1
|
Lestin L, Villemur R. The bacterial strains JAM1 T and GP59 of the species Methylophaga nitratireducenticrescens differ in their expression profiles of denitrification genes in oxic and anoxic cultures. PeerJ 2024; 12:e18361. [PMID: 39484211 PMCID: PMC11526790 DOI: 10.7717/peerj.18361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/29/2024] [Indexed: 11/03/2024] Open
Abstract
Background Strain JAM1T and strain GP59 of the methylotrophic, bacterial species Methylophaga nitratireducenticrescens were isolated from a microbial community of the biofilm that developed in a fluidized-bed, methanol-fed, marine denitrification system. Despite of their common origin, both strains showed distinct physiological characters towards the dynamics of nitrate (NO 3 - ) reduction. Strain JAM1T can reduceNO 3 - to nitrite (NO 2 - ) but notNO 2 - to nitric oxide (NO) as it lacks a NO-formingNO 2 - reductase. Strain GP59 on the other hand can carry the complete reduction ofNO 3 - to N2. Strain GP59 cultured under anoxic conditions shows a 24-48h lag phase beforeNO 3 - reduction occurs. In strain JAM1T cultures,NO 3 - reduction begins immediately with accumulation ofNO 2 - . Furthermore,NO 3 - is reduced under oxic conditions in strain JAM1T cultures, which does not appear in strain GP59 cultures. These distinct characters suggest differences in the regulation pathways impacting the expression of denitrification genes, and ultimately growth. Methods Both strains were cultured under oxic conditions either with or withoutNO 3 - , or under anoxic conditions withNO 3 - . Transcript levels of selected denitrification genes (nar1 and nar2 encodingNO 3 - reductases, nirK encodingNO 2 - reductase, narK12f encodingNO 3 - /NO 2 - transporter) and regulatory genes (narXL and fnr) were determined by quantitative reverse transcription polymerase chain reaction. We also derived the transcriptomes of these cultures and determined their relative gene expression profiles. Results The transcript levels of nar1 were very low in strain GP59 cultured under oxic conditions withoutNO 3 - . These levels were 37 times higher in strain JAM1T cultured under the same conditions, suggesting that Nar1 was expressed at sufficient levels in strain JAM1T before the inoculation of the oxic and anoxic cultures to carryNO 3 - reduction with no lag phase. Transcriptomic analysis revealed that each strain had distinct relative gene expression profiles, and oxygen had high impact on these profiles. Among denitrification genes and regulatory genes, the nnrS3 gene encoding factor involved in NO-response function had its relative gene transcript levels 5 to 10 times higher in strain GP59 cultured under oxic conditions withNO 3 - than those in both strains cultured under oxic conditions withoutNO 3 - . Since NnrS senses NO, these results suggest that strain GP59 reducedNO 3 - to NO under oxic conditions, but because of the oxic environment, NO is oxidized back toNO 3 - by flavohemoproteins (NO dioxygenase; Hmp), explaining whyNO 3 - reduction is not observed in strain GP59 cultured under oxic conditions. Conclusions Understanding how these two strains manage the regulation of the denitrification pathway provided some clues on how they response to environmental changes in the original biofilm community, and, by extension, how this community adapts in providing efficient denitrifying activities.
Collapse
Affiliation(s)
- Livie Lestin
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Richard Villemur
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| |
Collapse
|
2
|
Sennett LB, Roco CA, Lim NYN, Yavitt JB, Dörsch P, Bakken LR, Shapleigh JP, Frostegård Å. Determining how oxygen legacy affects trajectories of soil denitrifier community dynamics and N 2O emissions. Nat Commun 2024; 15:7298. [PMID: 39181870 PMCID: PMC11344836 DOI: 10.1038/s41467-024-51688-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Denitrification - a key process in the global nitrogen cycle and main source of the greenhouse gas N2O - is intricately controlled by O2. While the transition from aerobic respiration to denitrification is well-studied, our understanding of denitrifier communities' responses to cyclic oxic/anoxic shifts, prevalent in natural and engineered systems, is limited. Here, agricultural soil is exposed to repeated cycles of long or short anoxic spells (LA; SA) or constant oxic conditions (Ox). Surprisingly, denitrification and N2O reduction rates are three times greater in Ox than in LA and SA during a final anoxic incubation, despite comparable bacterial biomass and denitrification gene abundances. Metatranscriptomics indicate that LA favors canonical denitrifiers carrying nosZ clade I. Ox instead favors nosZ clade II-carrying partial- or non-denitrifiers, suggesting efficient partnering of the reduction steps among organisms. SA has the slowest denitrification progression and highest accumulation of intermediates, indicating less functional coordination. The findings demonstrate how adaptations of denitrifier communities to varying O2 conditions are tightly linked to the duration of anoxic episodes, emphasizing the importance of knowing an environment's O2 legacy for accurately predicting N2O emissions originating from denitrification.
Collapse
Affiliation(s)
- Louise B Sennett
- Faculty of Chemistry, Biotechnology, and Food Sciences, Norwegian University of Life Sciences, Norwegian University of Life Sciences, Ås, Norway.
| | - Constance A Roco
- Faculty of Chemistry, Biotechnology, and Food Sciences, Norwegian University of Life Sciences, Norwegian University of Life Sciences, Ås, Norway
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Natalie Y N Lim
- Faculty of Chemistry, Biotechnology, and Food Sciences, Norwegian University of Life Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Joseph B Yavitt
- Department of Natural Resources, Cornell University, Ithaca, NY, USA
| | - Peter Dörsch
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Lars R Bakken
- Faculty of Chemistry, Biotechnology, and Food Sciences, Norwegian University of Life Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Åsa Frostegård
- Faculty of Chemistry, Biotechnology, and Food Sciences, Norwegian University of Life Sciences, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
3
|
Shi Y, Gahagan AC, Morrison MJ, Gregorich E, Lapen DR, Chen W. Stratified Effects of Tillage and Crop Rotations on Soil Microbes in Carbon and Nitrogen Cycles at Different Soil Depths in Long-Term Corn, Soybean, and Wheat Cultivation. Microorganisms 2024; 12:1635. [PMID: 39203479 PMCID: PMC11356494 DOI: 10.3390/microorganisms12081635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Understanding the soil bacterial communities involved in carbon (C) and nitrogen (N) cycling can inform beneficial tillage and crop rotation practices for sustainability and crop production. This study evaluated soil bacterial diversity, compositional structure, and functions associated with C-N cycling at two soil depths (0-15 cm and 15-30 cm) under long-term tillage (conventional tillage [CT] and no-till [NT]) and crop rotation (monocultures of corn, soybean, and wheat and corn-soybean-wheat rotation) systems. The soil microbial communities were characterized by metabarcoding the 16S rRNA gene V4-V5 regions using Illumina MiSeq. The results showed that long-term NT reduced the soil bacterial diversity at 15-30 cm compared to CT, while no significant differences were found at 0-15 cm. The bacterial communities differed significantly at the two soil depths under NT but not under CT. Notably, over 70% of the tillage-responding KEGG orthologs (KOs) associated with C fixation (primarily in the reductive citric acid cycle) were more abundant under NT than under CT at both depths. The tillage practices significantly affected bacteria involved in biological nitrogen (N2) fixation at the 0-15 cm soil depth, as well as bacteria involved in denitrification at both soil depths. The crop type and rotation regimes had limited effects on bacterial diversity and structure but significantly affected specific C-N-cycling genes. For instance, three KOs associated with the Calvin-Benson cycle for C fixation and four KOs related to various N-cycling processes were more abundant in the soil of wheat than in that of corn or soybean. These findings indicate that the long-term tillage practices had a greater influence than crop rotation on the soil bacterial communities, particularly in the C- and N-cycling processes. Integrated management practices that consider the combined effects of tillage, crop rotation, and crop types on soil bacterial functional groups are essential for sustainable agriculture.
Collapse
Affiliation(s)
- Yichao Shi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada; (Y.S.); (A.C.G.); (M.J.M.); (E.G.); (D.R.L.)
| | - Alison Claire Gahagan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada; (Y.S.); (A.C.G.); (M.J.M.); (E.G.); (D.R.L.)
| | - Malcolm J. Morrison
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada; (Y.S.); (A.C.G.); (M.J.M.); (E.G.); (D.R.L.)
| | - Edward Gregorich
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada; (Y.S.); (A.C.G.); (M.J.M.); (E.G.); (D.R.L.)
| | - David R. Lapen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada; (Y.S.); (A.C.G.); (M.J.M.); (E.G.); (D.R.L.)
| | - Wen Chen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada; (Y.S.); (A.C.G.); (M.J.M.); (E.G.); (D.R.L.)
- Department of Biology, University of Ottawa, 60 Marie Curie Prv., Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
4
|
Zhu X, Lin F, Sun J, Li X, Zhu G, Lu Y, Sun L, Wang H. Effects of Weak Electric Fields on the Denitrification Performance of Pseudomonas stutzeri: Insights into Enzymes and Metabolic Pathways. Microorganisms 2024; 12:1218. [PMID: 38930600 PMCID: PMC11205929 DOI: 10.3390/microorganisms12061218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Enhanced denitrification has been reported under weak electric fields. However, it is difficult to investigate the mechanism of enhanced denitrification due to the complex interspecific interactions of mixed-culture systems. In this study, Pseudomonas stutzeri, capable of denitrification under anaerobic conditions, was selected for treating low COD/N (2.0, ratio between concentration of chemical oxygen demand and NO3--N) artificial wastewater under constant external voltages of 0.2, 0.4, and 0.6 V. The results revealed that P. stutzeri exhibited the highest efficiency in nitrate reduction at 0.2 V. Moreover, the maximum nitrate removal rate was 15.96 mg/(L·h) among the closed-circuit groups, 19.39% higher than that under the open-circuit group. Additionally, a notable reduction in nitrite accumulation was observed under weak electric fields. Enzyme activity analysis showed that the nitrate reductase activities were significantly increased among the closed-circuit groups, while nitrite reductase activities were inhibited. Transcriptomic analysis indicated that amino acid metabolism, carbohydrate metabolism, and energy metabolism were increased, enhancing the resistance of P. stutzeri to environmental stress and the efficiency of carbon source utilization for denitrification. The current study examined the impacts of weak electric fields on enzyme activities and microbial metabolic pathways and offers valuable insights into the mechanism by which denitrification is enhanced by weak electric fields.
Collapse
Affiliation(s)
- Xuyan Zhu
- School of Energy and Environment, Southeast University, Nanjing 210096, China; (X.Z.); (F.L.); (J.S.); (X.L.); (Y.L.); (L.S.)
| | - Feng Lin
- School of Energy and Environment, Southeast University, Nanjing 210096, China; (X.Z.); (F.L.); (J.S.); (X.L.); (Y.L.); (L.S.)
| | - Ji Sun
- School of Energy and Environment, Southeast University, Nanjing 210096, China; (X.Z.); (F.L.); (J.S.); (X.L.); (Y.L.); (L.S.)
| | - Xin Li
- School of Energy and Environment, Southeast University, Nanjing 210096, China; (X.Z.); (F.L.); (J.S.); (X.L.); (Y.L.); (L.S.)
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing 210096, China; (X.Z.); (F.L.); (J.S.); (X.L.); (Y.L.); (L.S.)
| | - Yongze Lu
- School of Energy and Environment, Southeast University, Nanjing 210096, China; (X.Z.); (F.L.); (J.S.); (X.L.); (Y.L.); (L.S.)
| | - Liwei Sun
- School of Energy and Environment, Southeast University, Nanjing 210096, China; (X.Z.); (F.L.); (J.S.); (X.L.); (Y.L.); (L.S.)
| | - Hongyang Wang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
5
|
Zhang Z, Huang Z, Li H, Wang D, Yao Y, Dong K. Impact of Nitrate on the Removal of Pollutants from Water in Reducing Gas-Based Membrane Biofilm Reactors: A Review. MEMBRANES 2024; 14:109. [PMID: 38786943 PMCID: PMC11123063 DOI: 10.3390/membranes14050109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The membrane biofilm reactor (MBfR) is a novel wastewater treatment technology, garnering attention due to its high gas utilization rate and effective pollutant removal capability. This paper outlines the working mechanism, advantages, and disadvantages of MBfR, and the denitrification pathways, assessing the efficacy of MBfR in removing oxidized pollutants (sulfate (SO4-), perchlorate (ClO4-)), heavy metal ions (chromates (Cr(VI)), selenates (Se(VI))), and organic pollutants (tetracycline (TC), p-chloronitrobenzene (p-CNB)), and delves into the role of related microorganisms. Specifically, through the addition of nitrates (NO3-), this paper analyzes its impact on the removal efficiency of other pollutants and explores the changes in microbial communities. The results of the study show that NO3- inhibits the removal of other pollutants (oxidizing pollutants, heavy metal ions and organic pollutants), etc., in the simultaneous removal of multiple pollutants by MBfR.
Collapse
Affiliation(s)
- Zhiheng Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Zhian Huang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Haixiang Li
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Dunqiu Wang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Yi Yao
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Kun Dong
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
- Guangxi Engineering Research Center of Comprehensive Treatment for Agricultural Non-Point Source Pollution, Guilin 541006, China
- Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
| |
Collapse
|
6
|
Dong X, Yu J, Ye C, Liu D, Zou D, Han Z, Yu Q, Huang K, Li H, Wei X. Control of tobacco-specific nitrosamines by the Bacillus siamensis: Strain isolation, genome sequencing, mechanism analysis and genetic engineering. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133877. [PMID: 38452666 DOI: 10.1016/j.jhazmat.2024.133877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
Nitrosamines are considered carcinogens that threaten human health and environment. Especially, high contents of Tobacco-specific nitrosamines (TSNAs) are generated during the fermentation process of cigar tobacco. To control the accumulation of TSNAs, one novel strain WD-32 was isolated by comprehensively evaluating the reduction characteristics of nitrate, nitrite, and TSNAs, and this strain was identified as Bacillus siamensis by 16 S rRNA gene analysis and MALDI-TOF MS evaluation. Subsequently, whole genome sequencing of B. siamensis WD-32 was carried out to excavate important genes and enzymes involved, and the possible reduction mechanism of TSNAs was explored. More importantly, the reduction of TSNAs by B. siamensis was significantly promoted by knockout of narG gene. During the practical agricultural fermentation process of the cigar tobacco leaves, the treatment by the WD-32∆narG cells resulted in a 60% reduction of the total TSNAs content compared with the control, and the concentrations of the NNN and NNK were decreased by 69% and 59%, respectively. In summary, this study offers efficient strains for reduction of the TSNAs in cigar tobacco, and provides new insights into the reduction mechanism of TSNAs, which will promote the application of microbial methods in control of TSNAs and nitrite.
Collapse
Affiliation(s)
- Xinyu Dong
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, China; State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Yu
- Tobacco Research Institute of Hubei Province, Wuhan 430062, China
| | - Changwen Ye
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, China.
| | - Dandan Liu
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, China
| | - Dian Zou
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenying Han
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingru Yu
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kuo Huang
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, China
| | - Hao Li
- Tobacco Research Institute of Hubei Province, Wuhan 430062, China
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Mani P, Priyadarsini S, K Channabasappa N, Sahoo PR, Singh R, Saxena M, Upmanyu V, Agrawal RK, Singh P, Saini M, Kumar A. Role of narL gene in the pathogenesis of Salmonella Typhimurium. J Basic Microbiol 2024; 64:e2300456. [PMID: 38059734 DOI: 10.1002/jobm.202300456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/03/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023]
Abstract
Salmonella Typhimurium (STM) is a facultative anaerobe and one of the causative agents of nontyphoidal salmonellosis (NTS). Its anaerobic metabolism is enabled under the hypoxic environment that is encountered inside macrophages and the gut lumen of the host. In both of these niches, free radicals and oxidative intermediates are released by neutrophils as an inflammatory response. These chemical species further undergo reactions to produce nitrate, which is preferably taken up by STM as an electron acceptor in the absence of oxygen. NarL, the response regulator of the two-component regulatory system NarX/L, and a transcription factor, gets activated under anaerobic nitrate-rich conditions and upregulates the nitrate reduction during anaerobic respiration of STM. To understand the role of NarL in the pathogenesis of STM, we generated a narL-knockout (STM:ΔnarL) as well as a narL-complemented strain of STM. Anaerobically, the mutant displayed no growth defect but a significant attenuation in the swimming (26%) and swarming (61%) motility, and biofilm-forming ability (73%) in vitro, while these morphotypes got rescued upon genetic complementation. We also observed a downregulation in the expression of genes associated with nitrate reduction (narG) and biofilm formation (csgA and csgD) in anaerobically grown STM:ΔnarL. As compared with wild STM, narL mutant exhibited a threefold reduction in the intracellular replication in both intestinal epithelial cells (INT- 407) and monocyte-derived macrophages of poultry origin. Further, in vivo competitive assay in the liver and spleen of the murine model showed a competitive index of 0.48 ± 0.58 and 0.403668 ± 0.32, respectively, for STM:ΔnarL.
Collapse
Affiliation(s)
- Pashupathi Mani
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | | | - Nikhil K Channabasappa
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, Rewa, NDVSU, India
| | - Pravas Ranjan Sahoo
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Rohit Singh
- Division of Veterinary Pathology, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Meeta Saxena
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Vikramaditya Upmanyu
- Division of Biological Standardization, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Ravi Kant Agrawal
- Division of Livestock Products Technology, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Praveen Singh
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Mohini Saini
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Ajay Kumar
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| |
Collapse
|
8
|
Uchendu CG, Guan Z, Klein EA. Spatial organization of bacterial sphingolipid synthesis enzymes. J Biol Chem 2024; 300:107276. [PMID: 38588805 PMCID: PMC11087976 DOI: 10.1016/j.jbc.2024.107276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/16/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024] Open
Abstract
Sphingolipids are produced by nearly all eukaryotes where they play significant roles in cellular processes such as cell growth, division, programmed cell death, angiogenesis, and inflammation. While it was previously believed that sphingolipids were quite rare among bacteria, bioinformatic analysis of the recently identified bacterial sphingolipid synthesis genes suggests that these lipids are likely to be produced by a wide range of microbial species. The sphingolipid synthesis pathway consists of three critical enzymes. Serine palmitoyltransferase catalyzes the condensation of serine with palmitoyl-CoA (or palmitoyl-acyl carrier protein), ceramide synthase adds the second acyl chain, and a reductase reduces the ketone present on the long-chain base. While there is general agreement regarding the identity of these bacterial enzymes, the precise mechanism and order of chemical reactions for microbial sphingolipid synthesis is more ambiguous. Two mechanisms have been proposed. First, the synthesis pathway may follow the well characterized eukaryotic pathway in which the long-chain base is reduced prior to the addition of the second acyl chain. Alternatively, our previous work suggests that addition of the second acyl chain precedes the reduction of the long-chain base. To distinguish between these two models, we investigated the subcellular localization of these three key enzymes. We found that serine palmitoyltransferase and ceramide synthase are localized to the cytoplasm, whereas the ceramide reductase is in the periplasmic space. This is consistent with our previously proposed model wherein the second acyl chain is added in the cytoplasm prior to export to the periplasm where the lipid molecule is reduced.
Collapse
Affiliation(s)
- Chioma G Uchendu
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, New Jersey, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Eric A Klein
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, New Jersey, USA; Biology Department, Rutgers University-Camden, Camden, New Jersey, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
9
|
Su F, Li Y, Li T, Qian J, Liu D. How does microorganism in different zones cooperatively promote N 2O emissions from SWIS during freeze-thaw? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168747. [PMID: 38007127 DOI: 10.1016/j.scitotenv.2023.168747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/29/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Subsurface wastewater infiltration systems (SWIS) are environmentally-friendly technologies for domestic wastewater treatment, where pollutants are removed by physical, chemical and biological reactions. However, SWIS also produce nitrous oxide (N2O), a potent greenhouse gas. Distribution of dissolved oxygen and nitrogen in SWIS determines denitrification process, which affects microbial activity and N2O release degree in different layers of system. Top layer of SWIS substrate is exposed to environmental factors such as freeze-thaw (FT), which changes microbial community structure in different substrates. Exact mechanisms of microbial-mediated N2O emissions in SWIS are still unclear despite extensive research. Therefore, this study simulated FT process using in-situ SWIS, to investigate how FT disturbance affects microbial community structure and N2O release in SWIS profiles. Results showed that after the ninth freeze-thaw cycle, FT stimulated anaerobic bacteria activities such as Euryarchaeota, accounting for 78.4 % of total Euryarchaeota population in middle (60 cm) and 33.97 % in the lower layer. Under low oxygen conditions, NO2--N accumulation in middle and lower layers provided a sufficient nitrogen source for Euryarchaeota. Canonical correlation analysis (CCA) showed Euryarchaeota was significantly correlated with N2O emissions in middle and lower layers during FT, contributing 31.68 %-32.01 % and 61.78 %-65.15 %, respectively. These results suggested that FT disturbance enhanced denitrification by anaerobic bacteria in middle and lower layers of SWIS, significantly increasing N2O emissions. However, specific pathways and mechanisms of N2O production by Euryarchaeota remain to be elucidated in future studies.
Collapse
Affiliation(s)
- Fei Su
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China.
| | - Tianming Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China
| | - Jie Qian
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China
| | - Deze Liu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China
| |
Collapse
|
10
|
Koedooder C, Zhang F, Wang S, Basu S, Haley ST, Tolic N, Nicora CD, Glavina del Rio T, Dyhrman ST, Gledhill M, Boiteau RM, Rubin-Blum M, Shaked Y. Taxonomic distribution of metabolic functions in bacteria associated with Trichodesmium consortia. mSystems 2023; 8:e0074223. [PMID: 37916816 PMCID: PMC10734445 DOI: 10.1128/msystems.00742-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Colonies of the cyanobacteria Trichodesmium act as a biological hotspot for the usage and recycling of key resources such as C, N, P, and Fe within an otherwise oligotrophic environment. While Trichodesmium colonies are known to interact and support a unique community of algae and particle-associated microbes, our understanding of the taxa that populate these colonies and the gene functions they encode is still limited. Characterizing the taxa and adaptive strategies that influence consortium physiology and its concomitant biogeochemistry is critical in a future ocean predicted to have increasingly resource-depleted regions.
Collapse
Affiliation(s)
- Coco Koedooder
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Futing Zhang
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Siyuan Wang
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Subhajit Basu
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Microsensor Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sheean T. Haley
- Lamont-Doherty Earth Observatory, Columbia University, New York, USA
| | - Nikola Tolic
- Earth and Biological Sciences, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carrie D. Nicora
- Earth and Biological Sciences, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tijana Glavina del Rio
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Sonya T. Dyhrman
- Lamont-Doherty Earth Observatory, Columbia University, New York, USA
- Department of Earth and Environmental Sciences, Columbia University, New York, USA
| | | | - Rene M. Boiteau
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
| | | | - Yeala Shaked
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| |
Collapse
|
11
|
Pan D, Chen P, Yang G, Niu R, Bai Y, Cheng K, Huang G, Liu T, Li X, Li F. Fe(II) Oxidation Shaped Functional Genes and Bacteria Involved in Denitrification and Dissimilatory Nitrate Reduction to Ammonium from Different Paddy Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21156-21167. [PMID: 38064275 DOI: 10.1021/acs.est.3c06337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Microbial nitrate reduction can drive Fe(II) oxidation in anoxic environments, affecting the nitrous oxide emission and ammonium availability. The nitrate-reducing Fe(II) oxidation usually causes severe cell encrustation via chemodenitrification and potentially inhibits bacterial activity due to the blocking effect of secondary minerals. However, it remains unclear how Fe(II) oxidation and subsequent cell encrustation affect the functional genes and bacteria for denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Here, bacteria were enriched from different paddy soils with and without Fe(II) under nitrate-reducing conditions. Fe(II) addition decelerated nitrate reduction and increased NO2- accumulation, due to the rapid Fe(II) oxidation and cell encrustation in the periplasm and on the cell surface. The N2O accumulation was lower in the treatment with Fe(II) and nitrate than that in the treatment with nitrate only, although the proportions of N2O and NH4+ to the reduced NO3- were low (3.25% ∼ 6.51%) at the end of incubation regardless of Fe(II) addition. The dominant bacteria varied from soils under nitrate-reducing conditions, while Fe(II) addition shaped a similar microbial community, including Dechloromonas, Azospira, and Pseudomonas. Fe(II) addition increased the relative abundance of napAB, nirS, norBC, nosZ, and nirBD genes but decreased that of narG and nrfA, suggesting that Fe(II) oxidation favored denitrification in the periplasm and NO2--to-NH4+ reduction in the cytoplasm. Dechloromonas dominated the NO2--to-N2O reduction, while Thauera mediated the periplasmic nitrate reduction and cytoplasmic NO2--to-NH4+ during Fe(II) oxidation. However, Thauera showed much lower abundance than the dominant genera, resulting in slow nitrate reduction and limited NH4+ production. These findings provide new insights into the response of denitrification and DNRA bacteria to Fe(II) oxidation and cell encrustation in anoxic environments.
Collapse
Affiliation(s)
- Dandan Pan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Provincial Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Pengcheng Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guang Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Rumiao Niu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yan Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Provincial Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Kuan Cheng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Provincial Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guoyong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Provincial Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Provincial Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Provincial Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
12
|
Wójcik M, Koper P, Żebracki K, Marczak M, Mazur A. Genomic and Metabolic Characterization of Plant Growth-Promoting Rhizobacteria Isolated from Nodules of Clovers Grown in Non-Farmed Soil. Int J Mol Sci 2023; 24:16679. [PMID: 38069003 PMCID: PMC10706249 DOI: 10.3390/ijms242316679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The rhizosphere microbiota, which includes plant growth-promoting rhizobacteria (PGPR), is essential for nutrient acquisition, protection against pathogens, and abiotic stress tolerance in plants. However, agricultural practices affect the composition and functions of microbiota, reducing their beneficial effects on plant growth and health. Among PGPR, rhizobia form mutually beneficial symbiosis with legumes. In this study, we characterized 16 clover nodule isolates from non-farmed soil to explore their plant growth-promoting (PGP) potential, hypothesizing that these bacteria may possess unique, unaltered PGP traits, compared to those affected by common agricultural practices. Biolog profiling revealed their versatile metabolic capabilities, enabling them to utilize a wide range of carbon and energy sources. All isolates were effective phosphate solubilizers, and individual strains exhibited 1-aminocyclopropane-1-carboxylate deaminase and metal ion chelation activities. Metabolically active strains showed improved performance in symbiotic interactions with plants. Comparative genomics revealed that the genomes of five nodule isolates contained a significantly enriched fraction of unique genes associated with quorum sensing and aromatic compound degradation. As the potential of PGPR in agriculture grows, we emphasize the importance of the molecular and metabolic characterization of PGP traits as a fundamental step towards their subsequent application in the field as an alternative to chemical fertilizers and supplements.
Collapse
Affiliation(s)
| | | | | | | | - Andrzej Mazur
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (P.K.); (K.Ż.); (M.M.)
| |
Collapse
|
13
|
Stanfill SB, Hecht SS, Joerger AC, González PJ, Maia LB, Rivas MG, Moura JJG, Gupta AK, Le Brun NE, Crack JC, Hainaut P, Sparacino-Watkins C, Tyx RE, Pillai SD, Zaatari GS, Henley SJ, Blount BC, Watson CH, Kaina B, Mehrotra R. From cultivation to cancer: formation of N-nitrosamines and other carcinogens in smokeless tobacco and their mutagenic implications. Crit Rev Toxicol 2023; 53:658-701. [PMID: 38050998 DOI: 10.1080/10408444.2023.2264327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/20/2023] [Indexed: 12/07/2023]
Abstract
Tobacco use is a major cause of preventable morbidity and mortality globally. Tobacco products, including smokeless tobacco (ST), generally contain tobacco-specific N-nitrosamines (TSNAs), such as N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK), which are potent carcinogens that cause mutations in critical genes in human DNA. This review covers the series of biochemical and chemical transformations, related to TSNAs, leading from tobacco cultivation to cancer initiation. A key aim of this review is to provide a greater understanding of TSNAs: their precursors, the microbial and chemical mechanisms that contribute to their formation in ST, their mutagenicity leading to cancer due to ST use, and potential means of lowering TSNA levels in tobacco products. TSNAs are not present in harvested tobacco but can form due to nitrosating agents reacting with tobacco alkaloids present in tobacco during certain types of curing. TSNAs can also form during or following ST production when certain microorganisms perform nitrate metabolism, with dissimilatory nitrate reductases converting nitrate to nitrite that is then released into tobacco and reacts chemically with tobacco alkaloids. When ST usage occurs, TSNAs are absorbed and metabolized to reactive compounds that form DNA adducts leading to mutations in critical target genes, including the RAS oncogenes and the p53 tumor suppressor gene. DNA repair mechanisms remove most adducts induced by carcinogens, thus preventing many but not all mutations. Lastly, because TSNAs and other agents cause cancer, previously documented strategies for lowering their levels in ST products are discussed, including using tobacco with lower nornicotine levels, pasteurization and other means of eliminating microorganisms, omitting fermentation and fire-curing, refrigerating ST products, and including nitrite scavenging chemicals as ST ingredients.
Collapse
Affiliation(s)
- Stephen B Stanfill
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Andreas C Joerger
- Structural Genomics Consortium (SGC), Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pablo J González
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - Luisa B Maia
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | - Maria G Rivas
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - José J G Moura
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | | | - Nick E Le Brun
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Jason C Crack
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Pierre Hainaut
- Institute for Advanced Biosciences, Grenoble Alpes University, Grenoble, France
| | - Courtney Sparacino-Watkins
- University of Pittsburgh, School of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Vascular Medicine Institute, PA, USA
| | - Robert E Tyx
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Suresh D Pillai
- Department of Food Science & Technology, National Center for Electron Beam Research, Texas A&M University, College Station, TX, USA
| | - Ghazi S Zaatari
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - S Jane Henley
- Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Benjamin C Blount
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Clifford H Watson
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Mainz, Germany
| | - Ravi Mehrotra
- Centre for Health, Innovation and Policy Foundation, Noida, India
| |
Collapse
|
14
|
Yao T, Huang Y, Huai Z, Liu X, Liu X, Liu Y, Sun H, Pang Y. Response mechanisms to acid stress promote LF82 replication in macrophages. Front Cell Infect Microbiol 2023; 13:1255083. [PMID: 37881369 PMCID: PMC10595154 DOI: 10.3389/fcimb.2023.1255083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Background Adherent-invasive E. coli (AIEC) LF82 is capable of adhering to and invading intestinal epithelial cells, as well as replicating within macrophages without inducing host cell death. Methods We compared the transcriptomics of LF82 at pH=7.5 and pH=5.8 by RNA-sequencing, and qRT-PCR verified differentially expressed genes (DEGs). The deletion mutants of DEGs in the treatment group (pH=5.8) compared to the control group (pH=7.5) were constructed by λ recombinant. The replication differences between the mutants and WT infected Raw 264.7 at 24 h.p.i were analyzed by combining LB solid plate count and confocal observation. NH4Cl and chloroquine diphosphate (CQ) were used for acid neutralization to study the effect of pH on the replication of LF82 in macrophages. Na2NO3 was added to RPMI 1640 to study the effect of nitrate on the replication of LF82 in macrophages. 0.3% solid LB was used for flagellar motility assay and Hela was used to study flagellar gene deletion mutants and WT adhesion and invasion ability. Results In this study, we found that infection with LF82 results in acidification of macrophages. Subsequent experiments demonstrated that an intracellular acidic environment is necessary for LF82 replication. Transcriptome and phenotypic analysis showed that high expression of acid shock genes and acid fitness genes promotes LF82 replication in macrophages. Further, we found that the replication of LF82 in macrophages was increased under nitrate treatment, and nitrogen metabolism genes of LF82 were upregulated in acid treatment. The replication in macrophages of ΔnarK, ΔnarXL, ΔnarP, and Δhmp were decreased. In addition, we found that the expression of flagellar genes was downregulated in acidic pH and after LF82 invading macrophages. Motility assay shows that the movement of LF82 on an acidic semisolid agar plate was limited. Further results showed that ΔfliC and ΔfliD decreased in motility, adhesion ability, and invasion of host cells, but no significant effect on replication in macrophages was observed. Conclusion In this study, we simulated the acidic environment in macrophages, combined with transcriptome technology, and explained from the genetic level that LF82 promotes replication by activating its acid shock and fitness system, enhancing nitrate utilization, and inhibiting flagellar function.
Collapse
Affiliation(s)
- Ting Yao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| | - Yu Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| | - Zimeng Huai
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| | - Xingmei Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| | - Xiaowen Liu
- Academy of Psychology and Behavior, Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| | - Hao Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| | - Yu Pang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| |
Collapse
|
15
|
Hamada MA, Soliman ERS. Characterization and genomics identification of key genes involved in denitrification-DNRA-nitrification pathway of plant growth-promoting rhizobacteria (Serratia marcescens OK482790). BMC Microbiol 2023; 23:210. [PMID: 37543572 PMCID: PMC10403818 DOI: 10.1186/s12866-023-02941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/11/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND A wide variety of microorganisms, including bacteria, live in the rhizosphere zone of plants and have an impact on plant development both favorably and adversely. The beneficial outcome is due to the presence of rhizobacteria that promote plant growth (PGPR). RESULTS In this study, a bacterial strain was isolated from lupin rhizosphere and identified genetically as Serratia marcescens (OK482790). Several biochemically and genetically characteristics were confirmed in vitro and in vivo to determine the OK482790 strain ability to be PGPR. The in vitro results revealed production of different lytic enzymes (protease, lipase, cellulase, and catalase), antimicrobial compounds (hydrogen cyanide, and siderophores), ammonia, nitrite, and nitrate and its ability to reduce nitrate to nitrite. In silico and in vitro screening proposed possible denitrification-DNRA-nitrification pathway for OK482790 strain. The genome screening indicated the presence of nitrite and nitrate genes encoding Nar membrane bound sensor proteins (NarK, NarQ and NarX). Nitrate and nitrite reductase encoding genes (NarI, NarJ, NarH, NarG and NapC/NirT) and (NirB, NirC, and NirD) are also found in addition to nitroreductases (NTR) and several oxidoreductases. In vivo results on wheat seedlings confirmed that seedlings growth was significantly improved by soil inoculation of OK482790 strain. CONCLUSIONS This study provides evidence for participation of S. marcescens OK482790 in nitrogen cycling via the denitrification-DNRA-nitrification pathway and for its ability to produce several enzymes and compounds that support the beneficial role of plant-microbe interactions to sustain plant growth and development for a safer environment.
Collapse
Affiliation(s)
- Marwa A Hamada
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt
| | - Elham R S Soliman
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt.
| |
Collapse
|
16
|
Wang Q, Zhao Y, Chen Z, Zhang C, Jia X, Zhao M, Tong Y, Liu Y. Nitrate Bioreduction under Cr(VI) Stress: Crossroads of Denitrification and Dissimilatory Nitrate Reduction to Ammonium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37449976 DOI: 10.1021/acs.est.2c09624] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
This study explored the response of NO3--N bioreduction to Cr(VI) stress, including reduction efficiency and the pathways involved (denitrification and dissimilatory nitrate reduction to ammonium (DNRA)). Different response patterns of NO3--N conversion were proposed under Cr(VI) suppress (0, 0.5, 5, 15, 30, 50, and 80 mg/L) by evaluating Cr(VI) dose dependence, toxicity accumulation, bioelectron behavior, and microbial community structure. Cr(VI) concentrations of >30 mg/L rapidly inhibited NO3--N removal and immediately induced DNRA. However, denitrification completely dominated the NO3--N reduction pathway at Cr(VI) concentrations of <15 mg/L. Therefore, 30 and 80 mg/L Cr(VI) (R4 and R6) were selected to explore the selection of the different NO3--N removal pathways. The pathway of NO3--N reduction at 30 mg/L Cr(VI) exhibited continuous adaptation, wherein the coexistence of denitrification (51.7%) and DNRA (13.6%) was achieved by regulating the distribution of denitrifiers (37.6%) and DNRA bacteria (32.8%). Comparatively, DNRA gradually replaced denitrification at 80 mg/L Cr(VI). The intracellular Cr(III) accumulation in R6 was 6.60-fold greater than in R4, causing more severe oxidant injury and cell death. The activated NO3--N reduction pathway depended on the value of nitrite reductase activity/nitrate reductase activity, with 0.84-1.08 associated with DNRA activation and 1.48-1.57 with DNRA predominance. Although Cr(VI) increased microbial community richness and improved community structure stability, the inhibition or death of nitrogen-reducing microorganisms caused by Cr(VI) decreased NO3--N reduction efficiency.
Collapse
Affiliation(s)
- Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhihui Chen
- China Water Resources Bei Fang Investigation, Design & Research CO.LTD, Tianjin 300222, China
| | - Chenggong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xulong Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Minghao Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
17
|
Oliveira AS, Saraiva LM, Carvalho SM. Staphylococcus epidermidis biofilms undergo metabolic and matrix remodeling under nitrosative stress. Front Cell Infect Microbiol 2023; 13:1200923. [PMID: 37469594 PMCID: PMC10352803 DOI: 10.3389/fcimb.2023.1200923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/05/2023] [Indexed: 07/21/2023] Open
Abstract
Staphylococcus epidermidis is a commensal skin bacterium that forms host- and antibiotic-resistant biofilms that are a major cause of implant-associated infections. Most research has focused on studying the responses to host-imposed stresses on planktonic bacteria. In this work, we addressed the open question of how S. epidermidis thrives on toxic concentrations of nitric oxide (NO) produced by host innate immune cells during biofilm assembly. We analyzed alterations of gene expression, metabolism, and matrix structure of biofilms of two clinical isolates of S. epidermidis, namely, 1457 and RP62A, formed under NO stress conditions. In both strains, NO lowers the amount of biofilm mass and causes increased production of lactate and decreased acetate excretion from biofilm glucose metabolism. Transcriptional analysis revealed that NO induces icaA, which is directly involved in polysaccharide intercellular adhesion (PIA) production, and genes encoding proteins of the amino sugar pathway (glmM and glmU) that link glycolysis to PIA synthesis. However, the strains seem to have distinct regulatory mechanisms to boost lactate production, as NO causes a substantial upregulation of ldh gene in strain RP62A but not in strain 1457. The analysis of the matrix components of the staphylococcal biofilms, assessed by confocal laser scanning microscopy (CLSM), showed that NO stimulates PIA and protein production and interferes with biofilm structure in a strain-dependent manner, but independently of the Ldh level. Thus, NO resistance is attained by remodeling the staphylococcal matrix architecture and adaptation of main metabolic processes, likely providing in vivo fitness of S. epidermidis biofilms contacting NO-proficient macrophages.
Collapse
|
18
|
Jiang H, Chen GF, Savateev O, Xue J, Ding LX, Liang Z, Antonietti M, Wang H. Enabled Efficient Ammonia Synthesis and Energy Supply in a Zinc-Nitrate Battery System by Separating Nitrate Reduction Process into Two Stages. Angew Chem Int Ed Engl 2023; 62:e202218717. [PMID: 36728627 DOI: 10.1002/anie.202218717] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/03/2023]
Abstract
The aqueous electrocatalytic reduction of NO3 - into NH3 (NitrRR) presents a sustainable route applicable to NH3 production and potentially energy storage. However, the NitrRR involves a directly eight-electron transfer process generally required a large overpotential (<-0.2 V versus reversible hydrogen electrode (vs. RHE)) to reach optimal efficiency. Here, inspired by biological nitrate respiration, the NitrRR was separated into two stages along a [2+6]-electron pathway to alleviate the kinetic barrier. The system employed a Cu nanowire catalyst produces NO2 - and NH3 with current efficiencies of 91.5 % and 100 %, respectively at lower overpotentials (>+0.1 vs. RHE). The high efficiency for such a reduction process was further explored in a zinc-nitrate battery. This battery could be specified by a high output voltage of 0.70 V, an average energy density of 566.7 Wh L-1 at 10 mA cm-2 and a power density of 14.1 mW cm-2 , which is well beyond all previously reported similar concepts.
Collapse
Affiliation(s)
- Haifeng Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.,Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Gao-Feng Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.,Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Research Campus Golm, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Oleksandr Savateev
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Research Campus Golm, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jian Xue
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Liang-Xin Ding
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zhenxing Liang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Markus Antonietti
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Research Campus Golm, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Haihui Wang
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
19
|
Miralles-Robledillo JM, Martínez-Espinosa RM, Pire C. Analysis of the external signals driving the transcriptional regulation of the main genes involved in denitrification in Haloferax mediterranei. Front Microbiol 2023; 14:1109550. [PMID: 37007523 PMCID: PMC10062603 DOI: 10.3389/fmicb.2023.1109550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
Haloferax mediterranei is the model microorganism for the study of the nitrogen cycle in haloarchaea. This archaeon not only assimilate N-species such as nitrate, nitrite, or ammonia, but also it can perform denitrification under low oxygen conditions, using nitrate or nitrite as alternative electron acceptors. However, the information currently available on the regulation of this alternative respiration in this kind of microorganism is scarce. Therefore, in this research, the study of haloarchaeal denitrification using H. mediterranei has been addressed by analyzing the promoter regions of the four main genes of denitrification (narGH, nirK, nor, and nosZ) through bioinformatics, reporter gene assays under oxic and anoxic conditions and by site-directed mutagenesis of the promoter regions. The results have shown that these four promoter regions share a common semi-palindromic motif that plays a role in the control of the expression levels of nor and nosZ (and probably nirK) genes. Regarding the regulation of the genes under study, it has been concluded that nirK, nor, and nosZ genes share some expression patterns, and therefore their transcription could be under the control of the same regulator whereas nar operon expression displays differences, such as the activation by dimethyl sulfoxide with respect to the expression in the absence of an electron acceptor, which is almost null under anoxic conditions. Finally, the study with different electron acceptors demonstrated that this haloarchaea does not need complete anoxia to perform denitrification. Oxygen concentrations around 100 μM trigger the activation of the four promoters. However, a low oxygen concentration per se is not a strong signal to activate the promoters of the main genes involved in this pathway; high activation also requires the presence of nitrate or nitrite as final electron acceptors.
Collapse
Affiliation(s)
- Jose María Miralles-Robledillo
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Alicante, Spain
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Alicante, Spain
| | - Carmen Pire
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Alicante, Spain
- *Correspondence: Carmen Pire,
| |
Collapse
|
20
|
Metabolic Sensing of Extracytoplasmic Copper Availability via Translational Control by a Nascent Exported Protein. mBio 2023; 14:e0304022. [PMID: 36598193 PMCID: PMC9973294 DOI: 10.1128/mbio.03040-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Metabolic sensing is a crucial prerequisite for cells to adjust their physiology to rapidly changing environments. In bacteria, the response to intra- and extracellular ligands is primarily controlled by transcriptional regulators, which activate or repress gene expression to ensure metabolic acclimation. Translational control, such as ribosomal stalling, can also contribute to cellular acclimation and has been shown to mediate responses to changing intracellular molecules. In the current study, we demonstrate that the cotranslational export of the Rhodobacter capsulatus protein CutF regulates the translation of the downstream cutO-encoded multicopper oxidase CutO in response to extracellular copper (Cu). Our data show that CutF, acting as a Cu sensor, is cotranslationally exported by the signal recognition particle pathway. The binding of Cu to the periplasmically exposed Cu-binding motif of CutF delays its cotranslational export via its C-terminal ribosome stalling-like motif. This allows for the unfolding of an mRNA stem-loop sequence that shields the ribosome-binding site of cutO, which favors its subsequent translation. Bioinformatic analyses reveal that CutF-like proteins are widely distributed in bacteria and are often located upstream of genes involved in transition metal homeostasis. Our overall findings illustrate a highly conserved control mechanism using the cotranslational export of a protein acting as a sensor to integrate the changing availability of extracellular nutrients into metabolic acclimation. IMPORTANCE Metabolite sensing is a fundamental biological process, and the perception of dynamic changes in the extracellular environment is of paramount importance for the survival of organisms. Bacteria usually adjust their metabolisms to changing environments via transcriptional regulation. Here, using Rhodobacter capsulatus, we describe an alternative translational mechanism that controls the bacterial response to the presence of copper, a toxic micronutrient. This mechanism involves a cotranslationally secreted protein that, in the presence of copper, undergoes a process resembling ribosomal stalling. This allows for the unfolding of a downstream mRNA stem-loop and enables the translation of the adjacent Cu-detoxifying multicopper oxidase. Bioinformatic analyses reveal that such proteins are widespread, suggesting that metabolic sensing using ribosome-arrested nascent secreted proteins acting as sensors may be a common strategy for the integration of environmental signals into metabolic adaptations.
Collapse
|
21
|
DNA Methyltransferase Regulates Nitric Oxide Homeostasis and Virulence in a Chronically Adapted Pseudomonas aeruginosa Strain. mSystems 2022; 7:e0043422. [PMID: 36106744 PMCID: PMC9600465 DOI: 10.1128/msystems.00434-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Opportunistic pathogens such as Pseudomonas aeruginosa adapt their genomes rapidly during chronic infections. Understanding their epigenetic regulation may provide biomarkers for diagnosis and reveal novel regulatory mechanisms. We performed single-molecule real-time sequencing (SMRT-seq) to characterize the methylome of a chronically adapted P. aeruginosa clinical strain, TBCF10839. Two N6-methyladenine (6mA) methylation recognition motifs (RCCANNNNNNNTGAR and TRGANNNNNNTGC [modification sites are in bold]) were identified and predicted as new type I methylation sites using REBASE analysis. We confirmed that the motif TRGANNNNNNTGC was methylated by the methyltransferase (MTase) M.PaeTBCFII, according to methylation sensitivity assays in vivo and vitro. Transcriptomic analysis showed that a ΔpaeTBCFIIM knockout mutant significantly downregulated nitric oxide reductase (NOR) regulation and expression of coding genes such as nosR and norB, which contain methylated motifs in their promoters or coding regions. The ΔpaeTBCFIIM strain exhibited reduced intercellular survival capacity in NO-producing RAW264.7 macrophages and attenuated virulence in a Galleria mellonella infection model; the complemented strain recovered these defective phenotypes. Further phylogenetic analysis demonstrated that homologs of M.PaeTBCFII occur frequently in P. aeruginosa as well as other bacterial species. Our work therefore provided new insights into the relationship between DNA methylation, NO detoxification, and bacterial virulence, laying a foundation for further exploring the molecular mechanism of DNA methyltransferase in regulating the pathogenicity of P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen which causes acute and chronic infections that are difficult to treat. Comparative genomic analysis has showed broad genome diversity among P. aeruginosa clinical strains and revealed their different regulatory traits compared to the laboratory strains. While current investigation of the epigenetics of P. aeruginosa is still lacking, understanding epigenetic regulation may provide biomarkers for diagnosis and facilitate development of novel therapies. Denitrification capability is critical for microbial versatility in response to different environmental stress conditions, including the bacterial infection process, where nitric oxide (NO) can be generated by phagocytic cells. The denitrification regulation mechanisms have been studied intensively at genetic and biochemical levels. However, there is very little evidence about the epigenetic regulation of bacterial denitrification mechanism. P. aeruginosa TBCF10839 is a chronically host-adapted strain isolated from a cystic fibrosis (CF) patient with special antiphagocytosis characteristics. Here, we investigated the regulatory effect of an orphan DNA MTase, M.PaeTBCFII, in P. aeruginosa TBCF10839. We demonstrated that the DNA MTase regulates the transcription of denitrification genes represented by NOR and affects antiphagocytic ability in bacteria. In silico analysis suggested that DNA methylation modification may enhance gene expression by affecting the binding of transacting factors such as DNR and RpoN. Our findings not only deepen the understanding of the role of DNA MTase in transcriptional regulation in P. aeruginosa but also provide a theoretical foundation for the in-depth study of the molecular mechanism of the epigenetic regulation on denitrification, virulence, and host-pathogen interaction.
Collapse
|
22
|
Acetylation of NarL K188 and K192 is involved in regulating Escherichia coli anaerobic nitrate respiration. Appl Microbiol Biotechnol 2022; 106:7209-7221. [PMID: 36178515 DOI: 10.1007/s00253-022-12185-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
Abstract
As a facultative anaerobe, Escherichia coli can activate various respiratory chains during anaerobic growth, among which the mode of anaerobic respiration with nitrate allows good energy conservation. NarL is one of the regulatory proteins in the Nar two-component system that regulates anaerobic respiration in E. coli. Previous studies have shown that NarL activates downstream gene regulation through phosphorylation. However, there are few studies on other protein translational modifications that influence the regulatory function of NarL. Herein, we demonstrate that acetylation modification exists on K188 and K192, the two lysine residues involved in contacting to DNA, and the degree of acetylation has significant effects on DNA-binding abilities, thus affecting the anaerobic growth of E. coli. In addition, NarL is mainly regulated by acetyl phosphate, but not by peptidyl-lysine N-acetyltransferase. These results indicate that non-enzymatic acetylation of NarL by AcP is one of the important mechanisms for the nitrate anaerobic respiratory pathway in response to environmental changes, which extends the idea of the mechanism underlying the response of intestinal flora to changes in the intestinal environment. KEY POINTS: • Acetylation was found in NarL, which was mainly mediated by AcP. • Non-enzymatic acetylation at K188 and K192 affects NarL binding ability. • Acetylation of NarL K188 and K192 regulates anaerobic nitrate growth of E. coli.
Collapse
|
23
|
Lim SJ, Thompson LR, Young CM, Gaasterland T, Goodwin KD. Dominance of Sulfurospirillum in Metagenomes Associated with the Methane Ice Worm (Sirsoe methanicola). Appl Environ Microbiol 2022; 88:e0029022. [PMID: 35867581 PMCID: PMC9365241 DOI: 10.1128/aem.00290-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/16/2022] [Indexed: 01/14/2023] Open
Abstract
Sirsoe methanicola, commonly known as the methane ice worm, is the only macrofaunal species known to inhabit the Gulf of Mexico methane hydrates. Little is known about this elusive marine polychaete that can colonize rich carbon and energy reserves. Metagenomic analysis of gut contents and worm fragments predicted diverse metabolic capabilities with the ability to utilize a range of nitrogen, sulfur, and organic carbon compounds through microbial taxa affiliated with Campylobacterales, Desulfobacterales, Enterobacterales, SAR324, Alphaproteobacteria, and Mycoplasmatales. Entomoplasmatales and Chitinivibrionales were additionally identified from extracted full-length 16S rRNA sequences, and read analysis identified 196 bacterial families. Overall, the microbial community appeared dominated by uncultured Sulfurospirillum, a taxon previously considered free-living rather than host-associated. Metagenome-assembled genomes (MAGs) classified as uncultured Sulfurospirillum predicted thiosulfate disproportionation and the reduction of tetrathionate, sulfate, sulfide/polysulfide, and nitrate. Microbial amino acid and vitamin B12 biosynthesis genes were identified in multiple MAGs, suggesting nutritional value to the host. Reads assigned to aerobic or anaerobic methanotrophic taxa were rare. IMPORTANCE Methane hydrates represent vast reserves of natural gas with roles in global carbon cycling and climate change. This study provided the first analysis of metagenomes associated with Sirsoe methanicola, the only polychaete species known to colonize methane hydrates. Previously unrecognized participation of Sulfurospirillum in a gut microbiome is provided, and the role of sulfur compound redox reactions within this community is highlighted. The comparative biology of S. methanicola is of general interest given research into the adverse effects of sulfide production in human gut microbiomes. In addition, taxonomic assignments are provided for nearly 200 bacterial families, expanding our knowledge of microbiomes in the deep sea.
Collapse
Affiliation(s)
- Shen Jean Lim
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, USA
| | - Luke R. Thompson
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, USA
- Northern Gulf Institute, Mississippi State University, Starkville, Mississippi, USA
| | - Craig M. Young
- Oregon Institute of Marine Biology, University of Oregon, Eugene, Oregon, USA
| | - Terry Gaasterland
- Bioinformatics and Systems Biology, University of California, La Jolla, California, USA
| | - Kelly D. Goodwin
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, USA
| |
Collapse
|
24
|
|
25
|
Coronel-Tellez RH, Pospiech M, Barrault M, Liu W, Bordeau V, Vasnier C, Felden B, Sargueil B, Bouloc P. sRNA-controlled iron sparing response in Staphylococci. Nucleic Acids Res 2022; 50:8529-8546. [PMID: 35904807 PMCID: PMC9410917 DOI: 10.1093/nar/gkac648] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
Staphylococcus aureus, a human opportunist pathogen, adjusts its metabolism to cope with iron deprivation within the host. We investigated the potential role of small non-coding RNAs (sRNAs) in dictating this process. A single sRNA, named here IsrR, emerged from a competition assay with tagged-mutant libraries as being required during iron starvation. IsrR is iron-repressed and predicted to target mRNAs expressing iron-containing enzymes. Among them, we demonstrated that IsrR down-regulates the translation of mRNAs of enzymes that catalyze anaerobic nitrate respiration. The IsrR sequence reveals three single-stranded C-rich regions (CRRs). Mutational and structural analysis indicated a differential contribution of these CRRs according to targets. We also report that IsrR is required for full lethality of S. aureus in a mouse septicemia model, underscoring its role as a major contributor to the iron-sparing response for bacterial survival during infection. IsrR is conserved among staphylococci, but it is not ortholog to the proteobacterial sRNA RyhB, nor to other characterized sRNAs down-regulating mRNAs of iron-containing enzymes. Remarkably, these distinct sRNAs regulate common targets, illustrating that RNA-based regulation provides optimal evolutionary solutions to improve bacterial fitness when iron is scarce.
Collapse
Affiliation(s)
- Rodrigo H Coronel-Tellez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 91198, Gif-sur-Yvette, France
| | - Mateusz Pospiech
- CNRS UMR 8038, CitCoM, Université Paris Cité 75006, Paris, France
| | - Maxime Barrault
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 91198, Gif-sur-Yvette, France
| | - Wenfeng Liu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 91198, Gif-sur-Yvette, France
| | - Valérie Bordeau
- Université de Rennes 1, BRM (Bacterial regulatory RNAs and Medicine) UMR_S 1230 35000, Rennes, France
| | | | - Brice Felden
- Université de Rennes 1, BRM (Bacterial regulatory RNAs and Medicine) UMR_S 1230 35000, Rennes, France
| | - Bruno Sargueil
- CNRS UMR 8038, CitCoM, Université Paris Cité 75006, Paris, France
| | - Philippe Bouloc
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 91198, Gif-sur-Yvette, France
| |
Collapse
|
26
|
Nitrate Utilization Promotes Systemic Infection of Salmonella Typhimurium in Mice. Int J Mol Sci 2022; 23:ijms23137220. [PMID: 35806223 PMCID: PMC9266322 DOI: 10.3390/ijms23137220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
Salmonella Typhimurium is an invasive enteric pathogen that causes gastroenteritis in humans and life-threatening systemic infections in mice. During infection of the intestine, S. Typhimurium can exploit nitrate as an electron acceptor to enhance its growth. However, the roles of nitrate on S. Typhimurium systemic infection are unknown. In this study, nitrate levels were found to be significantly increased in the liver and spleen of mice systemically infected by S. Typhimurium. Mutations in genes encoding nitrate transmembrane transporter (narK) or nitrate-producing flavohemoprotein (hmpA) decreased the replication of S. Typhimurium in macrophages and reduced systemic infection in vivo, suggesting that nitrate utilization promotes S. Typhimurium systemic virulence. Moreover, nitrate utilization contributes to the acidification of the S. Typhimurium cytoplasm, which can sustain the virulence of S. Typhimurium by increasing the transcription of virulence genes encoding on Salmonella pathogenicity island 2 (SPI-2). Furthermore, the growth advantage of S. Typhimurium conferred by nitrate utilization occurred only under low-oxygen conditions, and the nitrate utilization was activated by both the global regulator Fnr and the nitrate-sensing two-component system NarX-NarL. Collectively, this study revealed a novel mechanism adopted by Salmonella to interact with its host and increase its virulence.
Collapse
|
27
|
Brosse A, Boudry P, Walburger A, Magalon A, Guillier M. Synthesis of the NarP response regulator of nitrate respiration in Escherichia coli is regulated at multiple levels by Hfq and small RNAs. Nucleic Acids Res 2022; 50:6753-6768. [PMID: 35748881 PMCID: PMC9262595 DOI: 10.1093/nar/gkac504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Two-component systems (TCS) and small RNAs (sRNA) are widespread regulators that participate in the response and the adaptation of bacteria to their environments. TCSs and sRNAs mostly act at the transcriptional and post-transcriptional levels, respectively, and can be found integrated in regulatory circuits, where TCSs control sRNAs transcription and/or sRNAs post-transcriptionally regulate TCSs synthesis. In response to nitrate and nitrite, the paralogous NarQ-NarP and NarX-NarL TCSs regulate the expression of genes involved in anaerobic respiration of these alternative electron acceptors to oxygen. In addition to the previously reported repression of NarP synthesis by the SdsN137 sRNA, we show here that RprA, another Hfq-dependent sRNA, also negatively controls narP. Interestingly, the repression of narP by RprA actually relies on two independent mechanisms of control. The first is via the direct pairing of the central region of RprA to the narP translation initiation region and presumably occurs at the translation initiation level. In contrast, the second requires only the very 5' end of the narP mRNA, which is targeted, most likely indirectly, by the full-length or the shorter, processed, form of RprA. In addition, our results raise the possibility of a direct role of Hfq in narP control, further illustrating the diversity of post-transcriptional regulation mechanisms in the synthesis of TCSs.
Collapse
Affiliation(s)
- Anaïs Brosse
- UMR8261, CNRS, Université de Paris Cité, Institut de Biologie Physico-Chimique, 75005Paris, France
| | - Pierre Boudry
- UMR8261, CNRS, Université de Paris Cité, Institut de Biologie Physico-Chimique, 75005Paris, France
| | - Anne Walburger
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402Marseille, France
| | - Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402Marseille, France
| | - Maude Guillier
- To whom correspondence should be addressed. Tel: +33 01 58 41 51 49; Fax: +33 01 58 41 50 25;
| |
Collapse
|
28
|
Truchon AN, Hendrich CG, Bigott AF, Dalsing BL, Allen C. NorA, HmpX, and NorB Cooperate to Reduce NO Toxicity during Denitrification and Plant Pathogenesis in Ralstonia solanacearum. Microbiol Spectr 2022; 10:e0026422. [PMID: 35377234 PMCID: PMC9045102 DOI: 10.1128/spectrum.00264-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
Ralstonia solanacearum, which causes bacterial wilt disease of many crops, requires denitrifying respiration to survive in its plant host. In the hypoxic environment of plant xylem vessels, this pathogen confronts toxic oxidative radicals like nitric oxide (NO), which is generated by both bacterial denitrification and host defenses. R. solanacearum has multiple distinct mechanisms that could mitigate this stress, including putative NO-binding protein (NorA), nitric oxide reductase (NorB), and flavohaemoglobin (HmpX). During denitrification and tomato pathogenesis and in response to exogenous NO, R. solanacearum upregulated norA, norB, and hmpX. Single mutants lacking ΔnorB, ΔnorA, or ΔhmpX increased expression of many iron and sulfur metabolism genes, suggesting that the loss of even one NO detoxification system demands metabolic compensation. Single mutants suffered only moderate fitness reductions in host plants, possibly because they upregulated their remaining protective genes. However, ΔnorA/norB, ΔnorB/hmpX, and ΔnorA/hmpX double mutants grew poorly in denitrifying culture and in planta. It is likely that the loss of norA, norB, and hmpX is lethal, since the methods used to construct the double mutants could not generate a triple mutant. Functional aconitase activity assays showed that NorA, HmpX, and especially NorB are important for maintaining iron-sulfur cluster proteins. Additionally, plant defense genes were upregulated in tomatoes infected with the NO-overproducing ΔnorB mutant, suggesting that bacterial detoxification of NO reduces the ability of the plant host to perceive the presence of the pathogen. Thus, R. solanacearum's three NO detoxification systems each contribute to and are collectively essential for overcoming metabolic nitrosative stress during denitrification, for virulence and growth in the tomato, and for evading host plant defenses. IMPORTANCE The soilborne plant pathogen Ralstonia solanacearum (Rs) causes bacterial wilt, a serious and widespread threat to global food security. Rs is metabolically adapted to low-oxygen conditions, using denitrifying respiration to survive in the host and cause disease. However, bacterial denitrification and host defenses generate nitric oxide (NO), which is toxic and also alters signaling pathways in both the pathogen and its plant hosts. Rs mitigates NO with a trio of mechanistically distinct proteins: NO-reductase (NorB), predicted iron-binding (NorA), and oxidoreductase (HmpX). This redundancy, together with analysis of mutants and in-planta dual transcriptomes, indicates that maintaining low NO levels is integral to Rs fitness in tomatoes (because NO damages iron-cluster proteins) and to evading host recognition (because bacterially produced NO can trigger plant defenses).
Collapse
Affiliation(s)
- Alicia N. Truchon
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Connor G. Hendrich
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adam F. Bigott
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Beth L. Dalsing
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
29
|
Liou GG, Chao Kaberdina A, Wang WS, Kaberdin VR, Lin-Chao S. Combined Transcriptomic and Proteomic Profiling of E. coli under Microaerobic versus Aerobic Conditions: The Multifaceted Roles of Noncoding Small RNAs and Oxygen-Dependent Sensing in Global Gene Expression Control. Int J Mol Sci 2022; 23:2570. [PMID: 35269716 PMCID: PMC8910356 DOI: 10.3390/ijms23052570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
Adaptive mechanisms that facilitate intestinal colonization by the human microbiota, including Escherichia coli, may be better understood by analyzing the physiology and gene expression of bacteria in low-oxygen environments. We used high-throughput transcriptomics and proteomics to compare the expression profiles of E. coli grown under aerobic versus microaerobic conditions. Clustering of high-abundance transcripts under microaerobiosis highlighted genes controlling acid-stress adaptation (gadAXW, gadAB, hdeAB-yhiD and hdeD operons), cell adhesion/biofilm formation (pgaABCD and csgDEFG operons), electron transport (cydAB), oligopeptide transport (oppABCDF), and anaerobic respiration/fermentation (hyaABCDEF and hycABCDEFGHI operons). In contrast, downregulated genes were involved in iron transport (fhuABCD, feoABC and fepA-entD operons), iron-sulfur cluster assembly (iscRSUA and sufABCDSE operons), aerobic respiration (sdhDAB and sucABCDSE operons), and de novo nucleotide synthesis (nrdHIEF). Additionally, quantitative proteomics showed that the products (proteins) of these high- or low-abundance transcripts were expressed consistently. Our findings highlight interrelationships among energy production, carbon metabolism, and iron homeostasis. Moreover, we have identified and validated a subset of differentially expressed noncoding small RNAs (i.e., CsrC, RyhB, RprA and GcvB), and we discuss their regulatory functions during microaerobic growth. Collectively, we reveal key changes in gene expression at the transcriptional and post-transcriptional levels that sustain E. coli growth when oxygen levels are low.
Collapse
Affiliation(s)
- Gunn-Guang Liou
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; (G.-G.L.); (A.C.K.); (W.-S.W.)
| | - Anna Chao Kaberdina
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; (G.-G.L.); (A.C.K.); (W.-S.W.)
| | - Wei-Syuan Wang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; (G.-G.L.); (A.C.K.); (W.-S.W.)
- Molecular and Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Vladimir R. Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Basque Foundation for Science, IKERBASQUE, Maria Diaz de Haro 3, 48013 Bilbao, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
| | - Sue Lin-Chao
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; (G.-G.L.); (A.C.K.); (W.-S.W.)
- Molecular and Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
30
|
Maiti BK, Maia LB, Moura JJG. Sulfide and transition metals - A partnership for life. J Inorg Biochem 2021; 227:111687. [PMID: 34953313 DOI: 10.1016/j.jinorgbio.2021.111687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/13/2022]
Abstract
Sulfide and transition metals often came together in Biology. The variety of possible structural combinations enabled living organisms to evolve an array of highly versatile metal-sulfide centers to fulfill different physiological roles. The ubiquitous iron‑sulfur centers, with their structural, redox, and functional diversity, are certainly the best-known partners, but other metal-sulfide centers, involving copper, nickel, molybdenum or tungsten, are equally crucial for Life. This review provides a concise overview of the exclusive sulfide properties as a metal ligand, with emphasis on the structural aspects and biosynthesis. Sulfide as catalyst and as a substrate is discussed. Different enzymes are considered, including xanthine oxidase, formate dehydrogenases, nitrogenases and carbon monoxide dehydrogenases. The sulfide effect on the activity and function of iron‑sulfur, heme and zinc proteins is also addressed.
Collapse
Affiliation(s)
- Biplab K Maiti
- National Institute of Technology Sikkim, Department of Chemistry, Ravangla Campus, Barfung Block, Ravangla Sub Division, South Sikkim 737139, India.
| | - Luisa B Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, Campus de Caparica, Portugal.
| | - José J G Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, Campus de Caparica, Portugal.
| |
Collapse
|