1
|
Yonet-Tanyeri N, Parker RS, Falo LD, Little SR. Investigation of the Impact of Manufacturing Methods on Protein-Based Long-Acting Injectable Formulations: A Comparative Assessment for Microfluidics vs. Conventional Methods. Pharmaceutics 2024; 16:1264. [PMID: 39458596 PMCID: PMC11510299 DOI: 10.3390/pharmaceutics16101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Microparticle-based drug delivery systems offer several advantages for protein-based drug formulations, enhancing patient compliance and therapeutic efficiency through the sustained delivery of the active pharmaceutical ingredient. Over the past few decades, the microfluidics method has emerged as a continuous manufacturing process for preparing drug-encapsulating microparticles, mainly for small molecule drugs. However, comparative assessments for the conventional batch method vs. the microfluidics method for protein-based drug formulations have been lacking. The main objective of this study was to generate immunomodulatory protein drug-loaded injectable formulations using both conventional batch and microfluidics methods. METHODS Therefore, rhCCL22-loaded poly(lactic-co-glycolic) acid (PLGA) microparticles were prepared by conventional homogenization and microfluidics methods. RESULTS The resulting microparticles were analyzed comparatively, focusing on critical quality attributes such as microparticle size, size distribution, morphology, drug encapsulation efficiency, release kinetics, and batch-to-batch variations in relation to the manufacturing method. Our results demonstrated that the conventional method resulted in microparticles with denser surface porosity and wider size distribution as opposed to microparticles prepared by the microfluidics method, which could contribute to a significant difference in the drug-release kinetics. Additionally, our findings indicated minimal variation within batches for the microparticles prepared by the microfluidics method. CONCLUSION Overall, this study highlights the comparative assessment of several critical quality attributes and batch variations associated with the manufacturing methods of protein-loaded microparticles which is crucial for ensuring consistency in efficacy, regulatory compliance, and quality control in the drug formulation manufacturing process.
Collapse
Affiliation(s)
- Nihan Yonet-Tanyeri
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213, USA; (N.Y.-T.); (R.S.P.)
| | - Robert S. Parker
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213, USA; (N.Y.-T.); (R.S.P.)
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213, USA;
- Department of Critical Care Medicine, University of Pittsburgh, 3550 Terrace Street, Alan Magee Scaife Hall, Suite 600, Pittsburgh, PA 15213, USA
| | - Louis D. Falo
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213, USA;
- Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA
- Department of Dermatology, University of Pittsburgh School of Medicine, 3708 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Steven R. Little
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213, USA; (N.Y.-T.); (R.S.P.)
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213, USA;
- Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA
- Department of Pharmaceutical Sciences, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15213, USA
- Department of Ophthalmology, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Racaniello GF, Silvestri T, Pistone M, D'Amico V, Arduino I, Denora N, Lopedota AA. Innovative Pharmaceutical Techniques for Paediatric Dosage Forms: A Systematic Review on 3D Printing, Prilling/Vibration and Microfluidic Platform. J Pharm Sci 2024; 113:1726-1748. [PMID: 38582283 DOI: 10.1016/j.xphs.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
The production of paediatric pharmaceutical forms represents a unique challenge within the pharmaceutical industry. The primary goal of these formulations is to ensure therapeutic efficacy, safety, and tolerability in paediatric patients, who have specific physiological needs and characteristics. In recent years, there has been a significant increase in attention towards this area, driven by the need to improve drug administration to children and ensure optimal and specific treatments. Technological innovation has played a crucial role in meeting these requirements, opening new frontiers in the design and production of paediatric pharmaceutical forms. In particular, three emerging technologies have garnered considerable interest and attention within the scientific and industrial community: 3D printing, prilling/vibration, and microfluidics. These technologies offer advanced approaches for the design, production, and customization of paediatric pharmaceutical forms, allowing for more precise dosage modulation, improved solubility, and greater drug acceptability. In this review, we delve into these cutting-edge technologies and their impact on the production of paediatric pharmaceutical forms. We analyse their potential, associated challenges, and recent developments, providing a comprehensive overview of the opportunities that these innovative methodologies offer to the pharmaceutical sector. We examine different pharmaceutical forms generated using these techniques, evaluating their advantages and disadvantages.
Collapse
Affiliation(s)
| | - Teresa Silvestri
- Department of Pharmacy, University of Naples Federico II, D. Montesano St. 49, 80131 Naples, Italy
| | - Monica Pistone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Vita D'Amico
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy.
| | - Angela Assunta Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| |
Collapse
|
3
|
Rezvantalab S, Mihandoost S, Rezaiee M. Machine learning assisted exploration of the influential parameters on the PLGA nanoparticles. Sci Rep 2024; 14:1114. [PMID: 38212322 PMCID: PMC10784499 DOI: 10.1038/s41598-023-50876-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024] Open
Abstract
Poly (lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) are widely investigated as drug delivery systems. However, despite the numerous reviews and research papers discussing various physicochemical and technical properties that affect NP size and drug loading characteristics, predicting the influential features remains difficult. In the present study, we employed four different machine learning (ML) techniques to create ML models using effective parameters related to NP size, encapsulation efficiency (E.E.%), and drug loading (D.L.%). These parameters were extracted from the different literature. Least Absolute Shrinkage and Selection Operator was used to investigate the input parameters and identify the most influential features (descriptors). Initially, ML models were trained and validated using tenfold validation methods, and subsequently, next their performances were evaluated and compared in terms of absolute error, mean absolute, error and R-square. After comparing the performance of different ML models, we decided to use support vector regression for predicting the size and E.E.% and random forest for predicting the D.L.% of PLGA-based NPs. Furthermore, we investigated the interactions between these target variables using ML methods and found that size and E.E.% are interrelated, while D.L.% shows no significant relationship with the other targets. Among these variables, E.E.% was identified as the most influential parameter affecting the NPs' size. Additionally, we found that certain physicochemical properties of PLGA, including molecular weight (Mw) and the lactide-to-glycolide (LA/GA) ratio, are the most determining features for E.E.% and D.L.% of the final NPs, respectively.
Collapse
Affiliation(s)
- Sima Rezvantalab
- Chemical Engineering Department, Urmia University of Technology, Urmia, 57166‑419, Iran.
| | - Sara Mihandoost
- Electrical Engineering Department, Urmia University of Technology, Urmia, 57166‑419, Iran.
| | - Masoumeh Rezaiee
- Chemical Engineering Department, Urmia University of Technology, Urmia, 57166‑419, Iran
| |
Collapse
|
4
|
de Barros NR, Darabi MA, Ma X, Diltemiz SE, Ermis M, Hassani Najafabasi A, Nadine S, Banton EA, Mandal K, Abbasgholizadeh R, Falcone N, Mano JF, Nasiri R, Herculano RD, Zhu Y, Ostrovidov S, Lee J, Kim HJ, Hosseini V, Dokmeci MR, Ahadian S, Khademhosseini A. Enhanced Maturation of 3D Bioprinted Skeletal Muscle Tissue Constructs Encapsulating Soluble Factor-Releasing Microparticles. Macromol Biosci 2023; 23:e2300276. [PMID: 37534566 PMCID: PMC10837326 DOI: 10.1002/mabi.202300276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Indexed: 08/04/2023]
Abstract
Several microfabrication technologies have been used to engineer native-like skeletal muscle tissues. However, the successful development of muscle remains a significant challenge in the tissue engineering field. Muscle tissue engineering aims to combine muscle precursor cells aligned within a highly organized 3D structure and biological factors crucial to support cell differentiation and maturation into functional myotubes and myofibers. In this study, the use of 3D bioprinting is proposed for the fabrication of muscle tissues using gelatin methacryloyl (GelMA) incorporating sustained insulin-like growth factor-1 (IGF-1)-releasing microparticles and myoblast cells. This study hypothesizes that functional and mature myotubes will be obtained more efficiently using a bioink that can release IGF-1 sustainably for in vitro muscle engineering. Synthesized microfluidic-assisted polymeric microparticles demonstrate successful adsorption of IGF-1 and sustained release of IGF-1 at physiological pH for at least 21 days. Incorporating the IGF-1-releasing microparticles in the GelMA bioink assisted in promoting the alignment of myoblasts and differentiation into myotubes. Furthermore, the myotubes show spontaneous contraction in the muscle constructs bioprinted with IGF-1-releasing bioink. The proposed bioprinting strategy aims to improve the development of new therapies applied to the regeneration and maturation of muscle tissues.
Collapse
Affiliation(s)
| | - Mohammad Ali Darabi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Xin Ma
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Sibel Emir Diltemiz
- Department of Chemistry, Eskisehir Technical University, Eskisehir, 26470, Turkey
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | | | - Sara Nadine
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
- Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ethan A. Banton
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | | | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - João F. Mano
- Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rohollah Nasiri
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | | | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Serge Ostrovidov
- Department of Radiological Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Junmin Lee
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Mehmet R. Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Samad Ahadian
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
5
|
Bao Z, Bufton J, Hickman RJ, Aspuru-Guzik A, Bannigan P, Allen C. Revolutionizing drug formulation development: The increasing impact of machine learning. Adv Drug Deliv Rev 2023; 202:115108. [PMID: 37774977 DOI: 10.1016/j.addr.2023.115108] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Over the past few years, the adoption of machine learning (ML) techniques has rapidly expanded across many fields of research including formulation science. At the same time, the use of lipid nanoparticles to enable the successful delivery of mRNA vaccines in the recent COVID-19 pandemic demonstrated the impact of formulation science. Yet, the design of advanced pharmaceutical formulations is non-trivial and primarily relies on costly and time-consuming wet-lab experimentation. In 2021, our group published a review article focused on the use of ML as a means to accelerate drug formulation development. Since then, the field has witnessed significant growth and progress, reflected by an increasing number of studies published in this area. This updated review summarizes the current state of ML directed drug formulation development, introduces advanced ML techniques that have been implemented in formulation design and shares the progress on making self-driving laboratories a reality. Furthermore, this review highlights several future applications of ML yet to be fully exploited to advance drug formulation research and development.
Collapse
Affiliation(s)
- Zeqing Bao
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jack Bufton
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Riley J Hickman
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada; Vector Institute for Artificial Intelligence, Toronto, ON M5S 1M1, Canada
| | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada; Vector Institute for Artificial Intelligence, Toronto, ON M5S 1M1, Canada; Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5S 1M1, Canada; Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada; Department of Materials Science & Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada; CIFAR Artificial Intelligence Research Chair, Vector Institute, Toronto, ON M5S 1M1, Canada; Acceleration Consortium, Toronto, ON M5S 3H6, Canada
| | - Pauric Bannigan
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada; Acceleration Consortium, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
6
|
Chircov C, Dumitru IA, Vasile BS, Oprea OC, Holban AM, Popescu RC. Microfluidic Synthesis of Magnetite Nanoparticles for the Controlled Release of Antibiotics. Pharmaceutics 2023; 15:2215. [PMID: 37765184 PMCID: PMC10536324 DOI: 10.3390/pharmaceutics15092215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/05/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Magnetite nanoparticles (MNPs) have been intensively studied for biomedical applications, especially as drug delivery systems for the treatment of infections. Additionally, they are characterized by intrinsic antimicrobial properties owing to their capacity to disrupt or penetrate the microbial cell wall and induce cell death. However, the current focus has shifted towards increasing the control of the synthesis reaction to ensure more uniform nanoparticle sizes and shapes. In this context, microfluidics has emerged as a potential candidate method for the controlled synthesis of nanoparticles. Thus, the aim of the present study was to obtain a series of antibiotic-loaded MNPs through a microfluidic device. The structural properties of the nanoparticles were investigated through X-ray diffraction (XRD) and, selected area electron diffraction (SAED), the morphology was evaluated through transmission electron microscopy (TEM) and high-resolution TEM (HR-TEM), the antibiotic loading was assessed through Fourier-transform infrared spectroscopy (FT-IR) and, and thermogravimetry and differential scanning calorimetry (TG-DSC) analyses, and. the release profiles of both antibiotics was determined through UV-Vis spectroscopy. The biocompatibility of the nanoparticles was assessed through the MTT assay on a BJ cell line, while the antimicrobial properties were investigated against the S. aureus, P. aeruginosa, and C. albicans strains. Results proved considerable uniformity of the antibiotic-containing nanoparticles, good biocompatibility, and promising antimicrobial activity. Therefore, this study represents a step forward towards the microfluidic development of highly effective nanostructured systems for antimicrobial therapies.
Collapse
Affiliation(s)
- Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania;
- National Research Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; (B.S.V.); (O.-C.O.)
| | - Iulia Alexandra Dumitru
- Faculty of Engineering in Foreign Languages, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | - Bogdan Stefan Vasile
- National Research Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; (B.S.V.); (O.-C.O.)
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Research Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; (B.S.V.); (O.-C.O.)
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, National University of Science and Technology Politehnica Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Alina Maria Holban
- Microbiology and Immunology Department, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, 060101 Bucharest, Romania;
| | - Roxana Cristina Popescu
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
- Department of Life and Environmental Science, National Institute for R&D in Physics and Nuclear Engineering Horia Hulubei, 30 Reactorului, 077125 Magurele, Romania
| |
Collapse
|
7
|
McDonald SM, Augustine EK, Lanners Q, Rudin C, Catherine Brinson L, Becker ML. Applied machine learning as a driver for polymeric biomaterials design. Nat Commun 2023; 14:4838. [PMID: 37563117 PMCID: PMC10415291 DOI: 10.1038/s41467-023-40459-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Polymers are ubiquitous to almost every aspect of modern society and their use in medical products is similarly pervasive. Despite this, the diversity in commercial polymers used in medicine is stunningly low. Considerable time and resources have been extended over the years towards the development of new polymeric biomaterials which address unmet needs left by the current generation of medical-grade polymers. Machine learning (ML) presents an unprecedented opportunity in this field to bypass the need for trial-and-error synthesis, thus reducing the time and resources invested into new discoveries critical for advancing medical treatments. Current efforts pioneering applied ML in polymer design have employed combinatorial and high throughput experimental design to address data availability concerns. However, the lack of available and standardized characterization of parameters relevant to medicine, including degradation time and biocompatibility, represents a nearly insurmountable obstacle to ML-aided design of biomaterials. Herein, we identify a gap at the intersection of applied ML and biomedical polymer design, highlight current works at this junction more broadly and provide an outlook on challenges and future directions.
Collapse
Affiliation(s)
| | - Emily K Augustine
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Quinn Lanners
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Cynthia Rudin
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - L Catherine Brinson
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, NC, USA.
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| |
Collapse
|
8
|
Yao F, Zhu P, Chen J, Li S, Sun B, Li Y, Zou M, Qi X, Liang P, Chen Q. Synthesis of nanoparticles via microfluidic devices and integrated applications. Mikrochim Acta 2023; 190:256. [PMID: 37301779 DOI: 10.1007/s00604-023-05838-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
In recent years, nanomaterials have attracted the research intervention of experts in the fields of catalysis, energy, biomedical testing, and biomedicine with their unrivaled optical, chemical, and biological properties. From basic metal and oxide nanoparticles to complex quantum dots and MOFs, the stable preparation of various nanomaterials has always been a struggle for researchers. Microfluidics, as a paradigm of microscale control, is a remarkable platform for online stable synthesis of nanomaterials with efficient mass and heat transfer in microreactors, flexible blending of reactants, and precise control of reaction conditions. We describe the process of microfluidic preparation of nanoparticles in the last 5 years in terms of microfluidic techniques and the methods of microfluidic manipulation of fluids. Then, the ability of microfluidics to prepare different nanomaterials, such as metals, oxides, quantum dots, and biopolymer nanoparticles, is presented. The effective synthesis of some nanomaterials with complex structures and the cases of nanomaterials prepared by microfluidics under extreme conditions (high temperature and pressure), the compatibility of microfluidics as a superior platform for the preparation of nanoparticles is demonstrated. Microfluidics has a potent integration capability to combine nanoparticle synthesis with real-time monitoring and online detection, which significantly improves the quality and production efficiency of nanoparticles, and also provides a high-quality ultra-clean platform for some bioassays.
Collapse
Affiliation(s)
- Fuqi Yao
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310000, People's Republic of China
| | - Pengpeng Zhu
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310000, People's Republic of China
| | - Junjie Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310000, People's Republic of China
| | - Suyang Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310000, People's Republic of China
| | - Biao Sun
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yunfeng Li
- College of Information Engineering, China Jiliang University, 310018, Hangzhou, 310000, People's Republic of China
| | - Mingqiang Zou
- Chinese Academy of Inspection and Quarantine (CAIQ), 100123, Beijing, People's Republic of China
| | - Xiaohua Qi
- Chinese Academy of Inspection and Quarantine (CAIQ), 100123, Beijing, People's Republic of China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310000, People's Republic of China.
| | - Qiang Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
9
|
Tsai HF, Podder S, Chen PY. Microsystem Advances through Integration with Artificial Intelligence. MICROMACHINES 2023; 14:826. [PMID: 37421059 PMCID: PMC10141994 DOI: 10.3390/mi14040826] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 07/09/2023]
Abstract
Microfluidics is a rapidly growing discipline that involves studying and manipulating fluids at reduced length scale and volume, typically on the scale of micro- or nanoliters. Under the reduced length scale and larger surface-to-volume ratio, advantages of low reagent consumption, faster reaction kinetics, and more compact systems are evident in microfluidics. However, miniaturization of microfluidic chips and systems introduces challenges of stricter tolerances in designing and controlling them for interdisciplinary applications. Recent advances in artificial intelligence (AI) have brought innovation to microfluidics from design, simulation, automation, and optimization to bioanalysis and data analytics. In microfluidics, the Navier-Stokes equations, which are partial differential equations describing viscous fluid motion that in complete form are known to not have a general analytical solution, can be simplified and have fair performance through numerical approximation due to low inertia and laminar flow. Approximation using neural networks trained by rules of physical knowledge introduces a new possibility to predict the physicochemical nature. The combination of microfluidics and automation can produce large amounts of data, where features and patterns that are difficult to discern by a human can be extracted by machine learning. Therefore, integration with AI introduces the potential to revolutionize the microfluidic workflow by enabling the precision control and automation of data analysis. Deployment of smart microfluidics may be tremendously beneficial in various applications in the future, including high-throughput drug discovery, rapid point-of-care-testing (POCT), and personalized medicine. In this review, we summarize key microfluidic advances integrated with AI and discuss the outlook and possibilities of combining AI and microfluidics.
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan;
- Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung, Keelung City 204, Taiwan
- Center for Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan
| | - Soumyajit Podder
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan;
| | - Pin-Yuan Chen
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan;
- Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung, Keelung City 204, Taiwan
| |
Collapse
|
10
|
Damiati LA, El-Yaagoubi M, Damiati SA, Kodzius R, Sefat F, Damiati S. Role of Polymers in Microfluidic Devices. Polymers (Basel) 2022; 14:5132. [PMID: 36501526 PMCID: PMC9738615 DOI: 10.3390/polym14235132] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Polymers are sustainable and renewable materials that are in high demand due to their excellent properties. Natural and synthetic polymers with high flexibility, good biocompatibility, good degradation rate, and stiffness are widely used for various applications, such as tissue engineering, drug delivery, and microfluidic chip fabrication. Indeed, recent advances in microfluidic technology allow the fabrication of polymeric matrix to construct microfluidic scaffolds for tissue engineering and to set up a well-controlled microenvironment for manipulating fluids and particles. In this review, polymers as materials for the fabrication of microfluidic chips have been highlighted. Successful models exploiting polymers in microfluidic devices to generate uniform particles as drug vehicles or artificial cells have been also discussed. Additionally, using polymers as bioink for 3D printing or as a matrix to functionalize the sensing surface in microfluidic devices has also been mentioned. The rapid progress made in the combination of polymers and microfluidics presents a low-cost, reproducible, and scalable approach for a promising future in the manufacturing of biomimetic scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Laila A. Damiati
- Department of Biology, Collage of Science, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Marwa El-Yaagoubi
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Safa A. Damiati
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rimantas Kodzius
- Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 80539 Munich, Germany
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Farshid Sefat
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford BD7 1DP, UK
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, BD7 1DP, UK
| | - Samar Damiati
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
11
|
Torres‐Carbajal KR, Segura‐Quezada LA, Ortíz‐Alvarado R, Chávez‐Rivera R, Tapia‐Juárez M, González‐Domínguez MI, Ruiz‐Padilla AJ, Zapata‐Morales JR, de León‐Solís C, Solorio Alvarado CR. Indomethacin Synthesis, Historical Overview of Their Structural Modifications. ChemistrySelect 2022. [DOI: 10.1002/slct.202201897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Karina R. Torres‐Carbajal
- Universidad de Guanajuato Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato. Noria Alta S/N 36050 Guanajuato Gto. México
| | - Luis A. Segura‐Quezada
- Universidad de Guanajuato Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato. Noria Alta S/N 36050 Guanajuato Gto. México
| | - Rafael Ortíz‐Alvarado
- Universidad Michoacana de San Nicolás de Hidalgo. Facultad de Químico Farmacobiología. Tzintzuntzan 173 col. Matamoros Morelia Mich. México
| | - Rubén Chávez‐Rivera
- Universidad Michoacana de San Nicolás de Hidalgo. Facultad de Químico Farmacobiología. Tzintzuntzan 173 col. Matamoros Morelia Mich. México
| | - Melissa Tapia‐Juárez
- Universidad Michoacana de San Nicolás de Hidalgo Instituto de Ciencias Químico Biológicas Av. Universidad S/N 58000 Morelia Mich., México
| | - Martha I. González‐Domínguez
- Dra. Martha I. Gozález-Domínguez Universidad de la Ciénega del Estado de Michoacán de Ocampo. Avenida Universidad 3000 Col. Lomas de la Universidad 59103 Sahuayo, Mich México
| | - Alan J. Ruiz‐Padilla
- Universidad de Guanajuato Departamento de Farmacia, División de Ciencias Naturales y Exactas, Campus Guanajuato. Noria Alta S/N 36050 Guanajuato Gto. México
| | - Juan R. Zapata‐Morales
- Universidad de Guanajuato Departamento de Farmacia, División de Ciencias Naturales y Exactas, Campus Guanajuato. Noria Alta S/N 36050 Guanajuato Gto. México
| | - Claudia de León‐Solís
- Instituto de Investigaciones Químicas Biológicas Biomédicas y Biofísicas. Universidad Mariano Gálvez. Guatemala Guatemala
| | - César R. Solorio Alvarado
- Universidad de Guanajuato Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato. Noria Alta S/N 36050 Guanajuato Gto. México
| |
Collapse
|
12
|
Yonet-Tanyeri N, Amer M, Balmert SC, Korkmaz E, Falo LD, Little SR. Microfluidic Systems For Manufacturing of Microparticle-Based Drug-Delivery Systems: Design, Construction, and Operation. ACS Biomater Sci Eng 2022; 8:2864-2877. [PMID: 35674145 PMCID: PMC10368402 DOI: 10.1021/acsbiomaterials.2c00066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Particles synthesized from biodegradable polymers hold great potential as controlled drug delivery systems. Continuous flow platforms based on microfluidics offer attractive advantages over conventional batch-emulsification techniques for the scalable fabrication of drug-loaded particles with controlled physicochemical properties. However, widespread utilization of microfluidic technologies for the manufacturing of drug-loaded particles has been hindered largely by the lack of practical guidelines toward cost-effective development and reliable operation of microfluidic systems. Here, we present a framework for rational design and construction of microfluidic systems using commercially available components for high-throughput production of uniform biodegradable particles encapsulating drugs. We also demonstrate successful implementation of this framework to devise a robust microfluidic system that is capable of producing drug-carrying particles with desired characteristics. The guidelines provided in this study will likely help broaden the applicability of microfluidic technologies for the synthesis of high-quality, drug-loaded biodegradable particles.
Collapse
Affiliation(s)
- Nihan Yonet-Tanyeri
- Department of Chemical Engineering, University of Pittsburgh, 3700 O'Hara Street, 940 Benedum Hall, Pittsburgh, Pennsylvania 15261, United States
| | - Maher Amer
- Department of Dermatology, University of Pittsburgh School of Medicine, 200 Lothrop Street, W1150 Biomedical Science Tower, Pittsburgh, Pennsylvania 15213, United States
| | - Stephen C Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, 200 Lothrop Street, W1150 Biomedical Science Tower, Pittsburgh, Pennsylvania 15213, United States
| | - Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, 200 Lothrop Street, W1150 Biomedical Science Tower, Pittsburgh, Pennsylvania 15213, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, 200 Lothrop Street, W1150 Biomedical Science Tower, Pittsburgh, Pennsylvania 15213, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States.,The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, 3700 O'Hara Street, 940 Benedum Hall, Pittsburgh, Pennsylvania 15261, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States.,Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States.,Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
13
|
Vlachopoulos A, Karlioti G, Balla E, Daniilidis V, Kalamas T, Stefanidou M, Bikiaris ND, Christodoulou E, Koumentakou I, Karavas E, Bikiaris DN. Poly(Lactic Acid)-Based Microparticles for Drug Delivery Applications: An Overview of Recent Advances. Pharmaceutics 2022; 14:359. [PMID: 35214091 PMCID: PMC8877458 DOI: 10.3390/pharmaceutics14020359] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
The sustained release of pharmaceutical substances remains the most convenient way of drug delivery. Hence, a great variety of reports can be traced in the open literature associated with drug delivery systems (DDS). Specifically, the use of microparticle systems has received special attention during the past two decades. Polymeric microparticles (MPs) are acknowledged as very prevalent carriers toward an enhanced bio-distribution and bioavailability of both hydrophilic and lipophilic drug substances. Poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA), and their copolymers are among the most frequently used biodegradable polymers for encapsulated drugs. This review describes the current state-of-the-art research in the study of poly(lactic acid)/poly(lactic-co-glycolic acid) microparticles and PLA-copolymers with other aliphatic acids as drug delivery devices for increasing the efficiency of drug delivery, enhancing the release profile, and drug targeting of active pharmaceutical ingredients (API). Potential advances in generics and the constant discovery of therapeutic peptides will hopefully promote the success of microsphere technology.
Collapse
Affiliation(s)
- Antonios Vlachopoulos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Georgia Karlioti
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Evangelia Balla
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Vasileios Daniilidis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Theocharis Kalamas
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Myrika Stefanidou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Nikolaos D. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Ioanna Koumentakou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Evangelos Karavas
- Pharmathen S.A., Pharmaceutical Industry, Dervenakion Str. 6, Pallini Attikis, GR-153 51 Attiki, Greece
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| |
Collapse
|