1
|
Bhullar AS, Jin K, Shi H, Jones A, Hironaka D, Xiong G, Xu R, Guo P, Binzel DW, Shu D. Engineered extracellular vesicles for combinatorial TNBC therapy: SR-SIM-guided design achieves substantial drug dosage reduction. Mol Ther 2024:S1525-0016(24)00658-0. [PMID: 39369270 DOI: 10.1016/j.ymthe.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/22/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that has no therapeutic targets, relies on chemotherapeutics for treatment, and is in dire need of novel therapeutic approaches for improved patient outcomes. Extracellular vesicles (EVs) serve as intercellular communicators and have been proposed as ideal drug delivery vehicles. Here, EVs were engineered with RNA nanotechnology to develop TNBC tumor inhibitors. Using super resolved-structured illumination microscopy, EVs were optimized for precise Survivin small interfering RNA (siRNA) conjugated to chemotherapeutics loading and CD44 aptamer ligand decoration, thereby enhancing specificity toward TNBC cells. Conventional treatments typically employ chemotherapy drugs gemcitabine (GEM) and paclitaxel (PTX) at dosages on the order of mg/kg respectively, per injection (intravenous) in mice. In contrast, engineered EVs encapsulating these drugs saw functional tumor growth inhibition at significantly reduced concentrations: 2.2 μg/kg for GEM or 5.6 μg/kg for PTX, in combination with 21.5 μg/kg survivin-siRNA in mice. The result is a substantial decrease in the chemotherapeutic dose required, by orders of magnitude, compared with standard regimens. In vivo and in vitro evaluations in a TNBC orthotopic xenograft mouse model demonstrated the efficacy of this decreased dosage strategy, indicating the potential for decreased chemotherapy-associated toxicity.
Collapse
Affiliation(s)
- Abhjeet S Bhullar
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Kai Jin
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA
| | - Haizhu Shi
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Austen Jones
- Department of Veterinary Biosciences, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Dalton Hironaka
- Department of Veterinary Biosciences, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Gaofeng Xiong
- Department of Veterinary Biosciences, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ren Xu
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA.
| | - Dan Shu
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Torres Quintas S, Canha-Borges A, Oliveira MJ, Sarmento B, Castro F. Special Issue: Nanotherapeutics in Women's Health Emerging Nanotechnologies for Triple-Negative Breast Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300666. [PMID: 36978237 DOI: 10.1002/smll.202300666] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Breast cancer appears as the major cause of cancer-related deaths in women, with more than 2 260 000 cases reported worldwide in 2020, resulting in 684 996 deaths. Triple-negative breast cancer (TNBC), characterized by the absence of estrogen, progesterone, and human epidermal growth factor type 2 receptors, represents ≈20% of all breast cancers. TNBC has a highly aggressive clinical course and is more prevalent in younger women. The standard therapy for advanced TNBC is chemotherapy, but responses are often short-lived, with high rate of relapse. The lack of therapeutic targets and the limited therapeutic options confer to individuals suffering from TNBC the poorest prognosis among breast cancer patients, remaining a major clinical challenge. In recent years, advances in cancer nanomedicine provided innovative therapeutic options, as nanoformulations play an important role in overcoming the shortcomings left by conventional therapies: payload degradation and its low solubility, stability, and circulating half-life, and difficulties regarding biodistribution due to physiological and biological barriers. In this integrative review, the recent advances in the nanomedicine field for TNBC treatment, including the novel nanoparticle-, exosome-, and hybrid-based therapeutic formulations are summarized and their drawbacks and challenges are discussed for future clinical applications.
Collapse
Affiliation(s)
- Sofia Torres Quintas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Ana Canha-Borges
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Maria José Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- IUCS-CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Flávia Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
| |
Collapse
|
3
|
Akla N, Veilleux C, Annabi B. The Chemopreventive Impact of Diet-Derived Phytochemicals on the Adipose Tissue and Breast Tumor Microenvironment Secretome. Nutr Cancer 2024:1-17. [PMID: 39300732 DOI: 10.1080/01635581.2024.2401647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Cancer cells-derived extracellular vesicles can trigger the transformation of adipose-derived mesenchymal stem cells (ADMSC) into a pro-inflammatory, cancer-associated adipocyte (CAA) phenotype. Such secretome-mediated crosstalk between the adipose tissue and the tumor microenvironment (TME) therefore impacts tumor progression and metastatic processes. In addition, emerging roles of diet-derived phytochemicals, especially epigallocatechin-3-gallate (EGCG) among other polyphenols, in modulating exosome-mediated metabolic and inflammatory signaling pathways have been highlighted. Here, we discuss how selected diet-derived phytochemicals could alter the secretome signature as well as the crosstalk dynamics between the adipose tissue and the TME, with a focus on breast cancer. Their broader implication in the chemoprevention of obesity-related cancers is also discussed.
Collapse
Affiliation(s)
- Naoufal Akla
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| | - Carolane Veilleux
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| |
Collapse
|
4
|
Liu X, Hyun Kim J, Li X, Liu R. Application of mesenchymal stem cells exosomes as nanovesicles delivery system in the treatment of breast cancer. Int J Pharm 2024; 666:124732. [PMID: 39304093 DOI: 10.1016/j.ijpharm.2024.124732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
As people's living standards continue to improve and human life span expectancy increases, the incidence and mortality rates of breast cancer are continuously rising. Early detection of breast cancer and targeted therapy for different breast cancer subtypes can significantly reduce the mortality rate and alleviate the suffering of patients. Exosomes are extracellular vesicles secreted by various cells in the body. They participate in physiological and pathological responses by releasing active substances and play an important role in regulating intercellular communication. In recent years, research on exosomes has gradually expanded, and their special membrane structure and targetable characteristics are being increasingly applied in various clinical studies. Mesenchymal stem cells (MSCs)-derived exosomes play an important role in regulating the progression of breast cancer. In this review, we summarize the current treatment methods for breast cancer, the connection between MSCs, exosomes, and breast cancer, as well as the application of exosomes derived from MSCs from different sources in cancer treatment. We highlight how the rational design of modified MSCs-derived exosomes (MSCs-Exos) delivery systems can overcome the uncertainties of stem cell therapy and overcome the clinical translation challenges of nanomaterials. This work aims to promote future research on the application of MSCs-Exos in breast cancer treatment.
Collapse
Affiliation(s)
- Xiaofan Liu
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea; Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - June Hyun Kim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea
| | - Xuemei Li
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Rui Liu
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea.
| |
Collapse
|
5
|
Banerjee R, Maitra I, Bhattacharya T, Banerjee M, Ramanathan G, Rayala SK, Venkatraman G, Rajeswari D. Next-generation biomarkers for prognostic and potential therapeutic enhancement in Triple negative breast cancer. Crit Rev Oncol Hematol 2024; 201:104417. [PMID: 38901639 DOI: 10.1016/j.critrevonc.2024.104417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
Triple-negative breast carcinoma (TNBC) is one of the most challenging subtypes of breast carcinoma and it has very limited therapeutic options as it is highly aggressive. The prognostic biomarkers are crucial for early diagnosis of the tumor, it also helps in anticipating the trajectory of the illness and optimizing the therapy options. Several therapeutic biomarkers are being used. Among them, the next-generation biomarkers that include Circulating tumor (ct) DNA, glycogen, lipid, and exosome biomarkers provide intriguing opportunities for enhancing the prognosis of TNBC. Lipid and glycogen biomarkers serve as essential details on the development of the tumor along with the efficacy of the treatment, as it exhibits metabolic alteration linked to TNBC. Several types of biomarkers have predictive abilities in TNBC. Elevated levels are associated with worse outcomes. ctDNA being a noninvasive biomarker reveals the genetic composition of the tumor, as well as helps to monitor the progression of the disease. Traditional therapies are ineffective in TNBC due to a lack of receptors, targeted drug delivery provides a tailored approach to overcome drug resistance and site-specific action by minimizing the side effects in TNBC treatment. This enhances therapeutic outcomes against the aggressive nature of breast cancer. This paper includes all the recent biomarkers which has been researched so far in TNBC and the state of art for TNBC which is explored.
Collapse
Affiliation(s)
- Risav Banerjee
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Indrajit Maitra
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Trisha Bhattacharya
- Department of Biotechnology, Indian Academy Degree College, Autonomous, Hennur cross, Kalyan Nagar, Bengaluru, Karnataka 560043, India
| | - Manosi Banerjee
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology, Madras, Tamil Nadu 600036, India
| | - Ganesh Venkatraman
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | - Devi Rajeswari
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
6
|
Musket A, Davern S, Elam BM, Musich PR, Moorman JP, Jiang Y. The application of radionuclide therapy for breast cancer. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 3:1323514. [PMID: 39355029 PMCID: PMC11440853 DOI: 10.3389/fnume.2023.1323514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/27/2023] [Indexed: 10/03/2024]
Abstract
Radionuclide-mediated diagnosis and therapy have emerged as effective and low-risk approaches to treating breast cancer. Compared to traditional anatomic imaging techniques, diagnostic radionuclide-based molecular imaging systems exhibit much greater sensitivity and ability to precisely illustrate the biodistribution and metabolic processes from a functional perspective in breast cancer; this transitions diagnosis from an invasive visualization to a noninvasive visualization, potentially ensuring earlier diagnosis and on-time treatment. Radionuclide therapy is a newly developed modality for the treatment of breast cancer in which radionuclides are delivered to tumors and/or tumor-associated targets either directly or using delivery vehicles. Radionuclide therapy has been proven to be eminently effective and to exhibit low toxicity when eliminating both primary tumors and metastases and even undetected tumors. In addition, the specific interaction between the surface modules of the delivery vehicles and the targets on the surface of tumor cells enables radionuclide targeting therapy, and this represents an exceptional potential for this treatment in breast cancer. This article reviews the development of radionuclide molecular imaging techniques that are currently employed for early breast cancer diagnosis and both the progress and challenges of radionuclide therapy employed in breast cancer treatment.
Collapse
Affiliation(s)
- Anna Musket
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Sandra Davern
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Brianna M Elam
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Philip R Musich
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Jonathan P Moorman
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Yong Jiang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
7
|
Yazdan M, Naghib SM, Mozafari MR. Polymeric Micelle-Based Nanogels as Emerging Drug Delivery Systems in Breast Cancer Treatment: Promises and Challenges. Curr Drug Targets 2024; 25:649-669. [PMID: 38919076 DOI: 10.2174/0113894501294136240610061328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
Breast cancer is a pervasive global health issue that disproportionately impacts the female population. Over the past few years, there has been considerable interest in nanotechnology due to its potential utility in creating drug-delivery systems designed to combat this illness. The primary aim of these devices is to enhance the delivery of targeted medications, optimise the specific cells that receive the drugs, tackle treatment resistance in malignant cells, and introduce novel strategies for preventing and controlling diseases. This research aims to examine the methodologies utilised by various carrier nanoparticles in the context of therapeutic interventions for breast cancer. The main objective is to investigate the potential application of novel delivery technologies to attain timely and efficient diagnosis and treatment. Current cancer research predominantly examines diverse drug delivery methodologies for chemotherapeutic agents. These methodologies encompass the development of hydrogels, micelles, exosomes, and similar compounds. This research aims to analyse the attributes, intricacies, notable advancements, and practical applications of the system in clinical settings. Despite the demonstrated efficacy of these methodologies, an apparent discrepancy can be observed between the progress made in developing innovative therapeutic approaches and their widespread implementation in clinical settings. It is critical to establish a robust correlation between these two variables to enhance the effectiveness of medication delivery systems based on nanotechnology in the context of breast cancer treatment.
Collapse
Affiliation(s)
- M Yazdan
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - S M Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
8
|
Pu Q, Gao H. The Role of the Tumor Microenvironment in Triple-Positive Breast Cancer Progression and Therapeutic Resistance. Cancers (Basel) 2023; 15:5493. [PMID: 38001753 PMCID: PMC10670777 DOI: 10.3390/cancers15225493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer (BRCA) is a highly heterogeneous systemic disease. It is ranked first globally in the incidence of new cancer cases and has emerged as the primary cause of cancer-related death among females. Among the distinct subtypes of BRCA, triple-positive breast cancer (TPBC) has been associated with increased metastasis and invasiveness, exhibiting greater resistance to endocrine therapy involving trastuzumab. It is now understood that invasion, metastasis, and treatment resistance associated with BRCA progression are not exclusively due to breast tumor cells but are from the intricate interplay between BRCA and its tumor microenvironment (TME). Accordingly, understanding the pathogenesis and evolution of the TPBC microenvironment demands a comprehensive approach. Moreover, addressing BRCA treatment necessitates a holistic consideration of the TME, bearing significant implications for identifying novel targets for anticancer interventions. This review expounds on the relationship between critical cellular components and factors in the TPBC microenvironment and the inception, advancement, and therapeutic resistance of breast cancer to provide perspectives on the latest research on TPBC.
Collapse
Affiliation(s)
- Qian Pu
- Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China;
- Oncology Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Haidong Gao
- Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China;
- Oncology Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| |
Collapse
|
9
|
Zeng W, Luo Y, Gan D, Zhang Y, Deng H, Liu G. Advances in Doxorubicin-based nano-drug delivery system in triple negative breast cancer. Front Bioeng Biotechnol 2023; 11:1271420. [PMID: 38047286 PMCID: PMC10693343 DOI: 10.3389/fbioe.2023.1271420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
Triple positive breast cancer (TPBC) is one of the most aggressive breast cancer. Due to the unique cell phenotype, aggressiveness, metastatic potential and lack of receptors or targets, chemotherapy is the choice of treatment for TNBC. Doxorubicin (DOX), one of the representative agents of anthracycline chemotherapy, has better efficacy in patients with metastatic TNBC (mTNBC). DOX in anthracycline-based chemotherapy regimens have higher response rates. Nano-drug delivery systems possess unique targeting and ability of co-load, deliver and release chemotherapeutic drugs, active gene fragments and immune enhancing factors to effectively inhibit or kill tumor cells. Therefore, advances in nano-drug delivery systems for DOX therapy have attracted a considerable amount of attention from researchers. In this article, we have reviewed the progress of nano-drug delivery systems (e.g., Nanoparticles, Liposomes, Micelles, Nanogels, Dendrimers, Exosomes, etc.) applied to DOX in the treatment of TNBC. We also summarize the current progress of clinical trials of DOX combined with immune checkpoint inhibitors (ICIS) for the treatment of TNBC. The merits, demerits and future development of nanomedicine delivery systems in the treatment of TNBC are also envisioned, with the aim of providing a new class of safe and efficient thoughts for the treatment of TNBC.
Collapse
Affiliation(s)
- Weiwei Zeng
- Department of Pharmacy, Shenzhen Longgang Second People’s Hospital, Shenzhen, Guangdong, China
| | - Yuning Luo
- Department of Pharmacy, Shenzhen Longgang Second People’s Hospital, Shenzhen, Guangdong, China
| | - Dali Gan
- Department of Pharmacy, Shenzhen Longgang Second People’s Hospital, Shenzhen, Guangdong, China
| | - Yaofeng Zhang
- Department of Pharmacy, Shenzhen Longgang Second People’s Hospital, Shenzhen, Guangdong, China
| | - Huan Deng
- Department of Pharmacy, Shenzhen Longgang Second People’s Hospital, Shenzhen, Guangdong, China
| | - Guohui Liu
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Matou-Nasri S, Aldawood M, Alanazi F, Khan AL. Updates on Triple-Negative Breast Cancer in Type 2 Diabetes Mellitus Patients: From Risk Factors to Diagnosis, Biomarkers and Therapy. Diagnostics (Basel) 2023; 13:2390. [PMID: 37510134 PMCID: PMC10378597 DOI: 10.3390/diagnostics13142390] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is usually the most malignant and aggressive mammary epithelial tumor characterized by the lack of expression for estrogen receptors and progesterone receptors, and the absence of epidermal growth factor receptor (HER)2 amplification. Corresponding to 15-20% of all breast cancers and well-known by its poor clinical outcome, this negative receptor expression deprives TNBC from targeted therapy and makes its management therapeutically challenging. Type 2 diabetes mellitus (T2DM) is the most common ageing metabolic disorder due to insulin deficiency or resistance resulting in hyperglycemia, hyperinsulinemia, and hyperlipidemia. Due to metabolic and hormonal imbalances, there are many interplays between both chronic disorders leading to increased risk of breast cancer, especially TNBC, diagnosed in T2DM patients. The purpose of this review is to provide up-to-date information related to epidemiology and clinicopathological features, risk factors, diagnosis, biomarkers, and current therapy/clinical trials for TNBC patients with T2DM compared to non-diabetic counterparts. Thus, in-depth investigation of the diabetic complications on TNBC onset, development, and progression and the discovery of biomarkers would improve TNBC management through early diagnosis, tailoring therapy for a better outcome of T2DM patients diagnosed with TNBC.
Collapse
Affiliation(s)
- Sabine Matou-Nasri
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biosciences Department, Faculty of the School for Systems Biology, George Mason University, Manassas, VA 22030, USA
| | - Maram Aldawood
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Post Graduate and Zoology Department, King Saud University, Riyadh 12372, Saudi Arabia
| | - Fatimah Alanazi
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biosciences Department, Faculty of the School for Systems Biology, George Mason University, Manassas, VA 22030, USA
| | - Abdul Latif Khan
- Tissue Biobank, KAIMRC, MNG-HA, Riyadh 11481, Saudi Arabia
- Pathology and Clinical Laboratory Medicine, King Abdulaziz Medical City (KAMC), Riyadh 11564, Saudi Arabia
| |
Collapse
|
11
|
Sarasati A, Syahruddin MH, Nuryanti A, Ana ID, Barlian A, Wijaya CH, Ratnadewi D, Wungu TDK, Takemori H. Plant-Derived Exosome-like Nanoparticles for Biomedical Applications and Regenerative Therapy. Biomedicines 2023; 11:biomedicines11041053. [PMID: 37189671 DOI: 10.3390/biomedicines11041053] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
Plant-derived exosome-like nanoparticles (PDENs) comprise various bioactive biomolecules. As an alternative cell-free therapeutic approach, they have the potential to deliver nano-bioactive compounds to the human body, and thus lead to various anti-inflammatory, antioxidant, and anti-tumor benefits. Moreover, it is known that Indonesia is one of the herbal centers of the world, with an abundance of unexplored sources of PDENs. This encouraged further research in biomedical science to develop natural richness in plants as a source for human welfare. This study aims to verify the potential of PDENs for biomedical purposes, especially for regenerative therapy applications, by collecting and analyzing data from the latest relevant research and developments.
Collapse
|