1
|
Müller L, Hatzfeld M. Emerging functions of Plakophilin 4 in the control of cell contact dynamics. Cell Commun Signal 2025; 23:109. [PMID: 40001215 DOI: 10.1186/s12964-025-02106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Plakophilin 4 (PKP4, also called p0071) is a unique armadillo family protein localized at adherens junctions that acts as a scaffold protein capable of clustering cadherins. PKP4 also regulates cadherin recycling which is vital to enable junction dynamics. In addition, PKP4 controls the mechanical properties of cells by regulating actin filament organization through small Rho-GTPases. In this setting, PKP4 controls the localization and activity of specific guanine exchange factors (GEFs) and of their opponents, the GTPase activating proteins (GAPs). Through the formation of multiprotein complexes with Rho-GTPases, their regulators and their effectors, PKP4 controls the spatio-temporal activity of Rho signaling to regulate cell adhesion and cell mechanics. In keratinocytes, PKP4 prevents differentiation and at the same time dampens proliferation. This is, in part achieved through an interaction with the Hippo pathway, which controls the activity of the transcriptional co-factors YAP and TAZ. In a feedback loop, YAP/TAZ modulate PKP4 localization and function. Here, we review the various functions of PKP4 in cell signaling, cell mechanics, cell adhesion and growth control. We discuss how these functions converge in the regulation of cell adhesion dynamics to allow cells to adapt to their changing environment and enable proliferation, delamination but, at the same time, guarantee cell barrier function.
Collapse
Affiliation(s)
- Lisa Müller
- Institute of Molecular Medicine, Section for RNA biology and Pathogenesis, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany.
| | - Mechthild Hatzfeld
- Institute of Molecular Medicine, Section for Pathobiochemistry, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany
| |
Collapse
|
2
|
Zhou Y, Guo Y, Zhang M, Quan S, Li J. The role of RAP2 in regulation of cell volume on bone marrow mesenchymal stem cell fate determination. J Mol Histol 2025; 56:79. [PMID: 39903386 DOI: 10.1007/s10735-025-10362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
The extracellular matrix guides cell behavior through mechanical properties, which plays a role in determining cell function and can even influence stem cell fate. Compared with adherent culture, the three-dimensional culture environment is closer to the growth conditions in vivo, but is limited by standardization of material properties and observation and measurement methods. Therefore, it is necessary to study the relationship among the three-dimensional morphological characteristics of cells, cytoskeleton, and stem cell differentiation under adherent culture conditions. Here, we control the cell volume by adjusting the cell density, microfilament cytoskeleton tension, and osmotic pressure of the culture environment, and analyze the cell morphological features and differentiation to the osteoblastic and adipogenic lineages. Based on the in vitro and in vivo results, we identify cell volume as the true reflection of the cytoskeleton tension under stress stimuli compared with cell spreading area. By adjusting cell volume, cytoskeletal tension and cell differentiation can be regulated without affecting cell spreading area. Further study shows that the Ras-related small GTPase RAP2 inhibits the activity of mechanical transducers Lamin A/C and YAP1, playing an important role in cell volume regulation of cell differentiation. In summary, our results support the close relationship between cell volume and cytoskeleton tension. The regulatory role of cell volume on cell differentiation is modulated, at least in part, by RAP2-related mechanosensitive pathways. Our insights into how cell volume regulates cell differentiation may build a bridge between two-dimensional and three-dimensional mechanical studies in cell biology.
Collapse
Affiliation(s)
- Yimei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 14#, 3rd Section, Renmin South Road, Chengdu, 610041, China
| | - Yutong Guo
- Department of Orthodontics, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing, 100081, PR China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 14#, 3rd Section, Renmin South Road, Chengdu, 610041, China
| | - Shuqi Quan
- State Key Laboratory of Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 14#, 3rd Section, Renmin South Road, Chengdu, 610041, China
| | - Juan Li
- State Key Laboratory of Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 14#, 3rd Section, Renmin South Road, Chengdu, 610041, China.
| |
Collapse
|
3
|
Ghosh R, Herberg S. The role of YAP/TAZ mechanosignaling in trabecular meshwork and Schlemm's canal cell dysfunction. Vision Res 2024; 224:108477. [PMID: 39208753 PMCID: PMC11470804 DOI: 10.1016/j.visres.2024.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/01/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
This focused review highlights the importance of yes-associated protein (YAP)/transcriptional coactivator with PDZ binding motif (TAZ) mechanosignaling in human trabecular meshwork and Schlemm's canal cells in response to glaucoma-associated extracellular matrix stiffening and cyclic mechanical stretch, as well as biochemical pathway modulators (with signaling crosstalk) including transforming growth factor beta 2, glucocorticoids, Wnt, lysophosphatidic acid, vascular endothelial growth factor, and oxidative stress. We provide a comprehensive overview of relevant literature from the last decade, highlight intriguing research avenues with translational potential, and close with an outlook on future directions.
Collapse
Affiliation(s)
- Rajanya Ghosh
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
4
|
Ye J, Wang J, Zhao J, Xia M, Wang H, Sun L, Zhang WB. RhoA/ROCK-TAZ Axis regulates bone formation within calvarial trans-sutural distraction osteogenesis. Cell Signal 2024; 121:111300. [PMID: 39004327 DOI: 10.1016/j.cellsig.2024.111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Craniofacial skeletal deformities can be addressed by applying tensile force to sutures to prompt sutural bone formation. The intricate process of mechanical modulation in craniofacial sutures involves complex biomechanical signal transduction. The small GTPase Ras homolog gene family member A (RhoA) functions as a key mechanotransduction protein, orchestrating the dynamic assembly of the cytoskeleton by activating the Rho-associated coiled-coil containing protein kinase (ROCK). Transcriptional coactivator with PDZ-binding motif (TAZ) serves as a crucial mediator in the regulation of genes and the orchestration of biological functions within the mechanotransduction signaling pathway. However, the role of RhoA/ROCK-TAZ in trans-sutural distraction osteogenesis has not been reported. METHODS We utilized pre-osteoblast-specific RhoA deletion mice to establish an in vivo calvarial trans-sutural distraction model and an in vitro mechanical stretch model for pre-osteoblasts isolated from neonatal mice. Micro-CT and histological staining were utilized to detect the formation of new bone in the sagittal suture of the skull as well as the activation of RhoA, Osterix and TAZ. The activation of ROCK-limk-cofilin and the nuclear translocation of TAZ in pre-osteoblasts under mechanical tension were detected through Western blot, qRT-PCR, and immunofluorescence. RESULTS The osteogenic differentiation of pre-osteoblasts was facilitated by mechanical tension through the activation of RhoA and Rho-associated kinase (ROCK), while ablation of RhoA impaired osteogenesis by inhibiting pre-osteoblast differentiation after suture expansion. Furthermore, inhibiting RhoA expression could block tensile-stimulated nuclear translocation of TAZ by preventing F-actin assembly through ROCK-LIM-domain kinase (LIMK)-cofilin pathway. In addition, the TAZ agonist TM-25659 could attenuate impaired osteogenesis caused by ablation of RhoA in pre-osteoblasts by increasing TAZ nuclear accumulation. CONCLUSIONS This study demonstrates that mechanical stretching promotes the osteogenic differentiation of pre-osteoblasts in trans-sutural distraction osteogenesis, and this process is mediated by the RhoA/ROCK-TAZ signaling axis. Overall, our results may provide an insight for potential treatment strategies for craniosynostosis patients through trans-sutural distraction osteogenesis.
Collapse
Affiliation(s)
- Junjie Ye
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Jialu Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210000, China
| | - Jing Zhao
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Meng Xia
- Changsha Stomatological Hospital, Changsha, Hunan 410000, China
| | - Hua Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Lian Sun
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China.
| | - Wei-Bing Zhang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China; The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou 215000, China.
| |
Collapse
|
5
|
Zhao Y, Sun B, Fu X, Zuo Z, Qin H, Yao K. YAP in development and disease: Navigating the regulatory landscape from retina to brain. Biomed Pharmacother 2024; 175:116703. [PMID: 38713948 DOI: 10.1016/j.biopha.2024.116703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
The distinctive role of Yes-associated protein (YAP) in the nervous system has attracted widespread attention. This comprehensive review strategically uses the retina as a vantage point, embarking on an extensive exploration of YAP's multifaceted impact from the retina to the brain in development and pathology. Initially, we explore the crucial roles of YAP in embryonic and cerebral development. Our focus then shifts to retinal development, examining in detail YAP's regulatory influence on the development of retinal pigment epithelium (RPE) and retinal progenitor cells (RPCs), and its significant effects on the hierarchical structure and functionality of the retina. We also investigate the essential contributions of YAP in maintaining retinal homeostasis, highlighting its precise regulation of retinal cell proliferation and survival. In terms of retinal-related diseases, we explore the epigenetic connections and pathophysiological regulation of YAP in diabetic retinopathy (DR), glaucoma, and proliferative vitreoretinopathy (PVR). Lastly, we broaden our exploration from the retina to the brain, emphasizing the research paradigm of "retina: a window to the brain." Special focus is given to the emerging studies on YAP in brain disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), underlining its potential therapeutic value in neurodegenerative disorders and neuroinflammation.
Collapse
Affiliation(s)
- Yaqin Zhao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Sun
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhuan Zuo
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
6
|
Liu C, Tang J, Chen Y, Zhang Q, Lin J, Wu S, Han J, Liu Z, Wu C, Zhuo Y, Li Y. Intracellular Zn 2+ promotes extracellular matrix remodeling in dexamethasone-treated trabecular meshwork. Am J Physiol Cell Physiol 2024; 326:C1293-C1307. [PMID: 38525543 DOI: 10.1152/ajpcell.00725.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/31/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
Given the widespread application of glucocorticoids in ophthalmology, the associated elevation of intraocular pressure (IOP) has long been a vexing concern for clinicians, yet the underlying mechanisms remain inconclusive. Much of the discussion focuses on the extracellular matrix (ECM) of trabecular meshwork (TM). It is widely agreed that glucocorticoids impact the expression of matrix metalloproteinases (MMPs), leading to ECM deposition. Since Zn2+ is vital for MMPs, we explored its role in ECM alterations induced by dexamethasone (DEX). Our study revealed that in human TM cells treated with DEX, the level of intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. This correlated with changes in several Zrt-, Irt-related proteins (ZIPs) and metallothionein. ZIP8 knockdown impaired extracellular Zn2+ uptake, but Zn2+ chelation did not affect ZIP8 expression. Resembling DEX's effects, chelation of Zn2+ decreased MMP2 expression, increased the deposition of ECM proteins, and induced structural disarray of ECM. Conversely, supplementation of exogenous Zn2+ in DEX-treated cells ameliorated these outcomes. Notably, dietary zinc supplementation in mice significantly reduced DEX-induced IOP elevation and collagen content in TM, thereby rescuing the visual function of the mice. These findings underscore zinc's pivotal role in ECM regulation, providing a novel perspective on the pathogenesis of glaucoma.NEW & NOTEWORTHY Our study explores zinc's pivotal role in mitigating extracellular matrix dysregulation in the trabecular meshwork and glucocorticoid-induced ocular hypertension. We found that in human trabecular meshwork cells treated with dexamethasone, intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. Zinc supplementation rescues visual function by modulating extracellular matrix proteins and lowering intraocular pressure, offering a direction for further exploration in glaucoma management.
Collapse
Affiliation(s)
- Canying Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jiahui Tang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yuze Chen
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Qi Zhang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jicheng Lin
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Siting Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jiaxu Han
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Zhe Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Caiqing Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yehong Zhuo
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yiqing Li
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| |
Collapse
|
7
|
Du Y. The Hippo signalling pathway and its impact on eye diseases. J Cell Mol Med 2024; 28:e18300. [PMID: 38613348 PMCID: PMC11015399 DOI: 10.1111/jcmm.18300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2023] [Revised: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The Hippo signalling pathway, an evolutionarily conserved kinase cascade, has been shown to be crucial for cell fate determination, homeostasis and tissue regeneration. Recent experimental and clinical studies have demonstrated that the Hippo signalling pathway is involved in the pathophysiology of ocular diseases. This article provides the first systematic review of studies on the regulatory and functional roles of mammalian Hippo signalling systems in eye diseases. More comprehensive studies on this pathway are required for a better understanding of the pathophysiology of eye diseases and the development of effective therapies.
Collapse
Affiliation(s)
- Yuxiang Du
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongPeople's Republic of China
| |
Collapse
|
8
|
Ogene L, Woods S, Hetmanski J, Lozano N, Karakasidi A, Caswell PT, Kostarelos K, Domingos MAN, Vranic S, Kimber SJ. Graphene oxide activates canonical TGFβ signalling in a human chondrocyte cell line via increased plasma membrane tension. NANOSCALE 2024; 16:5653-5664. [PMID: 38414413 PMCID: PMC10939054 DOI: 10.1039/d3nr06033k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/27/2023] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
Graphene Oxide (GO) has been shown to increase the expression of key cartilage genes and matrix components within 3D scaffolds. Understanding the mechanisms behind the chondroinductive ability of GO is critical for developing articular cartilage regeneration therapies but remains poorly understood. The objectives of this work were to elucidate the effects of GO on the key chondrogenic signalling pathway - TGFβ and identify the mechanism through which signal activation is achieved in human chondrocytes. Activation of canonical signalling was validated through GO-induced SMAD-2 phosphorylation and upregulation of known TGFβ response genes, while the use of a TGFβ signalling reporter assay allowed us to identify the onset of GO-induced signal activation which has not been previously reported. Importantly, we investigate the cell-material interactions and molecular mechanisms behind these effects, establishing a novel link between GO, the plasma membrane and intracellular signalling. By leveraging fluorescent lifetime imaging (FLIM) and a membrane tension probe, we reveal GO-mediated increases in plasma membrane tension, in real-time for the first time. Furthermore, we report the activation of mechanosensory pathways which are known to be regulated by changes in plasma membrane tension and reveal the activation of endogenous latent TGFβ in the presence of GO, providing a mechanism for signal activation. The data presented here are critical to understanding the chondroinductive properties of GO and are important for the implementation of GO in regenerative medicine.
Collapse
Affiliation(s)
- Leona Ogene
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
| | - Steven Woods
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
| | - Joseph Hetmanski
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Neus Lozano
- Nanomedicine Lab, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - Angeliki Karakasidi
- Nano-Cell Biology Lab, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Kostas Kostarelos
- Nanomedicine Lab, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB Bellaterra, 08193 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, Spain
- Centre for Nanotechnology in Medicine, Faculty of Biology Medicine & Health, The University of Manchester, Manchester, UK
| | - Marco A N Domingos
- Department of Solids and Structure, School of Engineering, Faculty of Science and Engineering, Henry Royce Institute, The University of Manchester, Manchester, UK
| | - Sandra Vranic
- Nano-Cell Biology Lab, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, UK
- Centre for Nanotechnology in Medicine, Faculty of Biology Medicine & Health, The University of Manchester, Manchester, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
9
|
Jing L, Liu K, Wang F, Su Y. Role of mechanically-sensitive cation channels Piezo1 and TRPV4 in trabecular meshwork cell mechanotransduction. Hum Cell 2024; 37:394-407. [PMID: 38316716 DOI: 10.1007/s13577-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Glaucoma is one of the leading causes of irreversible blindness in developed countries, and intraocular pressure (IOP) is primary and only treatable risk factor, suggesting that to a significant extent, glaucoma is a disease of IOP disorder and pathological mechanotransduction. IOP-lowering ways are limited to decreaseing aqueous humour (AH) production or increasing the uveoscleral outflow pathway. Still, therapeutic approaches have been lacking to control IOP by enhancing the trabecular meshwork (TM) pathway. Trabecular meshwork cells (TMCs) have endothelial and myofibroblast properties and are responsible for the renewal of the extracellular matrix (ECM). Mechanosensitive cation channels, including Piezo1 and TRPV4, are abundantly expressed in primary TMCs and trigger mechanostress-dependent ECM and cytoskeletal remodelling. However, prolonged mechanical stimulation severely affects cellular biosynthesis through TMC mechanotransduction, including signaling, gene expression, ECM remodelling, and cytoskeletal structural changes, involving outflow facilities and elevating IOP. As for the functional coupling relationship between Piezo1 and TRPV4 channels, inspired by VECs and osteoblasts, we hypothesized that Piezo1 may also act upstream of TRPV4 in glaucomatous TM tissue, mediating the activation of TRPV4 via Ca2+ inflow or Ca2+ binding to phospholipase A2(PLA2), and thus be involved in increasing TM outflow resistance and elevated IOP. Therefore, this review aims to help identify new potential targets for IOP stabilization in ocular hypertension and primary open-angle glaucoma by understanding the mechanical transduction mechanisms associated with the development of glaucoma and may provide ideas into novel treatments for preventing the progression of glaucoma by targeting mechanotransduction.
Collapse
Affiliation(s)
- Lingling Jing
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Kexin Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Ying Su
- Eye Hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
10
|
Youngblood H, Schoenlein PV, Pasquale LR, Stamer WD, Liu Y. Estrogen dysregulation, intraocular pressure, and glaucoma risk. Exp Eye Res 2023; 237:109725. [PMID: 37956940 PMCID: PMC10842791 DOI: 10.1016/j.exer.2023.109725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Characterized by optic nerve atrophy due to retinal ganglion cell (RGC) death, glaucoma is the leading cause of irreversible blindness worldwide. Of the major risk factors for glaucoma (age, ocular hypertension, and genetics), only elevated intraocular pressure (IOP) is modifiable, which is largely regulated by aqueous humor outflow through the trabecular meshwork. Glucocorticoids such as dexamethasone have long been known to elevate IOP and lead to glaucoma. However, several recent studies have reported that steroid hormone estrogen levels inversely correlate with glaucoma risk, and that variants in estrogen signaling genes have been associated with glaucoma. As a result, estrogen dysregulation may contribute to glaucoma pathogenesis, and estrogen signaling may protect against glaucoma. The mechanism for estrogen-related protection against glaucoma is not completely understood but likely involves both regulation of IOP homeostasis and neuroprotection of RGCs. Based upon its known activities, estrogen signaling may promote IOP homeostasis by affecting extracellular matrix turnover, focal adhesion assembly, actin stress fiber formation, mechanosensation, and nitric oxide production. In addition, estrogen receptors in the RGCs may mediate neuroprotective functions. As a result, the estrogen signaling pathway may offer a therapeutic target for both IOP control and neuroprotection. This review examines the evidence for a relationship between estrogen and IOP and explores the possible mechanisms by which estrogen maintains IOP homeostasis.
Collapse
Affiliation(s)
- Hannah Youngblood
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Patricia V Schoenlein
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA; Department of Radiology and Georgia Cancer Center, Augusta University, Augusta, GA, USA; Department of Surgery, Augusta University, Augusta, GA, USA
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - W Daniel Stamer
- Department of Ophthalmology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA; Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA.
| |
Collapse
|
11
|
Xu M, Wang Y, Zhou J, Zhang X, Yu Y, Li K. MicroRNA-93 promotes the pathogenesis of glaucoma by inhibiting matrix metalloproteinases as well as up-regulating extracellular matrix and Rho/ROCK signaling pathways. Heliyon 2023; 9:e22012. [PMID: 38045197 PMCID: PMC10689882 DOI: 10.1016/j.heliyon.2023.e22012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/01/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Objective To investigate the effect and potential molecular mechanism of microRNA-93 (miR-93) on retinal ganglion cells (RGCs) apoptosis as well as retinal damage in acute glaucoma mice. Methods RGCs apoptosis were induced by oxygen-glucose deprivation and reperfusion (OGD/R). The pro-apoptotic effect of miR-93 was evaluated by transfecting miR-93 mimics or miR-93 inhibitor into OGD/R-induced RGCs. The viability and apoptosis of RGCs were determined by MTT assay and flow cytometry. Mouse model of acute glaucoma were successfully induced via high intraocular pressure (IOP), and then these model animals were randomly divided into vehicle group, miR-93 mimics group or miR-93 inhibitor group (n = 10), using healthy mice as normal control. Histopathologic changes of retinal tissue were evaluated by Hematoxylin and Eosin (H&E) staining method. Moreover, cell counts of retinal ganglion cell layer and mean thickness of different layers were also determined. Quantitative real-time PCR (qPCR) and western blotting analysis were used to detect the mRNA and protein expression levels of extracellular matrix (ECM), matrix metalloproteinases (MMPs) and Rho/ROCK signaling pathway. Results miR-93 mimics significantly decreased or promoted the viability and apoptosis of OGD/R-induced RGCs, respectively. In addition, miR-93 mimics significantly exacerbated the degree of retinal tissue damage in mice with acute glaucoma, which was accompanied by a decrease in the number of ganglion cell layer (GCL) cells and the thickness of different tissue layers. Moreover, miR-93 mimics significantly increased IOP in mice with acute glaucoma. Significantly, miR-93 inhibitors significantly reversed the above changes. In addition, results of Western blot analysis showed that miR-93 mimics increased and decreased the expression of ECM-associated and MMP-associated proteins, respectively, by activating the Rho/ROCK signaling pathway. In contrast, miR-93 significantly decreased and increased the expression of ECM-associated and MMP-associated proteins, and suppressed the expression of Rho/ROCK signaling pathway-related proteins. Conclusion miR-93 can promote the development of glaucoma by activating Rho/ROCK signaling pathway to mediate the accumulation of ECM-related proteins as well as the down-regulation of MMP-related proteins.
Collapse
Affiliation(s)
- Manhua Xu
- Department of Ophthalmology, Nanfang Hospital, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Yanxi Wang
- Department of Ophthalmology, Nanfang Hospital, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Juan Zhou
- Department of Ophthalmology, Nanfang Hospital, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Xun Zhang
- Department of Ophthalmology, Nanfang Hospital, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Yinggui Yu
- Department of Ophthalmology, Nanfang Hospital, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Kaiming Li
- Department of Ophthalmology, Nanfang Hospital, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| |
Collapse
|
12
|
Schmitt HM, Hake KM, Perkumas KM, Lê BM, Suarez MF, De Ieso ML, Rahman RS, Johnson WM, Gomez-Caraballo M, Ashley-Koch AE, Hauser MA, Stamer WD. Lysyl oxidase-like 1-antisense 1 (LOXL1-AS1) lncRNA differentially regulates gene and protein expression, signaling and morphology of human ocular cells. Hum Mol Genet 2023; 32:3053-3062. [PMID: 37540217 PMCID: PMC10586201 DOI: 10.1093/hmg/ddad128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2023] [Revised: 06/19/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023] Open
Abstract
Pseudoexfoliation glaucoma (PEXG) is characterized by dysregulated extracellular matrix (ECM) homeostasis that disrupts conventional outflow function and increases intraocular pressure (IOP). Prolonged IOP elevation results in optic nerve head damage and vision loss. Uniquely, PEXG is a form of open angle glaucoma that has variable penetrance, is difficult to treat and does not respond well to common IOP-lowering pharmaceuticals. Therefore, understanding modulators of disease severity will aid in targeted therapies for PEXG. Genome-wide association studies have identified polymorphisms in the long non-coding RNA lysyl oxidase-like 1-antisense 1 (LOXL1-AS1) as a risk factor for PEXG. Risk alleles, oxidative stress and mechanical stretch all alter LOXL1-AS1 expression. As a long non-coding RNA, LOXL1-AS1 binds hnRNPL and regulates global gene expression. In this study, we focus on the role of LOXL1-AS1 in the ocular cells (trabecular meshwork and Schlemm's canal) that regulate IOP. We show that selective knockdown of LOXL1-AS1 leads to cell-type-specific changes in gene expression, ECM homeostasis, signaling and morphology. These results implicate LOXL1-AS1 as a modulator of cellular homeostasis, altering cell contractility and ECM turnover, both of which are well-known contributors to PEXG. These findings support LOXL1-AS1 as a key target for modifying the disease.
Collapse
Affiliation(s)
- Heather M Schmitt
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Kristyn M Hake
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | | | - Brandon M Lê
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Maria F Suarez
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | | | - Rashad S Rahman
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
| | - William M Johnson
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | | | | | - Michael A Hauser
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
13
|
Sayedyahossein S, Thines L, Sacks DB. Ca 2+ signaling and the Hippo pathway: Intersections in cellular regulation. Cell Signal 2023; 110:110846. [PMID: 37549859 PMCID: PMC10529277 DOI: 10.1016/j.cellsig.2023.110846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
The Hippo signaling pathway is a master regulator of organ size and tissue homeostasis. Hippo integrates a broad range of cellular signals to regulate numerous processes, such as cell proliferation, differentiation, migration and mechanosensation. Ca2+ is a fundamental second messenger that modulates signaling cascades involved in diverse cellular functions, some of which are also regulated by the Hippo pathway. Studies published over the last five years indicate that Ca2+ can influence core Hippo pathway components. Nevertheless, comprehensive understanding of the crosstalk between Ca2+ signaling and the Hippo pathway, and possible mechanisms through which Ca2+ regulates Hippo, remain to be elucidated. In this review, we summarize the multiple intersections between Ca2+ and the Hippo pathway and address the biological consequences.
Collapse
Affiliation(s)
- Samar Sayedyahossein
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Louise Thines
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Rubio K, Molina-Herrera A, Pérez-González A, Hernández-Galdámez HV, Piña-Vázquez C, Araujo-Ramos T, Singh I. EP300 as a Molecular Integrator of Fibrotic Transcriptional Programs. Int J Mol Sci 2023; 24:12302. [PMID: 37569677 PMCID: PMC10418647 DOI: 10.3390/ijms241512302] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Fibrosis is a condition characterized by the excessive accumulation of extracellular matrix proteins in tissues, leading to organ dysfunction and failure. Recent studies have identified EP300, a histone acetyltransferase, as a crucial regulator of the epigenetic changes that contribute to fibrosis. In fact, EP300-mediated acetylation of histones alters global chromatin structure and gene expression, promoting the development and progression of fibrosis. Here, we review the role of EP300-mediated epigenetic regulation in multi-organ fibrosis and its potential as a therapeutic target. We discuss the preclinical evidence that suggests that EP300 inhibition can attenuate fibrosis-related molecular processes, including extracellular matrix deposition, inflammation, and epithelial-to-mesenchymal transition. We also highlight the contributions of small molecule inhibitors and gene therapy approaches targeting EP300 as novel therapies against fibrosis.
Collapse
Affiliation(s)
- Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus Valsequillo, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus Valsequillo, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
| | - Andrea Pérez-González
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus Valsequillo, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
| | - Hury Viridiana Hernández-Galdámez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, Mexico
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, Mexico
| | - Tania Araujo-Ramos
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Indrabahadur Singh
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Du J, Qian T, Lu Y, Zhou W, Xu X, Zhang C, Zhang J, Zhang Z. SPARC-YAP/TAZ inhibition prevents the fibroblasts-myofibroblast transformation. Exp Cell Res 2023; 429:113649. [PMID: 37225012 DOI: 10.1016/j.yexcr.2023.113649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/17/2022] [Revised: 03/22/2023] [Accepted: 05/14/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Fibrotic scar is a severe side effect of trabeculectomy, resulting in unsatisfactory outcomes for glaucoma surgery. Accumulating evidence showed human Tenon's fibroblasts (HTFs) play an important role in fibrosis formation. We previously reported that the aqueous level of secreted protein acidic and rich in cysteine (SPARC) was higher in the patients with primary angle closure glaucoma, which was associated with the failure of trabeculectomy. In this study, the potential effect and mechanism of SPARC in promoting fibrosis were explored by using HTFs. METHODS HTFs were employed in this study and examined under a phase-contrast microscope. Cell viability was determined by CCK-8. The expressions of SPARC-YAP/TAZ signaling and the fibrosis-related markers were examined with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), Western blot, and immunofluorescence, subcellular fractionation was conducted to further determined the variation of YAP and phosphorylated YAP. The differential gene expressions were analyzed with RNA sequencing (RNAseq), followed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. RESULTS Exogenous SPARC induced HTFs-myofibroblast transformation, as evidenced by the increased expression of α-SMA, collagen I and fibronectin in both protein and mRNA levels. SPARC knockdown decreased the expressions of the above genes in TGF-β2-treated HTFs. KEGG analysis showed that the Hippo signaling pathway was mostly enriched. SPARC treatment increased the expressions of YAP, TAZ, CTGF and CYR61 as well as enhanced YAP translocation from cytoplasm to nucleus, and decreased the phosphorylation of YAP and LAST1/2, which was reversed by SPARC knockdown. Knockdown of YAP1 decreased the fibrosis-related markers, such as α-SMA, collagen I and Fibronectin, in SPARC-treated HTFs. CONCLUSIONS SPARC induced HTFs-myofibroblast transformation via activating YAP/TAZ signaling. Targeting SPARC-YAP/TAZ axis in HTFs might provide a novel strategy for inhibiting fibrosis formation after trabeculectomy.
Collapse
Affiliation(s)
- Jingxiao Du
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Tianwei Qian
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Yi Lu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Wenkai Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| | - Zhihua Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
16
|
Xu L, Zhang X, Zhao Y, Gang X, Zhou T, Han J, Cao Y, Qi B, Song S, Wang X, Liang Y. Metformin protects trabecular meshwork against oxidative injury via activating integrin/ROCK signals. eLife 2023; 12:81198. [PMID: 36598818 PMCID: PMC9812404 DOI: 10.7554/elife.81198] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/19/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
This study aimed to investigate the protective effect of metformin on trabecular meshwork (TM) and explore its molecular mechanisms in vivo and in vitro. Ocular hypertension (OHT) mouse models were induced with dexamethasone and further treated with metformin to determine the intraocular pressure (IOP)-lowering effect. Cultured human TM cells (HTMCs) were pre-stimulated with tert-butyl hydroperoxide (tBHP) to induce oxidative damage and then supplemented with metformin for another 24 hr. The expression of fibrotic markers and integrin/Rho-associated kinase (ROCK) signals, including α-smooth muscle actin (α-SMA), transforming growth factor-β (TGF-β), fibronectin, integrin beta 1, ROCK 1/2, AMP-activated protein kinase, myosin light chain 1, and F-actin were determined by western blotting and immunofluorescence. Reactive oxygen species (ROS) content was analysed using flow cytometry. Transmission electron microscopy was performed to observe microfilaments in HTMCs. It showed that metformin administration reduced the elevated IOP and alleviated the fibrotic activity of aqueous humour outflow in OHT models. Additionally, metformin rearranged the disordered cytoskeleton in the TM both in vivo and in vitro and significantly inhibited ROS production and activated integrin/ROCK signalling induced by tBHP in HTMCs. These results indicated that metformin reduced the elevated IOP in steroid-induced OHT mouse models and exerted its protective effects against oxidative injury by regulating cytoskeleton remodelling through the integrin/ROCK pathway. This study provides new insights into metformin use and preclinical evidence for the potential treatment of primary open-angle glaucoma.
Collapse
Affiliation(s)
- Lijuan Xu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, WenzhouZhejiangChina
| | - Xinyao Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, WenzhouZhejiangChina
| | - Yin Zhao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, WenzhouZhejiangChina
| | - Xiaorui Gang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, WenzhouZhejiangChina
| | - Tao Zhou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, WenzhouZhejiangChina
| | - Jialing Han
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, WenzhouZhejiangChina
| | - Yang Cao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, WenzhouZhejiangChina
| | - Binyan Qi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, WenzhouZhejiangChina
| | - Shuning Song
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, WenzhouZhejiangChina
| | - Xiaojie Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, WenzhouZhejiangChina
| | - Yuanbo Liang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, WenzhouZhejiangChina
| |
Collapse
|
17
|
Wong DCP, Xiao J, Chew TW, Pan M, Lee CJM, Ang JW, Yow I, Thivakar T, Ackers‐Johnson M, Lee NJW, Foo RS, Kanchanawong P, Low BC. BNIP-2 Activation of Cellular Contractility Inactivates YAP for H9c2 Cardiomyoblast Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202834. [PMID: 35975420 PMCID: PMC9631078 DOI: 10.1002/advs.202202834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/13/2022] [Revised: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Rho GTPases and Hippo kinases are key regulators of cardiomyoblast differentiation. However, how these signaling axes are coordinated spatiotemporally remains unclear. Here, the central and multifaceted roles of the BCH domain containing protein, BNIP-2, in orchestrating the expression of two key cardiac genes (cardiac troponin T [cTnT] and cardiac myosin light chain [Myl2]) in H9c2 and human embryonic stem cell-derived cardiomyocytes are delineated. This study shows that BNIP-2 mRNA and protein expression increase with the onset of cTnT and Myl2 and promote the alignment of H9c2 cardiomyocytes. Mechanistically, BNIP-2 is required for the inactivation of YAP through YAP phosphorylation and its cytosolic retention. Turbo-ID proximity labeling corroborated by super-resolution analyses and biochemical pulldown data reveals a scaffolding role of BNIP-2 for LATS1 to phosphorylate and inactivate YAP in a process that requires BNIP-2 activation of cellular contractility. The findings identify BNIP-2 as a pivotal signaling scaffold that spatiotemporally integrates RhoA/Myosin II and LATS1/YAP mechanotransduction signaling to drive cardiomyoblast differentiation, by switching the genetic programming from YAP-dependent growth to YAP-silenced differentiation. These findings offer insights into the importance of scaffolding proteins in bridging the gap between mechanical and biochemical signals in cell growth and differentiation and the prospects in translational applications.
Collapse
Affiliation(s)
- Darren Chen Pei Wong
- Mechanobiology Institute SingaporeNational University of SingaporeSingapore117411Singapore
- Department of Biological SciencesNational University of SingaporeSingapore117558Singapore
| | - Jingwei Xiao
- Mechanobiology Institute SingaporeNational University of SingaporeSingapore117411Singapore
| | - Ti Weng Chew
- Mechanobiology Institute SingaporeNational University of SingaporeSingapore117411Singapore
| | - Meng Pan
- Mechanobiology Institute SingaporeNational University of SingaporeSingapore117411Singapore
| | - Chang Jie Mick Lee
- Genome Institute of SingaporeAgency for ScienceTechnology and ResearchSingapore138672Singapore
| | - Jing Wen Ang
- Department of Biological SciencesNational University of SingaporeSingapore117558Singapore
| | - Ivan Yow
- Mechanobiology Institute SingaporeNational University of SingaporeSingapore117411Singapore
| | - T. Thivakar
- Mechanobiology Institute SingaporeNational University of SingaporeSingapore117411Singapore
| | - Matthew Ackers‐Johnson
- Genome Institute of SingaporeAgency for ScienceTechnology and ResearchSingapore138672Singapore
- Cardiovascular Research InstituteNational University Healthcare SystemsSingapore117599Singapore
| | - Nicole Jia Wen Lee
- Department of Biological SciencesNational University of SingaporeSingapore117558Singapore
| | - Roger Sik‐Yin Foo
- Genome Institute of SingaporeAgency for ScienceTechnology and ResearchSingapore138672Singapore
- Cardiovascular Research InstituteNational University Healthcare SystemsSingapore117599Singapore
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute SingaporeNational University of SingaporeSingapore117411Singapore
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Boon Chuan Low
- Mechanobiology Institute SingaporeNational University of SingaporeSingapore117411Singapore
- Department of Biological SciencesNational University of SingaporeSingapore117558Singapore
- NUS CollegeNational University of SingaporeSingapore138593Singapore
| |
Collapse
|
18
|
Chen Y, Su Y, Wang F. The Piezo1 ion channel in glaucoma: a new perspective on mechanical stress. Hum Cell 2022; 35:1307-1322. [PMID: 35767143 DOI: 10.1007/s13577-022-00738-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
Glaucomatous optic nerve damage caused by pathological intraocular pressure elevation is irreversible, and its course is often difficult to control. This group of eye diseases is closely related to biomechanics, and the correlation between glaucoma pathogenesis and mechanical stimulation has been studied in recent decades. The nonselective cation channel Piezo1, the most important known mechanical stress sensor, is a transmembrane protein widely expressed in various cell types. Piezo1 has been detected throughout the eye, and the close relationship between Piezo1 and glaucoma is being confirmed. Pathological changes in glaucoma occur in both the anterior and posterior segments of the eye, and it is of great interest for researchers to determine whether Piezo1 plays a role in these changes and how it functions. The elucidation of the mechanisms of Piezo1 action in nonocular tissues and the reported roles of similar mechanically activated ion channels in glaucoma will provide an appropriate basis for further investigation. From a new perspective, this review provides a detailed description of the current progress in elucidating the role of Piezo1 in glaucoma, including relevant questions and assumptions, the remaining challenging research directions and mechanism-related therapeutic potential.
Collapse
Affiliation(s)
- Yidan Chen
- Department of Ophthalmology, Fourth Affiliated Hospital, Harbin Medical University, Yiyuan Road, Harbin, 150001, China
| | - Ying Su
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Yiman Road, Harbin, 150007, China.
| | - Feng Wang
- Department of Ophthalmology, Fourth Affiliated Hospital, Harbin Medical University, Yiyuan Road, Harbin, 150001, China.
| |
Collapse
|
19
|
YAP/TAZ Promote Fibrotic Activity in Human Trabecular Meshwork Cells by Sensing Cytoskeleton Structure Alternation. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
Trabecular meshwork (TM) is the main channel of aqueous humor (AH) outflow and the crucial tissue responsible for intraocular pressure (IOP) regulation. The aberrant fibrotic activity of human TM (HTM) cells is thought to be partially responsible for the increased resistance to AH outflow and elevated IOP. This study aimed to identify the TM cell fibrotic activity biomarker and illustrate the mechanisms of fibrotic activity regulation in HTM cells. We used TGFβ2-treated HTM cells and detected the changes in the cytoskeletal structure, the Yes-associated protein (YAP) and its transcriptional co-activator with PDZ-binding domain (TAZ) activation, and the expression levels of the fibrosis-related proteins Collagen I and α-SMA in HTM cells by immunofluorescence staining or western bolt analyses. The expression of YAP was inhibited using siRNA transfection. The results showed that the expression levels of YAP/TAZ and the fibrosis-related proteins Collagen I and α-SMA in HTM cells were elevated under TGF-β2 treatment, which was correlated with the structural change of the cellular F-actin cytoskeleton. Furthermore, the inhibition of YAP decreased the expression of connective tissue growth factor (CTGF), Collagen I, and α-SMA in HTM cells. These findings demonstrate that YAP/TAZ are potential biomarkers in evaluating the TM cell fibrotic activity, and it could sense cytoskeletal structure cues and regulate the fibrotic activity of TM cells.
Collapse
|
20
|
Murphy-Ullrich JE. Thrombospondin-1 Signaling Through the Calreticulin/LDL Receptor Related Protein 1 Axis: Functions and Possible Roles in Glaucoma. Front Cell Dev Biol 2022; 10:898772. [PMID: 35693935 PMCID: PMC9185677 DOI: 10.3389/fcell.2022.898772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Thrombospondin-1 (TSP-1) is a matricellular extracellular matrix protein. Matricellular proteins are components of the extracellular matrix (ECM) that regulate key cellular functions and impact ECM organization, but which lack direct primary structural roles in the ECM. TSP-1 expression is upregulated in response to injury, hypoxia, growth factor stimulation, inflammation, glucose, and by reactive oxygen species. Relevant to glaucoma, TSP-1 is also a mechanosensitive molecule upregulated by mechanical stretch. TSP-1 expression is increased in ocular remodeling in glaucoma in both the trabecular meshwork and in the optic nerve head. The exact roles of TSP-1 in glaucoma remain to be defined, however. It plays important roles in cell behavior and in ECM remodeling during wound healing, fibrosis, angiogenesis, and in tumorigenesis and metastasis. At the cellular level, TSP-1 can modulate cell adhesion and migration, protease activity, growth factor activity, anoikis resistance, apoptosis, and collagen secretion and matrix assembly and cross-linking. These multiple functions and macromolecular and receptor interactions have been ascribed to specific domains of the TSP-1 molecule. In this review, we will focus on the cell regulatory activities of the TSP-1 N-terminal domain (NTD) sequence that binds to cell surface calreticulin (Calr) and which regulates cell functions via signaling through Calr complexed with LDL receptor related protein 1 (LRP1). We will describe TSP-1 actions mediated through the Calr/LRP1 complex in regulating focal adhesion disassembly and cytoskeletal reorganization, cell motility, anoikis resistance, and induction of collagen secretion and matrix deposition. Finally, we will consider the relevance of these TSP-1 functions to the pathologic remodeling of the ECM in glaucoma.
Collapse
Affiliation(s)
- Joanne E. Murphy-Ullrich
- Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Joanne E. Murphy-Ullrich,
| |
Collapse
|
21
|
Xia N, Yang N, Shan Q, Wang Z, Liu X, Chen Y, Lu J, Huang W, Wang Z. HNRNPC regulates RhoA to induce DNA damage repair and cancer-associated fibroblast activation causing radiation resistance in pancreatic cancer. J Cell Mol Med 2022; 26:2322-2336. [PMID: 35277915 PMCID: PMC8995438 DOI: 10.1111/jcmm.17254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2021] [Revised: 01/29/2022] [Accepted: 02/17/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal types of cancer due to its asymptomatic nature in the early stages and consequent late diagnosis. Its mortality rate remains high despite advances in treatment strategies, which include a combination of surgical resection and adjuvant therapy. Although these approaches may have a positive effect on prognosis, the development of chemo- and radioresistance still poses a significant challenge for successful PC treatment. Heterogeneous nuclear ribonucleoprotein C1/C2 (HNRNPC) and RhoA have been implicated in the regulation of tumour cell proliferation and chemo- and radioresistance. Our study aims to investigate the mechanism for HNRNPC regulation of PC radiation resistance via the RhoA pathway. We found that HNRNPC and RhoA mRNA and protein expression levels were significantly higher in PC tissues compared to adjacent non-tumour tissue. Furthermore, high HNRNPC expression was associated with poor patient prognosis. Using HNRNPC overexpression and siRNA interference, we demonstrated that HNRNPC overexpression promoted radiation resistance in PC cells, while HNRNPC knockdown increased radiosensitivity. However, silencing of RhoA expression was shown to attenuate radiation resistance caused by HNRNPC overexpression. Next, we identified RhoA as a downstream target of HNRNPC and showed that inhibition of the RhoA/ROCK2-YAP/TAZ pathway led to a reduction in DNA damage repair and radiation resistance. Finally, using both in vitro assays and an in vivo subcutaneous tumour xenograft model, we demonstrated that RhoA inhibition can hinder the activity of cancer-related fibroblasts and weaken PC radiation resistance. Our study describes a role for HNRNPC and the RhoA/ROCK2-YAP/TAZ signalling pathways in mediating radiation resistance and provides a potential therapeutic target for improving the treatment of PC.
Collapse
Affiliation(s)
- Ning Xia
- Department of RadiologyRuijin Hospital Luwan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Nannan Yang
- Department of RadiologyRuijin Hospital Luwan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qungang Shan
- Department of Interventional RadiologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ziyin Wang
- Department of Interventional RadiologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoyu Liu
- Department of Interventional RadiologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yingjie Chen
- Department of Interventional RadiologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jian Lu
- Department of RadiologyRuijin Hospital Luwan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wei Huang
- Department of Interventional RadiologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhongmin Wang
- Department of RadiologyRuijin Hospital Luwan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Interventional RadiologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Biomechanics is an important aspect of the complex family of diseases known as the glaucomas. Here, we review recent studies of biomechanics in glaucoma. RECENT FINDINGS Several tissues have direct and/or indirect biomechanical roles in various forms of glaucoma, including the trabecular meshwork, cornea, peripapillary sclera, optic nerve head/sheath, and iris. Multiple mechanosensory mechanisms and signaling pathways continue to be identified in both the trabecular meshwork and optic nerve head. Further, the recent literature describes a variety of approaches for investigating the role of tissue biomechanics as a risk factor for glaucoma, including pathological stiffening of the trabecular meshwork, peripapillary scleral structural changes, and remodeling of the optic nerve head. Finally, there have been advances in incorporating biomechanical information in glaucoma prognoses, including corneal biomechanical parameters and iridial mechanical properties in angle-closure glaucoma. SUMMARY Biomechanics remains an active aspect of glaucoma research, with activity in both basic science and clinical translation. However, the role of biomechanics in glaucoma remains incompletely understood. Therefore, further studies are indicated to identify novel therapeutic approaches that leverage biomechanics. Importantly, clinical translation of appropriate assays of tissue biomechanical properties in glaucoma is also needed.
Collapse
Affiliation(s)
- Babak N. Safa
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta GA, USA
| | - Cydney A. Wong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta GA, USA
| | - Jungmin Ha
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta GA, USA
| | - C. Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta GA, USA
| |
Collapse
|