- BGI-Beijing, Beijing 102601, China
| | - Liu Ji
- Dalian Maternal and Child Health Hospital of Liaoning Province, Dalian 116033, China
| | - Jianhan He
- Department of Clinical Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | | | | | - Huihui Yue
- Department of Clinical Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Ruihan Dong
- Department of Clinical Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Xin Liu
- BGI-Beijing, Beijing 102601, China
| | - Daqing Wang
- Dalian Maternal and Child Health Hospital of Liaoning Province, Dalian 116033, China
| | - Huilan Zhang
- Department of Clinical Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Dong Z, Li T, Wang C, Zhou Y, Tong Z, Du X. Sestrin2 Regulates Endoplasmic Reticulum Stress-Dependent Ferroptosis to Engage Pulmonary Fibrosis by Nuclear Factor Erythroid 2-Related Factor 2/Activating Transcription Factor 4 (NRF2/ATF4). J Immunol Res 2023; 2023:9439536. [PMID: 38023615 PMCID: PMC10645490 DOI: 10.1155/2023/9439536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Pulmonary fibrosis (PF) can lead to chronic inflammation, the destruction of alveoli and irreversible lung damage. Sestrin2 is a highly protective stress-inducible protein that is involved in the cell response to various stress factors and the regulation of homeostasis and has a certain protective effect against PF. In this study, TGF-β1 was used to establish a PF cell model. Bleomycin was used to induce PF in mice, and the expression levels of related proteins were detected by western blotting. The levels of the inflammatory cytokine, TNF-α, IL-6, and IL-1β were detected by enzyme-linked immunosorbent assays. Immunoprecipitation was used to verify the interaction between ATF4 and NRF2 and between Sestrin2 and NRF2 to explore the specific mechanism by which Sestrin2 affects PF. The results showed that Sestrin2 inhibited fibroblast-to-myofibroblast transition (FMT), improved inflammation, promoted cell proliferation, and alleviated PF. Activating transcription factor 4/nuclear factor erythroid 2-related factor 2 (NRF2/ATF4) signaling pathway activation could alleviate endoplasmic reticulum stress, inhibit ferroptosis and FMT, and reduce reactive oxygen species levels, thereby alleviating PF. Overexpression of ATF4 and the addition of a ferroptosis inducer reversed Sestrin2-mediated alleviation of PF. In conclusion, Sestrin2 alleviates PF and endoplasmic reticulum stress-dependent ferroptosis through the NRF2/ATF4 pathway.
Collapse
Affiliation(s)
- Zhaoxing Dong
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315000, Zhejiang Province, China
| | - Ting Li
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315000, Zhejiang Province, China
| | - Cenli Wang
- Department of Respiratory and Critical Care Medicine, Xiangshan Red Cross Taiwan Compatriot Hospital Medical and Health Group, Ningbo 315000, Zhejiang, China
| | - Yong Zhou
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315000, Zhejiang Province, China
| | - Zhongkai Tong
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315000, Zhejiang Province, China
| | - Xuekui Du
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315000, Zhejiang Province, China
| |
Collapse
|
7
|
Ruan J, Cui X, Yan H, Jia C, Ou T, Shang Z. Expression profiles of circular RNAs and interaction networks of competing endogenous RNAs in neurogenic bladder of rats following suprasacral spinal cord injury. PeerJ 2023; 11:e16042. [PMID: 37744239 PMCID: PMC10512963 DOI: 10.7717/peerj.16042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Background Neurogenic bladder (NB) following suprasacral spinal cord injury (SSCI) is an interstitial disease with the structural remodeling of bladder tissue and matrix over-deposition. Circular RNAs (circRNAs) are involved in fibrotic disease development through their post-transcriptional regulatory functions. This study aimed to use transcriptome high-throughput sequencing to investigate the process of NB and bladder fibrosis after SSCI. Methods Spinal cord transection at the T10-T11 level was used to construct the SSCI model in rats (10-week-old female Wistar rats, weighing 200 ± 20 g). The bladders were collected without (sham group) and with (SSCI 1-3 groups) NB status. Morphological examination was conducted to assess the extent of bladder fibrosis. Additionally, RNA sequencing was utilized to determine mRNAs and circRNAs expression patterns. The dynamic changes of differentially expressed mRNAs (DEMs) and circRNAs (DECs) in different periods of SSCI were further analyzed. Results Bladder weight, smooth muscle cell hypertrophy, and extracellular matrix gradually increased after SSCI. Compared with the sham group, 3,255 DEMs and 1,339 DECs, 3,449 DEMs and 1,324 DECs, 884 DEMs, and 1,151 DECs were detected in the SSCI 1-3 groups, respectively. Specifically, circRNA3621, circRNA0617, circRNA0586, and circRNA4426 were significant DECs common to SSCI 1-3 groups compared with the sham group. Moreover, Gene Ontology (GO) enrichment suggested that inflammatory and chronic inflammatory responses were the key events in NB progression following SSCI. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment associated with the "Chemokine signaling pathway", the "IL-17 signaling pathway", and the "TGF-beta signaling pathway" suggests their potential involvement in regulating biological processes. The circRNA-miRNA-mRNA interaction networks of DECs revealed rno-circ-2239 (micu2) as the largest node, indicating that the rno-circ-2239-miRNA-mRNA-mediated network may play a critical role in the pathogenesis of SSCI-induced NB. Conclusions This study offers a comprehensive outlook on the possible roles of DEMs and DECs in bladder fibrosis and NB progression following SSCI. These findings have the potential to serve as novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jimeng Ruan
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Xin Cui
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Hao Yan
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Chunsong Jia
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Tongwen Ou
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Zhenhua Shang
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Li YJ, Shi JR, Li SC, Wang LM, Dhar R, Li N, Cao XW, Li ZG, Tang HF. Phosphodiesterase type 10A inhibitor attenuates lung fibrosis by targeting myofibroblast activation. iScience 2023; 26:106586. [PMID: 37138780 PMCID: PMC10149334 DOI: 10.1016/j.isci.2023.106586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/30/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Pulmonary fibrosis (PF) is a fatal and irreversible respiratory disease accompanied by excessive fibroblast activation. Previous studies have suggested that cAMP signaling pathway and cGMP-PKG signaling pathway are continuously down-regulated in lung fibrosis, whereas PDE10A has a specifically expression in fibroblasts/myofibroblasts in lung fibrosis. In this study, we demonstrated that overexpression of PDE10A induces myofibroblast differentiation, and papaverine, as a PDE10A inhibitor used for vasodilation, inhibits myofibroblast differentiation in human fibroblasts, Meanwhile, papaverine alleviated bleomycin-induced pulmonary fibrosis and amiodarone-induced oxidative stress, papaverine downregulated VASP/β-catenin pathway to reduce the myofibroblast differentiation. Our results first demonstrated that papaverine inhibits TGFβ1-induced myofibroblast differentiation and lung fibrosis by VASP/β-catenin pathway.
Collapse
Affiliation(s)
- Ya-Jun Li
- Department of Pharmacology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jian-Rong Shi
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310003, China
| | - Shu-Chan Li
- Department of Pharmacology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Lu-Ming Wang
- Department of Thoracic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Rana Dhar
- Department of Pharmacology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ning Li
- Department of Pharmacology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xin-Wei Cao
- Department of Pharmacology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zi-Gang Li
- Department of Anesthesiology, Women’s Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Hui-Fang Tang
- Department of Pharmacology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, and Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Corresponding author
| |
Collapse
|
9
|
Zhang A, Zou Y, Xu Q, Tian S, Wang J, Li Y, Dong R, Zhang L, Jiang J, Wang L, Tao K, Meng Z, Liu Y. Investigation of the Pharmacological Effect and Mechanism of Jinbei Oral Liquid in the Treatment of Idiopathic Pulmonary Fibrosis Using Network Pharmacology and Experimental Validation. Front Pharmacol 2022; 13:919388. [PMID: 35784749 PMCID: PMC9240387 DOI: 10.3389/fphar.2022.919388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
Overview: Idiopathic pulmonary fibrosis (IPF) is a disease caused by many factors, eventually resulting in lung function failure. Jinbei oral liquid (JBOL) is a traditional Chinese clinical medicine used to treat pulmonary diseases. However, the pharmacological effects and mechanism of the action of JBOL on IPF remain unclear. This study investigated the protective effects and mechanism of the action of JBOL on IPF using network pharmacology analysis, followed by in vivo and in vitro experimental validation. Methods: The components of JBOL and their targets were screened using the TCMSP database. IPF-associated genes were obtained using DisGeNET and Drugbank. The common targets of JBOL and IPF were identified with the STRING database, and a protein-protein interaction (PPI) network was constructed. GO and KEGG analyses were performed. Sprague-Dawley rats were injected with bleomycin (BLM) to establish an IPF model and treated orally with JBOL at doses of 5.4, 10.8, and 21.6 ml/kg. A dose of 54 mg/kg of pirfenidone was used as a control. All rats were treated for 28 successive days. Dynamic pulmonary compliance (Cdyn), minute ventilation volume (MVV), vital capacity (VC), and lung resistance (LR) were used to evaluate the efficacy of JBOL. TGF-β-treated A549 cells were exposed to JBOL, and epithelial-to-mesenchymal transition (EMT) changes were assessed. Western blots were performed. Results: Two hundred seventy-eight compounds and 374 targets were screened, and 103 targets related to IPF were identified. Core targets, including MAPK1 (ERK2), MAPK14 (p38), JUN, IL-6, AKT, and others, were identified by constructing a PPI network. Several pathways were involved, including the MAPK pathway. Experimentally, JBOL increased the levels of the pulmonary function indices (Cdyn, MVV, and VC) in a dose-dependent manner and reduced the RL level in the BLM-treated rats. JBOL increased the epithelial marker E-cadherin and suppressed the mesenchymal marker vimentin expression in the TGF-β-treated A549 cells. The suppression of ERK1/2, JNK, and p38 phosphorylation by JBOL was validated. Conclusion: JBOL had therapeutic effects against IPF by regulating pulmonary function and EMT through a systemic network mechanism, thus supporting the need for future clinical trials of JBOL.
Collapse
Affiliation(s)
- Aijun Zhang
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Yixuan Zou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingcui Xu
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Shuo Tian
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yilin Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Renchao Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liangzong Zhang
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Juanjuan Jiang
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Lili Wang
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Kai Tao
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Zhaoqing Meng
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Yanqiu Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Transcriptome analysis to reveal the mechanism of the effect of Echinops latifolius polysaccharide B on palmitate-induced insulin-resistant. Biomed Pharmacother 2021; 143:112203. [PMID: 34563954 DOI: 10.1016/j.biopha.2021.112203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 01/13/2023] Open
Abstract
Hepatic insulin resistance is a crucial pathological process in type 2 diabetes mellitus (T2DM) associated with visceral adiposity and metabolic disorders. Echinops latifolius polysaccharide B (ETPB), a polysaccharide extracted from Echinops latifolius Tausch, increases insulin sensitivity in the high-fat diet-fed and STZ induced SD rat model and even prevented hepatic metabolic disorders. However, the mechanism by which ETPB improves carbohydrate and lipid metabolisms in the liver with insulin resistance remains largely unknown. In the present work, an lnsulin resistance cell model (IR-HepG2) was established. Glucose consumption, glycogen content, triglycerides (TG), and free fatty acids (FFAs) levels were detected. The result revealed that the intervention of ETPB significantly increased glucose consumption and glycogen synthesis and reduced FFAs and TG production in IR-HepG2 cells. Further, we also employed RNA-seq to identify differentially expressed miRNAs (DEMs) and mRNAs (DEGs) with a fold change of ≥ 1.5 and p-value of <0.05. Finally, we identified 1028, 682, 382, 1614, 519 and 825 DEGs, and 71, 113, 94, 68, 52 and 38 DEMs in different comparisons, respectively. Based on a short time-series expression miner (STEM) analysis, six profiles were chosen for further analysis. Seventeen insulin resistance-associated dynamic DEGs were identified during ETPB stimulation. Based on these dynamic DEGs, the related miRNAs were acquired from DEMs, and an integrated miRNA-mRNA regulatory network was subsequently constructed. Besides, some DEGs and DEMs were validated using qPCR. This study provides transcriptomic evidence of the molecular mechanism involved in HepG2 insulin resistance, leading to the discovery of miRNA-based target therapies for ETPB.
Collapse
|