1
|
Ochman B, Kot A, Mielcarska S, Kula A, Dawidowicz M, Koszewska D, Hudy D, Szrot M, Piecuch J, Waniczek D, Czuba Z, Świętochowska E. Association of SIGLEC9 Expression with Cytokine Expression, Tumor Grading, KRAS, NRAS, BRAF, PIK3CA, AKT Gene Mutations, and MSI Status in Colorectal Cancer. Curr Issues Mol Biol 2024; 46:13617-13646. [PMID: 39727942 PMCID: PMC11726853 DOI: 10.3390/cimb46120814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
SIGLEC9 (sialic acid-binding Ig-like lectin 9) is a molecule thought to have a significant influence on the immune properties of the colorectal cancer (CRC) tumor microenvironment (TME). In our study, we assessed the expression of the SIGLEC9 protein in CRC tissue and the surgical margin tissue. Using RT-PCR, we analyzed mutations in the KRAS, NRAS, BRAF, PIK3CA, and AKT genes. We observed a significantly elevated expression of the SIGLEC9 protein in CRC tissue compared to the control group. No significant differences were observed in SIGLEC9 protein expression depending on mutations in the KRAS, NRAS, BRAF, PIK3CA, and AKT genes or microsatellite instability (MSI) status. However, we found a significantly higher expression of the SIGLEC9 protein in high-grade tumors compared to the low-grade tumors group. SIGLEC9 expression was significantly associated with the expression of multiple cytokines, chemokines, and growth factors in the CRC TME. These associations suggest the significant potential of SIGLEC9 as a molecule that plays a crucial role in shaping the immune properties of the CRC TME, as well as its potential therapeutic relevance, particularly in the group of high-grade CRC tumors.
Collapse
Affiliation(s)
- Błażej Ochman
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (A.K.); (S.M.); (D.K.); (D.H.)
| | - Anna Kot
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (A.K.); (S.M.); (D.K.); (D.H.)
| | - Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (A.K.); (S.M.); (D.K.); (D.H.)
| | - Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Dominika Koszewska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (A.K.); (S.M.); (D.K.); (D.H.)
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (A.K.); (S.M.); (D.K.); (D.H.)
| | - Monika Szrot
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 10 Marii Curie-Skłodowskiej, 41-800 Zabrze, Poland; (M.S.); (J.P.)
| | - Jerzy Piecuch
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 10 Marii Curie-Skłodowskiej, 41-800 Zabrze, Poland; (M.S.); (J.P.)
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Zenon Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland;
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (A.K.); (S.M.); (D.K.); (D.H.)
| |
Collapse
|
2
|
Wen RM, Stark JC, Marti GEW, Fan Z, Lyu A, Garcia Marques FJ, Zhang X, Riley NM, Totten SM, Bermudez A, Nolley R, Zhao H, Fong L, Engleman EG, Pitteri SJ, Bertozzi CR, Brooks JD. Sialylated glycoproteins suppress immune cell killing by binding to Siglec-7 and Siglec-9 in prostate cancer. J Clin Invest 2024; 134:e180282. [PMID: 39436703 PMCID: PMC11645153 DOI: 10.1172/jci180282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Prostate cancer is the second leading cause of male cancer death in the U.S. Current immune checkpoint inhibitor-based immunotherapies have improved survival for many malignancies; however, they have failed to prolong survival for prostate cancer. Siglecs (sialic acid-binding immunoglobulin-like lectins) are expressed on immune cells and regulate their function. Siglec-7 and Siglec-9 contribute to immune evasion in cancer by interacting with sialic acid-containing glycoprotein ligands on cancer cells. However, the role of Siglec-7/9 receptors and their ligands in prostate cancer remains poorly understood. Here, we find that Siglec-7 and Siglec-9 are associated with poor prognosis in patients with prostate cancer and are highly expressed in myeloid cells, including macrophages, in prostate tumor tissues. Siglec-7 and -9 ligands were expressed in prostate cancer cells and human prostate tumor tissues. Blocking the interactions between Siglec-7/9 and sialic acids inhibited prostate cancer xenograft growth and increased immune cell infiltration in humanized mice in vivo. Using a CRISPRi screen and mass spectrometry, we identified CD59 as a candidate Siglec-9 ligand in prostate cancer. The identification of Siglec-7 and -9 as potential therapeutic targets, including the CD59/Siglec-9 axis, opens up opportunities for immune-based interventions in prostate cancer.
Collapse
MESH Headings
- Male
- Humans
- Prostatic Neoplasms/immunology
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Animals
- Mice
- Lectins/metabolism
- Lectins/immunology
- Lectins/genetics
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Antigens, CD/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/genetics
- Glycoproteins/immunology
- Glycoproteins/metabolism
- Glycoproteins/genetics
- Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
- Sialic Acid Binding Immunoglobulin-like Lectins/genetics
- Sialic Acid Binding Immunoglobulin-like Lectins/immunology
- Cell Line, Tumor
- Neoplasm Proteins/immunology
- Neoplasm Proteins/metabolism
- Neoplasm Proteins/genetics
Collapse
Affiliation(s)
| | - Jessica C. Stark
- Department of Chemistry, and Sarafan ChEM-H, Stanford University, Stanford, California, USA
- Department of Biological Engineering, Department of Chemical Engineering, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - G. Edward W. Marti
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA
| | - Zenghua Fan
- Department of Medicine, UCSF, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Aram Lyu
- Department of Medicine, UCSF, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | | | - Xiangyue Zhang
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Nicholas M. Riley
- Department of Biological Engineering, Department of Chemical Engineering, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sarah M. Totten
- Department of Radiology
- Canary Center at Stanford for Cancer Early Detection, and
| | - Abel Bermudez
- Department of Radiology
- Canary Center at Stanford for Cancer Early Detection, and
| | | | | | - Lawrence Fong
- Department of Medicine, UCSF, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Edgar G. Engleman
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Sharon J. Pitteri
- Department of Radiology
- Canary Center at Stanford for Cancer Early Detection, and
| | - Carolyn R. Bertozzi
- Department of Chemistry, and Sarafan ChEM-H, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford, California, USA
| | - James D. Brooks
- Department of Urology
- Canary Center at Stanford for Cancer Early Detection, and
| |
Collapse
|
3
|
Yang N, Shi L, Xu P, Ren F, Li C, Qi X. Identification of potential drug targets for amyotrophic lateral sclerosis by Mendelian randomization analysis based on brain and plasma proteomics. Exp Gerontol 2024; 195:112538. [PMID: 39116956 DOI: 10.1016/j.exger.2024.112538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Amyotrophic lateral sclerosis as a fatal neurodegenerative disease currently lacks effective therapeutic agents. Thus, finding new therapeutic targets to drive disease treatment is necessary. In this study, we utilized brain and plasma proteins as genetic instruments obtained from genome-wide association studies to conduct a Mendelian randomization analysis to identify potential drug targets for amyotrophic lateral sclerosis. Additionally, we validated our results externally using other datasets. We also used Bayesian co-localization analysis and phenotype scanning. Furthermore, we constructed a protein-protein interaction network to elucidate potential correlations between the identified proteins and existing targets. Mendelian randomization analysis indicated that elevated levels of ANO5 (OR = 1.30; 95 % CI, 1.14-1.49; P = 1.52E-04), SCFD1 (OR = 3.82; 95 % CI, 2.39-6.10; P = 2.19E-08), and SIGLEC9 (OR = 1.05; 95% CI, 1.03-1.07; P = 4.71E-05) are associated with an increased risk of amyotrophic lateral sclerosis, with external validation supporting these findings. Co-localization analysis confirmed that ANO5, SCFD1, and SIGLEC9 (coloc.abf-PPH4 = 0.848, 0.984, and 0.945, respectively) shared the same variant with amyotrophic lateral sclerosis, further substantiating potential role of these proteins as a therapeutic target. There are interactive relationships between the potential proteins and existing targets of amyotrophic lateral sclerosis. Our findings suggested that elevated levels of ANO5, SCFD1, and SIGLEC9 are connected with an increased risk of amyotrophic lateral sclerosis and might be promising therapeutic targets. However, further exploration is necessary to fully understand the underlying mechanisms involved.
Collapse
Affiliation(s)
- Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liangyuan Shi
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, China.
| | - Pengfei Xu
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, China
| | - Fang Ren
- Department of Laboratory, Jimo District Qingdao Hospital of Traditional Chinese Medicine, Qingdao, China
| | - Chunlin Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianghua Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Wu D, Sun LY, Chang XY, Zhang GM. B4GALT5 a sialylation-related genes associated with patient prognosis and immune microenvironment in ovarian cancer and pan-cancer. J Ovarian Res 2024; 17:176. [PMID: 39210397 PMCID: PMC11360304 DOI: 10.1186/s13048-024-01503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) is the predominant primary tumor in the human reproductive system. Abnormal sialylation has a significant impact on tumor development, metastasis, immune evasion, angiogenesis, and treatment resistance. B4GALT5, a gene associated with sialylation, plays a crucial role in ovarian cancer, and may potentially affect clinicopathological characteristics and prognosis. METHODS We conducted a comprehensive search across TIMER, GEPIA2, GeneMANIA, and Metascape to obtain transcription profiling data of ovarian cancer from The Cancer Genome Atlas (TCGA). The expression of B4GALT5 was test by immunohistochemistry. To investigate the impact of B4GALT5 on growth and programmed cell death in OC cells, we performed transwell assays and western blots. RESULTS The presence of B4GALT5 was strongly associated with an unfavorable outcome in OC. B4GALT5 significantly promoted the proliferation of OC cells. Upon analyzing gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), it was discovered that B4GALT5 played a crucial role in the extracellular matrix, particularly in collagen-containing structures, and exhibited correlations with ECM-receptor interactions, transcriptional dysregulation in cancer, as well as the interleukin-1 receptor signaling pathway. Furthermore, there is a clear link between B4GALT5 and the tumor immune microenvironment in OC. Moreover, B4GALT5 exhibits favorable expression levels across various types of cancers, including CHOL, KIRC, STAD and UCES. CONCLUSION In conclusion, it is widely believed that B4GALT5 plays a pivotal role in the growth and progression of OC, with its heightened expression serving as an indicator of unfavorable outcomes. Moreover, B4GALT5 actively participates in shaping the cancer immune microenvironment within OC. This investigation has the potential to contribute significantly to a deeper understanding of the substantial involvement of B4GALT5 in human malignancies, particularly OCs.
Collapse
Affiliation(s)
- Di Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Li-Yuan Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Xin-Yu Chang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Guang-Mei Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China.
| |
Collapse
|
5
|
Lin Y, Lou X, Li S, Cai W, Che T. Identification and Validation of Immune Implication of R-Spondin 1 and an R-Spondin 1-Related Prognostic Signature in Esophagus Cancer. Int J Genomics 2024; 2024:7974277. [PMID: 38962149 PMCID: PMC11222003 DOI: 10.1155/2024/7974277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 07/05/2024] Open
Abstract
R-spondin 1 (RSPO1), which encodes a secretory-activating protein, is a promising therapeutic target for various tumors. The aim of this study was to establish a robust RSPO1-related signature specific to esophageal cancer (ESCA). Our comprehensive study involved meticulous analysis of RSPO1 expression in ESCA tissues and validation across ESCA cell lines and clinical samples using The Cancer Genome Atlas (TCGA) and GTEx databases. Using TCGA-ESCA dataset, we employed single-sample gene set enrichment analysis (ssGSEA) to elucidate the complex interaction between RSPO1 expression and the abundance of 22 specific immune cell types infiltrating ESCA. The biological significance of RSPO1 was further elucidated using KEGG, GO, and GSEA, demonstrating its relevance to pivotal tumor and immune pathways. This study culminated in the construction of prognostic nomograms enriched by calibration curves, facilitating the projection of individual survival probabilities at intervals of one, three, and five years. A substantial decrease in RSPO1 expression was observed within ESCA tissues and cell lines compared to their normal esophageal counterparts, and a significant decrease in the proportion of activated dendritic cells was evident within ESCA, accompanied by an augmented presence of macrophages and naive B cells relative to normal tissue. GSEA and KEGG analyses showed that RSPO1 was associated with tumor and immune pathways. Additionally, an independent prognostic risk score based on the RSPO1-related gene signature was developed and validated for patients with ESCA. Finally, RT-qPCR and western blotting were performed to confirm RSPO1 expression in normal and ESCA cell lines and tissue samples. In summary, our investigation underscores the pivotal role of RSPO1 in orchestrating tumor immunity and proposes RSPO1 as a prospective target for immunotherapeutic interventions in ESCA. Furthermore, the intricate profile of the two RSPO1-related genes has emerged as a promising predictive biomarker with notable potential for application in ESCA.
Collapse
Affiliation(s)
- Yuansheng Lin
- Department of Intensive Care UnitSuzhou HospitalAffiliated Hospital of Medical SchoolNanjing University, Suzhou 215000, China
| | - Xinqi Lou
- Institute of Clinical Medicine ResearchSuzhou HospitalAffiliated Hospital of Medical SchoolNanjing University, Suzhou 215000, China
| | - Shengjun Li
- Department of Emergency and Critical Care MedicineSuzhou HospitalAffiliated Hospital of Medical SchoolNanjing University, Suzhou 215000, China
| | - Wei Cai
- Department of Intensive Care UnitSuzhou HospitalAffiliated Hospital of Medical SchoolNanjing University, Suzhou 215000, China
| | - Tuanjie Che
- The Open Project of Key Laboratory of Functional Genomics and Molecular Diagnosis of Gansu Province, Lanzhou 730000, China
| |
Collapse
|
6
|
Xiao R, Tian Y, Zhang J, Li N, Qi M, Liu L, Wang J, Li Z, Zhang J, Zhao F, Wang T, Tan S, Li C, Wu Z, Yu M, Jiang X, Zhan P, Gao L, Han B, Liu X, Liang X, Ma C. Increased Siglec-9/Siglec-9L interactions on NK cells predict poor HCC prognosis and present a targetable checkpoint for immunotherapy. J Hepatol 2024; 80:792-804. [PMID: 38331327 DOI: 10.1016/j.jhep.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND & AIMS Natural killer (NK) cell-based anti-hepatocellular carcinoma (HCC) therapy is an increasingly attractive approach that warrants further study. Siglec-9 interacts with its ligand (Siglec-9L) and restrains NK cell functions, suggesting it is a potential therapeutic target. However, in situ Siglec-9/Siglec-9L interactions in HCC have not been reported, and a relevant interventional strategy is lacking. Herein, we aim to illustrate Siglec-9/Siglec-9L-mediated cell sociology and identify small-molecule inhibitors targeting Siglec-9 that could improve the efficacy of NK cell-based immunotherapy for HCC. METHODS Multiplexed immunofluorescence staining was performed to analyze the expression pattern of Siglec-7, -9 and their ligands in HCC tissues. Then we conducted docking-based virtual screening combined with bio-layer interferometry assays to identify a potent small-molecule Siglec-9 inhibitor. The therapeutic potential was further evaluated in vitro and in hepatoma-bearing NCG mice. RESULTS Siglec-9 expression, rather than Siglec-7, was markedly upregulated on tumor-infiltrating NK cells, which correlated significantly with reduced survival of patients with HCC. Moreover, the number of Siglec-9L+ cells neighboring Siglec-9+ NK cells was increased in HCC tissues and was also associated with tumor recurrence and reduced survival, further suggesting that Siglec-9/Siglec-9L interactions are a potential therapeutic target in HCC. In addition, we identified a small-molecule Siglec-9 inhibitor MTX-3937 which inhibited phosphorylation of Siglec-9 and downstream SHP1 and SHP2. Accordingly, MTX-3937 led to considerable improvement in NK cell function. Notably, MTX-3937 enhanced cytotoxicity of both human peripheral and tumor-infiltrating NK cells. Furthermore, transfer of MTX-3937-treated NK92 cells greatly suppressed the growth of hepatoma xenografts in NCG mice. CONCLUSIONS Our study provides the rationale for HCC treatment by targeting Siglec-9 on NK cells and identifies a promising small-molecule inhibitor against Siglec-9 that enhances NK cell-mediated HCC surveillance. IMPACT AND IMPLICATIONS Herein, we found that Siglec-9 expression is markedly upregulated on tumor-infiltrating natural killer (TINK) cells and correlates with reduced survival in patients with hepatocellular carcinoma (HCC). Moreover, the number of Siglec-9L+ cells neighboring Siglec-9+ NK cells was increased in HCC tissues and was also associated with tumor recurrence and reduced survival. More importantly, we identified a small-molecule inhibitor targeting Siglec-9 that augments NK cell functions, revealing a novel immunotherapy strategy for liver cancer that warrants further clinical investigation.
Collapse
Affiliation(s)
- Rong Xiao
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Ye Tian
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Na Li
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Mei Qi
- Department of Pathology, Shandong University Qilu Hospital, Jinan 250012, Shandong, China
| | - Ling Liu
- Department of Pathology, Dezhou Municipal Hospital, Dezhou 253036, Shandong, China
| | - Jianping Wang
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Zhenyu Li
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Jie Zhang
- Advanced Medical Research Institute and Key Laboratory for Experimental Teratology of the Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Tixiao Wang
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Siyu Tan
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Mingyan Yu
- Shandong Institute for Food and Drug Control, Jinan 250101, Shandong, China
| | - Xuemei Jiang
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Bo Han
- Department of Pathology, Shandong University Qilu Hospital, Jinan 250012, Shandong, China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
7
|
Atxabal U, Nycholat C, Pröpster JM, Fernández A, Oyenarte I, Lenza MP, Franconetti A, Soares CO, Coelho H, Marcelo F, Schubert M, Paulson JC, Jiménez-Barbero J, Ereño-Orbea J. Unraveling Molecular Recognition of Glycan Ligands by Siglec-9 via NMR Spectroscopy and Molecular Dynamics Modeling. ACS Chem Biol 2024; 19:483-496. [PMID: 38321945 PMCID: PMC10877568 DOI: 10.1021/acschembio.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
Human sialic-acid-binding immunoglobulin-like lectin-9 (Siglec-9) is a glycoimmune checkpoint receptor expressed on several immune cells. Binding of Siglec-9 to sialic acid containing glycans (sialoglycans) is well documented to modulate its functions as an inhibitory receptor. Here, we first assigned the amino acid backbone of the Siglec-9 V-set domain (Siglec-9d1), using well-established triple resonance three-dimensional nuclear magnetic resonance (NMR) methods. Then, we combined solution NMR and molecular dynamic simulation methods to decipher the molecular details of the interaction of Siglec-9 with the natural ligands α2,3 and α2,6 sialyl lactosamines (SLN), sialyl Lewis X (sLeX), and 6-O sulfated sLeX and with two synthetically modified sialoglycans that bind with high affinity. As expected, Neu5Ac is accommodated between the F and G β-strands at the canonical sialic acid binding site. Addition of a heteroaromatic scaffold 9N-5-(2-methylthiazol-4-yl)thiophene sulfonamide (MTTS) at the C9 position of Neu5Ac generates new interactions with the hydrophobic residues located at the G-G' loop and the N-terminal region of Siglec-9. Similarly, the addition of the aromatic substituent (5-N-(1-benzhydryl-1H-1,2,3-triazol-4-yl)methyl (BTC)) at the C5 position of Neu5Ac stabilizes the conformation of the long and flexible B'-C loop present in Siglec-9. These results expose the underlying mechanism responsible for the enhanced affinity and specificity for Siglec-9 for these two modified sialoglycans and sheds light on the rational design of the next generation of modified sialoglycans targeting Siglec-9.
Collapse
Affiliation(s)
- Unai Atxabal
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Corwin Nycholat
- Departments
of Molecular Medicine and Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Johannes M. Pröpster
- Institute
of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Andrea Fernández
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Iker Oyenarte
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Maria Pia Lenza
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Antonio Franconetti
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Cátia O. Soares
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO,
Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Helena Coelho
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO,
Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Filipa Marcelo
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO,
Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Mario Schubert
- Institute
of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
- Department
of Biosciences and Molecular Biology, University
of Salzburg, Hellbrunnerstrasse
34, 5020 Salzburg, Austria
| | - James C. Paulson
- Departments
of Molecular Medicine and Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jesús Jiménez-Barbero
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Euskadi Pl., 5, 48009 Bilbao, Biscay, Spain
- Department
of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Bizkaia, Spain
- Centro
de Investigacion Biomedica en Red de Enfermedades Respiratorias, Av. Monforte de Lemos, 3-5, Pabellón
11, Planta 0, 28029 Madrid, Spain
| | - June Ereño-Orbea
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Euskadi Pl., 5, 48009 Bilbao, Biscay, Spain
| |
Collapse
|
8
|
Ye Z, Wang Y, Xiang B, Wang H, Tao H, Zhang C, Zhang S, Sun D, Luo F, Song L. Roles of the Siglec family in bone and bone homeostasis. Biomed Pharmacother 2023; 165:115064. [PMID: 37413904 DOI: 10.1016/j.biopha.2023.115064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
Tremendous progress has been seen in the study of the role of sialic acid binding im-munoglobulin type lectins (Siglecs) in osteoimmunology in the past two decades. Interest in Siglecs as immune checkpoints has grown from the recognition that Siglecs have relevance to human disease. Siglecs play important roles in inflammation and cancer, and play key roles in immune cell signaling. By recognizing common sialic acid containing glycans on glycoproteins and glycolipids as regulatory receptors for immune cell signals, Siglecs are expressed on most immune cells and play important roles in normal homeostasis and self-tolerance. In this review, we describe the role that the siglec family plays in bone and bone homeostasis, including the regulation of osteoclast differentiation as well as recent advances in inflammation, cancer and osteoporosis. Particular emphasis is placed on the relevant functions of Siglecs in self-tolerance and as pattern recognition receptors in immune responses, thereby potentially providing emerging strategies for the treatment of bone related diseases.
Collapse
Affiliation(s)
- Zi Ye
- The Fourth Corps of Students of the Basic Medical College, Army Medical University, Chongqing 400037, China
| | - Yetong Wang
- The Fourth Corps of Students of the Basic Medical College, Army Medical University, Chongqing 400037, China
| | - Binqing Xiang
- Department of Surgical Anesthesia, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Heng Wang
- Army Border Defense 331st Brigade, Dandong 118000, China
| | - Haiyan Tao
- Health Management Center, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Chengmin Zhang
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Shuai Zhang
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Dong Sun
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| | - Fei Luo
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| | - Lei Song
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
9
|
Lima K, Ribas GT, Riella LV, Borges TJ. Inhibitory innate receptors and their potential role in transplantation. Transplant Rev (Orlando) 2023; 37:100776. [PMID: 37451057 DOI: 10.1016/j.trre.2023.100776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
The regulatory arm of the immune system plays a crucial role in maintaining immune tolerance and preventing excessive immune responses. Immune regulation comprises various regulatory cells and molecules that work together to suppress or regulate immune responses. The programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) are examples of inhibitory receptors that counteract activating signals and fine-tune immune responses. While most of the discoveries of immune regulation have been related to T cells and the adaptive immune system, the innate arm of the immune system also has a range of inhibitory receptors that can counteract activating signals and suppress the effector immune responses. Targeting these innate inhibitory receptors may provide a complementary therapeutic approach in several immune-related conditions, including transplantation. In this review, we will explore the potential role of innate inhibitory receptors in controlling alloimmunity during solid organ transplantation.
Collapse
Affiliation(s)
- Karina Lima
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Guilherme T Ribas
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Professional and Technological Education Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Leonardo V Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thiago J Borges
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW This study aims to review state-of-the-art advances in Siglec-9-directed antibodies and to highlight specific aspects of Siglec-9 antibodies that are suitable to mount anti-tumor immunity. RECENT FINDINGS Controversies surrounding studies on Siglec-9 antibodies can confound future studies. In this review, we have highlighted some controversies, explained the distinction between Siglec-9 agonistic and antagonistic (endocytic) antibodies, and discussed their suitability in sustaining anti-tumor immunity. Siglec-9 is an immune checkpoint target and an immunoinhibitory receptor that can engage either sialic acid ligands or agonistic antibodies. Through Siglec-9 sialic acid interactions, activated immunoreceptor tyrosine-based inhibitory signaling of the immune cells can lead to unfavorable immunosuppression. To overcome tumor-related immunosuppression, different types of Siglec-9 antibody blockade need to be developed. However, whether a Siglec-9-directed antibody is agonistic or antagonistic is probably affinity-dependent and not epitope-dependent. Additionally, unlike immune-modulatory antibodies such as agonistic antibodies (OX40, CD28, ICOS, and 4-1BB) or Fc-inert antibodies (PD1 and PD-L1) directed against cancer cells, the nature of antagonistic Siglec-9 antibodies is more suitable to enhance anti-tumor immunity and will be discussed.
Collapse
|
11
|
Man YG, Mannion C, Jewett A, Hsiao YH, Liu A, Semczuk A, Zarogoulidis P, Gapeev AB, Cimadamore A, Lee P, Lopez-Beltran A, Montironi R, Massari F, Lu X, Cheng L. The most effective but largely ignored target for prostate cancer early detection and intervention. J Cancer 2022; 13:3463-3475. [PMID: 36313040 PMCID: PMC9608211 DOI: 10.7150/jca.72973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
Over the past two decades, the global efforts for the early detection and intervention of prostate cancer seem to have made significant progresses in the basic researches, but the clinic outcomes have been disappointing: (1) prostate cancer is still the most common non-cutaneous cancer in Europe in men, (2) the age-standardized prostate cancer rate has increased in nearly all Asian and African countries, (3) the proportion of advanced cancers at the diagnosis has increased to 8.2% from 3.9% in the USA, (4) the worldwide use of PSA testing and digital rectal examination have failed to reduce the prostate cancer mortality, and (5) there is still no effective preventive method to significantly reduce the development, invasion, and metastasis of prostate cancer… Together, these facts strongly suggest that the global efforts during the past appear to be not in a correlated target with markedly inconsistent basic research and clinic outcomes. The most likely cause for the inconsistence appears due to the fact that basic scientific studies are traditionally conducted on the cell lines and animal models, where it is impossible to completely reflect or replicate the in vivo status. Thus, we would like to propose the human prostate basal cell layer (PBCL) as “the most effective target for the early detection and intervention of prostate cancer”. Our proposal is based on the morphologic, immunohistochemical and molecular evidence from our recent studies of normal and cancerous human prostate tissues with detailed clinic follow-up data. We believe that the human tissue-derived basic research data may provide a more realistic roadmap to guide the clinic practice and to avoid the potential misleading from in vitro and animal studies.
Collapse
Affiliation(s)
- Yan-gao Man
- Department of Pathology, Hackensack Meridian School of Medicine, Nutley, NJ, USA,✉ Corresponding authors: Yan-gao Man., MD., PhD. E-mail: or or Liang Cheng., MD. E-mail: or
| | - Ciaran Mannion
- Department of Pathology, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Anahid Jewett
- Tumor Immunology Laboratory, Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
| | - Yi-Hsuan Hsiao
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Aijun Liu
- Department of Pathology, Chinese PLA General Hospital 7 th Medical Center, Beijing, China
| | - Andrzej Semczuk
- II ND Department of Gynecology, Lublin Medical University, Lublin, Poland
| | - Paul Zarogoulidis
- Pulmonary-Oncology Department, "Theageneio" Cancer Hospital, Thessaloniki, Greece
| | - Andrei B. Gapeev
- Laboratory of Biological Effects of Non-Ionizing Radiation, Institute of Cell Biophysics, Russian Academy of Sciences, Russian Federation
| | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Peng Lee
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Department of Pathology, New York Harbor Healthcare System, New York, NY, USA
| | - Antonio Lopez-Beltran
- Department of Morphological Sciences, Cordoba University Medical School, Cordoba, Spain
| | - Rodolfo Montironi
- Molecular Medicine and Cell Therapy Foundation, Department of Clinical & Molecular Sciences, Polytechnic University of the Marche Region, Ancona, Italy
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA.,Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Brown University Medical School
- Lifespan Academic Medical Center, RI, USA.,✉ Corresponding authors: Yan-gao Man., MD., PhD. E-mail: or or Liang Cheng., MD. E-mail: or
| |
Collapse
|
12
|
Wen R, Zhao H, Zhang D, Chiu CL, Brooks JD. Sialylated glycoproteins as biomarkers and drivers of progression in prostate cancer. Carbohydr Res 2022; 519:108598. [PMID: 35691122 DOI: 10.1016/j.carres.2022.108598] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023]
Abstract
Sialic acids have been implicated in cancer initiation, progression, and immune evasion in diverse human malignancies. Sialylation of terminal glycans on cell surface and secreted glycoproteins is a long-recognized feature of cancer cells. Recently, immune checkpoint inhibitor immunotherapy has tremendously improved the outcomes of patients with various cancers. However, available immunotherapy approaches have had limited efficacy in metastatic castration-resistant prostate cancer. Sialic acid modified glycoproteins in prostate cancers and their interaction with Siglec receptors on tumor infiltrating immune cells might underlie immunosuppressive signaling in prostate cancer. Here, we summarize the function of sialic acids and relevant glycosynthetic enzymes in cancer initiation and progression. We also discuss the possible uses of sialic acids as biomarkers in prostate cancer and the potential methods for targeting Siglec-sialic acid interactions for prostate cancer treatment.
Collapse
Affiliation(s)
- Ru Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dalin Zhang
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chun-Lung Chiu
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|