1
|
Algieri C, Bernardini C, La Mantia D, Trombetti F, Forni M, Nesci S. A comparative study of bioenergetic metabolism on mammary epithelial cells from humans and Göttingen Minipigs. Biochim Biophys Acta Gen Subj 2024; 1868:130728. [PMID: 39437974 DOI: 10.1016/j.bbagen.2024.130728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Mammary epithelial cells (MECs) of humans (h) and Göttingen Minipigs (mp) were analyzed to compare their ability to perform ATP production by oxidative phosphorylation and glycolysis. The ATP production under basal and stressor situations highlights the same metabolic potential of both primary cell lines. However, quantitively the ATP production rate of hMECs was higher than mpMECs. Conversely, oxidative cell respiration in mpMECs exploits a maximum respiratory capacity to support pathophysiological circumstances or stress conditions that could require an excessive effort of cell metabolism. Since mpMECs primarily utilize an oxidative metabolism similar to hMECs, the metabolic characterization conducted allows us to confirm that mpMECs represent a potential alternative cellular model in the translational medicine approach.
Collapse
Affiliation(s)
- Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, Italy; Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, Bologna, Italy.
| | - Debora La Mantia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, Italy
| | - Monica Forni
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, Italy.
| |
Collapse
|
2
|
Granata S, Bernardini C, Glogowski PA, Romito G, Salaroli R, Algieri C, Cugliari A, Fabbri M, Trombetti F, Zannoni A, Nesci S. Mitochondrial bioenergetic dysfunction linked to myxomatous mitral valve degeneration explored by PBMCs metabolism analysis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149505. [PMID: 39154699 DOI: 10.1016/j.bbabio.2024.149505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Impaired mitochondria cause an impressive decrease in ATP production becoming a common condition of cardiovascular diseases. Myxomatous mitral valve disease (MMVD) is characterized by mitochondrial dysfunction. By a non-invasive procedure of metabolism analysis on peripheral blood mononuclear cells, we exploit ex-vivo studies that directly constitute a translational approach to evaluate the cell bioenergetics. Cell ATP production decreased in the presence of MMVD, whereas glycolysis was unaffected. In MMVD, the mitochondrial activity underwent a significant reduction of basal respiration, maximal respiration, and ATP production. Our results depicted a pathological condition of MMVD characterized by cell metabolism deprived of mitochondrial energy support.
Collapse
Affiliation(s)
| | - Chiara Bernardini
- Dep. of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy
| | | | - Giovanni Romito
- Dep. of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy
| | - Roberta Salaroli
- Dep. of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy
| | - Cristina Algieri
- Dep. of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy
| | - Antonia Cugliari
- Dep. of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy
| | - Micaela Fabbri
- Dep. of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy
| | - Fabiana Trombetti
- Dep. of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy
| | - Augusta Zannoni
- Dep. of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy
| | - Salvatore Nesci
- Dep. of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy.
| |
Collapse
|
3
|
Binder ARD, Mussack V, Kirchner B, Pfaffl MW. Growth behavior and mRNA expression profiling during growth of IPEC-J2 cells. BMC Res Notes 2024; 17:154. [PMID: 38840260 PMCID: PMC11155027 DOI: 10.1186/s13104-024-06812-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
OBJECTIVE The IPEC-J2 cell line is used as an in vitro small intestine model for swine, but it is also used as a model for the human intestine, presenting a relatively unique setting. By combining electric cell-substrate impedance sensing, with next-generation-sequencing technology, we showed that mRNA gene expression profiles and related pathways can depend on the growth phase of IPEC-J2 cells. Our investigative approach welcomes scientists to reproduce or modify our protocols and endorses putting their gene expression data in the context of the respective growth phase of the cells. RESULTS Three time points are presented: (TP1) 1 h after medium change (= 6 h after seeding of cells), (TP2) the time point of the first derivative maximum of the cell growth curve, and a third point at the beginning of the plateau phase (TP3). Significantly outstanding at TP1 compared to TP2 was upregulated PLEKHN1, further FOSB and DEGS2 were significantly downregulated at TP2 compared to TP3. Any provided data can be used to improve next-generation experiments with IPEC-J2 cells.
Collapse
Affiliation(s)
- A Ronja D Binder
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany.
| | - Veronika Mussack
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Benedikt Kirchner
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Michael W Pfaffl
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
| |
Collapse
|
4
|
Silva NG, Preto M, Vasconcelos V, Urbatzka R. Reduction of neutral lipid reservoirs, bioconversion and untargeted metabolomics reveal distinct roles for vitamin K isoforms on lipid metabolism. Food Funct 2024; 15:2170-2180. [PMID: 38312068 DOI: 10.1039/d3fo02915h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Vitamin K isoforms are known as co-factors for the synthesis of blood-clotting proteins, but several other bioactivities were reported. In this work, we isolated a vitamin K1-analogue (OH-PhQ) from the cyanobacterium Tychonema sp. LEGE 07196 with lipid reducing activity. OH-PhQ reduced neutral lipid reservoirs with an EC50 value of 31 μM after 48 h exposure in zebrafish larvae, while other vitamin K isoforms had EC50 values of 21.1 μM (K2) and 1.2 μM (K3). No lipid reducing activity was observed for K1 up to 50 μM. The presence of vitamin K isoforms was studied in zebrafish after exposure (OH-PhQ, K1, K2 and K3), and a clear preference for bioconversion was observed to retain K1 and OH-PhQ. Untargeted metabolomics revealed different biological effects for vitamin K isoforms on the subclass and metabolite level, but similarities were present on the compound class level, particularly on the regulation of glycerophospholipids. Our data showed for the first time a lipid reducing activity of OH-PhQ and performed a comparative analysis of vitamin K isoforms, which could be important for the development of future nutraceuticals or food supplements.
Collapse
Affiliation(s)
- Natália Gonçalves Silva
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.
- FCUP, Faculty of Science, Department of Biology, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Marco Preto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.
- FCUP, Faculty of Science, Department of Biology, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
5
|
Cellular Metabolism and Bioenergetic Function in Human Fibroblasts and Preadipocytes of Type 2 Familial Partial Lipodystrophy. Int J Mol Sci 2022; 23:ijms23158659. [PMID: 35955791 PMCID: PMC9368940 DOI: 10.3390/ijms23158659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
LMNA mutation is associated with type-2 familial partial lipodystrophy (FPLD2). The disease causes a disorder characterized by anomalous accumulation of body fat in humans. The dysfunction at the molecular level is triggered by a lamin A/C mutation, impairing the cell metabolism. In human fibroblasts and preadipocytes, a trend for ATP production, mainly supported by mitochondrial oxidative metabolism, is detected. Moreover, primary cell lines with FPLD2 mutation decrease the mitochondrial ATP production if compared with the control, even if no differences are observed in the oxygen consumption rate of bioenergetic parameters (i.e., basal and maximal respiration, spare respiratory capacity, and ATP turnover). Conversely, glycolysis is only inhibited in FPLD2 fibroblast cell lines. We notice that the amount of ATP produced in the fibroblasts is higher than in the preadipocytes, and likewise in the control, with respect to FPLD2, due to a more active oxidative phosphorylation (OXPHOS) and glycolysis. Moreover, the proton leak parameter, which characterizes the transformation of white adipose tissue to brown/beige adipose tissue, is unaffected by FPLD2 mutation. The metabolic profile of fibroblasts and preadipocytes is confirmed by the ability of these cell lines to increase the metabolic potential of both OXPHOS and glycolysis under energy required independently by the FPLD2 mutation.
Collapse
|
6
|
Tragni V, Primiano G, Tummolo A, Cafferati Beltrame L, La Piana G, Sgobba MN, Cavalluzzi MM, Paterno G, Gorgoglione R, Volpicella M, Guerra L, Marzulli D, Servidei S, De Grassi A, Petrosillo G, Lentini G, Pierri CL. Personalized Medicine in Mitochondrial Health and Disease: Molecular Basis of Therapeutic Approaches Based on Nutritional Supplements and Their Analogs. Molecules 2022; 27:3494. [PMID: 35684429 PMCID: PMC9182050 DOI: 10.3390/molecules27113494] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial diseases (MDs) may result from mutations affecting nuclear or mitochondrial genes, encoding mitochondrial proteins, or non-protein-coding mitochondrial RNA. Despite the great variability of affected genes, in the most severe cases, a neuromuscular and neurodegenerative phenotype is observed, and no specific therapy exists for a complete recovery from the disease. The most used treatments are symptomatic and based on the administration of antioxidant cocktails combined with antiepileptic/antipsychotic drugs and supportive therapy for multiorgan involvement. Nevertheless, the real utility of antioxidant cocktail treatments for patients affected by MDs still needs to be scientifically demonstrated. Unfortunately, clinical trials for antioxidant therapies using α-tocopherol, ascorbate, glutathione, riboflavin, niacin, acetyl-carnitine and coenzyme Q have met a limited success. Indeed, it would be expected that the employed antioxidants can only be effective if they are able to target the specific mechanism, i.e., involving the central and peripheral nervous system, responsible for the clinical manifestations of the disease. Noteworthily, very often the phenotypes characterizing MD patients are associated with mutations in proteins whose function does not depend on specific cofactors. Conversely, the administration of the antioxidant cocktails might determine the suppression of endogenous oxidants resulting in deleterious effects on cell viability and/or toxicity for patients. In order to avoid toxicity effects and before administering the antioxidant therapy, it might be useful to ascertain the blood serum levels of antioxidants and cofactors to be administered in MD patients. It would be also worthwhile to check the localization of mutations affecting proteins whose function should depend (less or more directly) on the cofactors to be administered, for estimating the real need and predicting the success of the proposed cofactor/antioxidant-based therapy.
Collapse
Affiliation(s)
- Vincenzo Tragni
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy;
| | - Guido Primiano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (S.S.)
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Albina Tummolo
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, Via Amendola 207, 70126 Bari, Italy; (A.T.); (G.P.)
| | - Lucas Cafferati Beltrame
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Gianluigi La Piana
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Maria Noemi Sgobba
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy;
| | - Giulia Paterno
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, Via Amendola 207, 70126 Bari, Italy; (A.T.); (G.P.)
| | - Ruggiero Gorgoglione
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Mariateresa Volpicella
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Domenico Marzulli
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy;
| | - Serenella Servidei
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (S.S.)
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Giuseppe Petrosillo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy;
| | - Giovanni Lentini
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy;
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| |
Collapse
|
7
|
Pi G, Song W, Wu Z, Li Y, Yang H. Comparison of expression profiles between undifferentiated and differentiated porcine IPEC-J2 cells. Porcine Health Manag 2022; 8:4. [PMID: 35000622 PMCID: PMC8744309 DOI: 10.1186/s40813-022-00247-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The intestinal porcine enterocyte cell line (IPEC-J2) is a well-established model to study porcine intestinal physiology. IPEC-J2 cells undergo spontaneous differentiation during culture while changes in expression patterns of differentiated IPEC-J2 remain unclear. Therefore, this study was aimed to investigate the expression profiles of IPEC-J2 cells at the transcriptional level. Differentially expressed genes (DEGs), enriched pathways and potential key genes were identified. Alkaline phosphatase (AKP) and percentages of apoptotic cells were also measured. RESULTS Overall, a total of 988 DEGs were identified, including 704 up-regulated and 284 down-regulated genes. GO analysis revealed that epithelial cell differentiation, apoptotic signaling pathway, regulation of cytokine production and immune system process, regulation of cell death and proliferation, cell junction complexes, and kinase binding were enriched significantly. Consistently, KEGG, REACTOME, and CORUM analysis indicated that cytokine responses modulation may be involved in IPEC-J2 differentiation. Moreover, AKP activity, a recognized marker of enterocyte differentiation, was significantly increased in IPEC-J2 after 14 days of culture. Meanwhile, annexin V-FITC/PI assay demonstrated a remarkable increase in apoptotic cells after 14 days of culture. Additionally, 10 hub genes were extracted, and STAT1, AKT3, and VEGFA were speculated to play roles in IPEC-J2 differentiation. CONCLUSIONS These findings may contribute to the molecular characterization of IPEC-J2, and may progress the understanding of cellular differentiation of swine intestinal epithelium.
Collapse
Affiliation(s)
- Guolin Pi
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, No. 36 Lushan Road, Changsha, 410081, Hunan, China
| | - Wenxin Song
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, No. 36 Lushan Road, Changsha, 410081, Hunan, China
| | - Zijuan Wu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, No. 36 Lushan Road, Changsha, 410081, Hunan, China
| | - Yali Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, No. 36 Lushan Road, Changsha, 410081, Hunan, China.
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, No. 36 Lushan Road, Changsha, 410081, Hunan, China.
| |
Collapse
|
8
|
Kołakowski A, Kurzyna PF, Bzdęga W, Żywno H, Harasim-Symbor E, Chabowski A, Konstantynowicz-Nowicka K. Influence of vitamin K2 on lipid precursors of inflammation and fatty acids pathway activities in HepG2 cells. Eur J Cell Biol 2021; 100:151188. [PMID: 34837768 DOI: 10.1016/j.ejcb.2021.151188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 01/07/2023] Open
Abstract
Vitamin K2 (VK2) is one of the two types of vitamin K present most in the human diet. VK2 seems to have a beneficial effect on inflammation related to type 2 diabetes mellitus. The aim of this study was to evaluate the influence of VK2 on lipid precursors of inflammation in lipid-overloaded human liver hepatocellular carcinoma cells. Cells were incubated with VK2 and/or palmitic acid (PA). The concentrations of lipid fractions and their fatty acid compositions were measured by gas-liquid chromatography. The expression of proteins involved in the inflammatory process was detected using western blotting. The concentration of triacylglycerols (TAGs), activities of the n-3 pathway in TAGs, and lipooxygenase 15 expression were significantly elevated in cells incubated with PA and VK2. In the same group, a marked elevation in diacylglycerol (DAG) 20:4 was observed. VK2 supplementation lowered the expression of tumour necrosis factor-alpha and interleukin-6 compared to that in the PA group. The data indicate that VK2 redirects fatty acid metabolism into the deposition of a safe TAG fraction by increasing the concentration of anti-inflammatory n-3 polyunsaturated fatty acids in this fraction. Moreover, VK2 stimulates the synthesis of anti-inflammatory factors and has anti-inflammatory effects by reducing DAG 20:4.
Collapse
Affiliation(s)
- Adrian Kołakowski
- Department of Physiology, Medical University of Białystok, Mickiewicz Str. 2C, 15-222 Bialystok, Poland.
| | - Piotr Franciszek Kurzyna
- Department of Physiology, Medical University of Białystok, Mickiewicz Str. 2C, 15-222 Bialystok, Poland.
| | - Wiktor Bzdęga
- Department of Physiology, Medical University of Białystok, Mickiewicz Str. 2C, 15-222 Bialystok, Poland.
| | - Hubert Żywno
- Department of Physiology, Medical University of Białystok, Mickiewicz Str. 2C, 15-222 Bialystok, Poland.
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Białystok, Mickiewicz Str. 2C, 15-222 Bialystok, Poland.
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, Mickiewicz Str. 2C, 15-222 Bialystok, Poland.
| | | |
Collapse
|