1
|
Münz F, Abele N, Zink F, Wolfschmitt EM, Hogg M, Barck C, Anetzberger J, Hoffmann A, Gröger M, Calzia E, Waller C, Radermacher P, Merz T. Role of Sex and Early Life Stress Experience on Porcine Cardiac and Brain Tissue Expression of the Oxytocin and H 2S Systems. Biomolecules 2024; 14:1385. [PMID: 39595562 PMCID: PMC11591909 DOI: 10.3390/biom14111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Early life stress (ELS) significantly increases the risk of chronic cardiovascular diseases and may cause neuroinflammation. This post hoc study, based on the material available from a previous study showing elevated "serum brain injury markers" in male control animals, examines the effect of sex and/or ELS on the cerebral and cardiac expression of the H2S and oxytocin systems. Following approval by the Regional Council of Tübingen, a randomized controlled study was conducted on 12 sexually mature, uncastrated German Large White swine of both sexes. The control animals were separated from their mothers at 28-35 days, while the ELS group was separated at day 21. At 20-24 weeks, animals underwent anesthesia, ventilation, and surgical instrumentation. An immunohistochemical analysis of oxytocin, its receptor, and the H2S-producing enzymes cystathionine-β-synthase and cystathionine-γ-lyase was performed on hypothalamic, prefrontal cortex, and myocardial tissue samples. Data are expressed as the % of positive tissue staining, and differences between groups were tested using a two-way ANOVA. The results showed no significant differences in the oxytocin and H2S systems between groups; however, sex influenced the oxytocin system, and ELS affected the oxytocin and H2S systems in a sex-specific manner. No immunohistochemical correlate to the elevated "serum brain injury markers" in male controls was identified.
Collapse
Affiliation(s)
- Franziska Münz
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Ulm, 89081 Ulm, Germany (P.R.); (T.M.)
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, 89081 Ulm, Germany
| | - Nadja Abele
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Ulm, 89081 Ulm, Germany (P.R.); (T.M.)
| | - Fabian Zink
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Ulm, 89081 Ulm, Germany (P.R.); (T.M.)
| | - Eva-Maria Wolfschmitt
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Ulm, 89081 Ulm, Germany (P.R.); (T.M.)
| | - Melanie Hogg
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Ulm, 89081 Ulm, Germany (P.R.); (T.M.)
| | - Claus Barck
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Ulm, 89081 Ulm, Germany (P.R.); (T.M.)
| | - Josef Anetzberger
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Ulm, 89081 Ulm, Germany (P.R.); (T.M.)
| | - Andrea Hoffmann
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Ulm, 89081 Ulm, Germany (P.R.); (T.M.)
| | - Michael Gröger
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Ulm, 89081 Ulm, Germany (P.R.); (T.M.)
| | - Enrico Calzia
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Ulm, 89081 Ulm, Germany (P.R.); (T.M.)
| | - Christiane Waller
- Department of Psychosomatic Medicine and Psychotherapy, General Hospital Nuremberg, 90419 Nuremberg, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Ulm, 89081 Ulm, Germany (P.R.); (T.M.)
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Ulm, 89081 Ulm, Germany (P.R.); (T.M.)
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
2
|
Hogg M, Wolfschmitt EM, Wachter U, Zink F, Radermacher P, Vogt JA. Ex Vivo 13C-Metabolic Flux Analysis of Porcine Circulating Immune Cells Reveals Cell Type-Specific Metabolic Patterns and Sex Differences in the Pentose Phosphate Pathway. Biomolecules 2024; 14:98. [PMID: 38254698 PMCID: PMC10813356 DOI: 10.3390/biom14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/08/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
In general, females present with stronger immune responses than males, but scarce data are available on sex-specific differences in immunometabolism. In this study, we characterized porcine peripheral blood mononuclear cell (PBMC) and granulocyte energy metabolism using a Bayesian 13C-metabolic flux analysis, which allowed precise determination of the glycolytic, pentose phosphate pathway (PPP), and tricarboxylic acid cycle (TCA) fluxes, together with an assessment of the superoxide anion radical (O2•-) production and mitochondrial O2 consumption. A principal component analysis allowed for identifying the cell type-specific patterns of metabolic plasticity. PBMCs displayed higher TCA cycle activity, especially glutamine-derived aspartate biosynthesis, which was directly related to mitochondrial respiratory activity and inversely related to O2•- production. In contrast, the granulocytes mainly utilized glucose via glycolysis, which was coupled to oxidative PPP utilization and O2•- production rates. The granulocytes of the males had higher oxidative PPP fluxes compared to the females, while the PBMCs of the females displayed higher non-oxidative PPP fluxes compared to the males associated with the T helper cell (CD3+CD4+) subpopulation of PBMCs. The observed sex-specific differences were not directly attributable to sex steroid plasma levels, but we detected an inverse correlation between testosterone and aldosterone plasma levels and showed that aldosterone levels were related with non-oxidative PPP fluxes of both cell types.
Collapse
Affiliation(s)
- Melanie Hogg
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (E.-M.W.); (U.W.); (F.Z.); (P.R.); (J.A.V.)
| | | | | | | | | | | |
Collapse
|
3
|
Wolfschmitt EM, Vogt JA, Hogg M, Wachter U, Stadler N, Kapapa T, Datzmann T, Messerer DAC, Hoffmann A, Gröger M, Münz F, Mathieu R, Mayer S, Merz T, Asfar P, Calzia E, Radermacher P, Zink F. 13C-Metabolic flux analysis detected a hyperoxemia-induced reduction of tricarboxylic acid cycle metabolism in granulocytes during two models of porcine acute subdural hematoma and hemorrhagic shock. Front Immunol 2024; 14:1319986. [PMID: 38332911 PMCID: PMC10850868 DOI: 10.3389/fimmu.2023.1319986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/15/2023] [Indexed: 02/10/2024] Open
Abstract
Introduction Supplementation with increased inspired oxygen fractions has been suggested to alleviate the harmful effects of tissue hypoxia during hemorrhagic shock (HS) and traumatic brain injury. However, the utility of therapeutic hyperoxia in critical care is disputed to this day as controversial evidence is available regarding its efficacy. Furthermore, in contrast to its hypoxic counterpart, the effect of hyperoxia on the metabolism of circulating immune cells remains ambiguous. Both stimulating and detrimental effects are possible; the former by providing necessary oxygen supply, the latter by generation of excessive amounts of reactive oxygen species (ROS). To uncover the potential impact of increased oxygen fractions on circulating immune cells during intensive care, we have performed a 13C-metabolic flux analysis (MFA) on PBMCs and granulocytes isolated from two long-term, resuscitated models of combined acute subdural hematoma (ASDH) and HS in pigs with and without cardiovascular comorbidity. Methods Swine underwent resuscitation after 2 h of ASDH and HS up to a maximum of 48 h after HS. Animals received normoxemia (PaO2 = 80 - 120 mmHg) or targeted hyperoxemia (PaO2 = 200 - 250 mmHg for 24 h after treatment initiation, thereafter PaO2 as in the control group). Blood was drawn at time points T1 = after instrumentation, T2 = 24 h post ASDH and HS, and T3 = 48 h post ASDH and HS. PBMCs and granulocytes were isolated from whole blood to perform electron spin resonance spectroscopy, high resolution respirometry and 13C-MFA. For the latter, we utilized a parallel tracer approach with 1,2-13C2 glucose, U-13C glucose, and U-13C glutamine, which covered essential pathways of glucose and glutamine metabolism and supplied redundant data for robust Bayesian estimation. Gas chromatography-mass spectrometry further provided multiple fragments of metabolites which yielded additional labeling information. We obtained precise estimations of the fluxes, their joint credibility intervals, and their relations, and characterized common metabolic patterns with principal component analysis (PCA). Results 13C-MFA indicated a hyperoxia-mediated reduction in tricarboxylic acid (TCA) cycle activity in circulating granulocytes which encompassed fluxes of glutamine uptake, TCA cycle, and oxaloacetate/aspartate supply for biosynthetic processes. We further detected elevated superoxide levels in the swine strain characterized by a hypercholesterolemic phenotype. PCA revealed cell type-specific behavioral patterns of metabolic adaptation in response to ASDH and HS that acted irrespective of swine strains or treatment group. Conclusion In a model of resuscitated porcine ASDH and HS, we saw that ventilation with increased inspiratory O2 concentrations (PaO2 = 200 - 250 mmHg for 24 h after treatment initiation) did not impact mitochondrial respiration of PBMCs or granulocytes. However, Bayesian 13C-MFA results indicated a reduction in TCA cycle activity in granulocytes compared to cells exposed to normoxemia in the same time period. This change in metabolism did not seem to affect granulocytes' ability to perform phagocytosis or produce superoxide radicals.
Collapse
Affiliation(s)
- Eva-Maria Wolfschmitt
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Josef Albert Vogt
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Melanie Hogg
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Ulrich Wachter
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Nicole Stadler
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Thomas Kapapa
- Clinic for Neurosurgery, University Hospital Ulm, Ulm, Germany
| | - Thomas Datzmann
- Clinic for Anesthesia and Intensive Care, University Hospital Ulm, Ulm, Germany
| | - David Alexander Christian Messerer
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
- Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany
| | - Andrea Hoffmann
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Michael Gröger
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Franziska Münz
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
- Clinic for Anesthesia and Intensive Care, University Hospital Ulm, Ulm, Germany
| | - René Mathieu
- Clinic for Neurosurgery, Bundeswehrkrankenhaus, Ulm, Germany
| | - Simon Mayer
- Clinic for Neurosurgery, Bundeswehrkrankenhaus, Ulm, Germany
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
- Clinic for Anesthesia and Intensive Care, University Hospital Ulm, Ulm, Germany
| | - Pierre Asfar
- Département de Médecine Intensive – Réanimation et Médecine Hyperbare, Centre Hospitalier Universitaire, Angers, France
| | - Enrico Calzia
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Fabian Zink
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
4
|
Hogg M, Wolfschmitt EM, Wachter U, Zink F, Radermacher P, Vogt JA. Bayesian 13C-Metabolic Flux Analysis of Parallel Tracer Experiments in Granulocytes: A Directional Shift within the Non-Oxidative Pentose Phosphate Pathway Supports Phagocytosis. Metabolites 2023; 14:24. [PMID: 38248827 PMCID: PMC10820746 DOI: 10.3390/metabo14010024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
The pentose phosphate pathway (PPP) plays a key role in the cellular regulation of immune function; however, little is known about the interplay of metabolic adjustments in granulocytes, especially regarding the non-oxidative PPP. For the determination of metabolic mechanisms within glucose metabolism, we propose a novel set of measures for 13C-metabolic flux analysis based on ex vivo parallel tracer experiments ([1,2-13C]glucose, [U-13C]glucose, [4,5,6-13C]glucose) and gas chromatography-mass spectrometry labeling measurements of intracellular metabolites, such as sugar phosphates and their fragments. A detailed constraint analysis showed that the permission range for net and irreversible fluxes was limited to a three-dimensional space. The overall workflow, including its Bayesian flux estimation, resulted in precise flux distributions and pairwise confidence intervals, some of which could be represented as a line due to the strength of their correlation. The principal component analysis that was enabled by these behaviors comprised three components that explained 99.6% of the data variance. It showed that phagocytic stimulation reversed the direction of non-oxidative PPP net fluxes from ribose-5-phosphate biosynthesis toward glycolytic pathways. This process was closely associated with the up-regulation of the oxidative PPP to promote the oxidative burst.
Collapse
Affiliation(s)
- Melanie Hogg
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (E.-M.W.); (U.W.); (F.Z.); (P.R.); (J.A.V.)
| | | | | | | | | | | |
Collapse
|
5
|
Abele N, Münz F, Zink F, Gröger M, Hoffmann A, Wolfschmitt EM, Hogg M, Calzia E, Waller C, Radermacher P, Merz T. Relation of Plasma Catecholamine Concentrations and Myocardial Mitochondrial Respiratory Activity in Anesthetized and Mechanically Ventilated, Cardiovascular Healthy Swine. Int J Mol Sci 2023; 24:17293. [PMID: 38139121 PMCID: PMC10743631 DOI: 10.3390/ijms242417293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic heart failure is associated with reduced myocardial β-adrenergic receptor expression and mitochondrial function. Since these data coincide with increased plasma catecholamine levels, we investigated the relation between myocardial β-receptor expression and mitochondrial respiratory activity under conditions of physiological catecholamine concentrations. This post hoc analysis used material of a prospective randomized, controlled study on 12 sexually mature (age 20-24 weeks) Early Life Stress or control pigs (weaning at day 21 and 28-35 after birth, respectively) of either sex. Measurements in anesthetized, mechanically ventilated, and instrumented animals comprised serum catecholamine (liquid-chromatography/tandem-mass-spectrometry) and 8-isoprostane levels, whole blood superoxide anion concentrations (electron spin resonance), oxidative DNA strand breaks (tail moment in the "comet assay"), post mortem cardiac tissue mitochondrial respiration, and immunohistochemistry (β2-adrenoreceptor, mitochondrial respiration complex, and nitrotyrosine expression). Catecholamine concentrations were inversely related to myocardial mitochondrial respiratory activity and β2-adrenoceptor expression, whereas there was no relation to mitochondrial respiratory complex expression. Except for a significant, direct, non-linear relation between DNA damage and noradrenaline levels, catecholamine concentrations were unrelated to markers of oxidative stress. The present study suggests that physiological variations of the plasma catecholamine concentrations, e.g., due to physical and/or psychological stress, may affect cardiac β2-adrenoceptor expression and mitochondrial respiration.
Collapse
Affiliation(s)
- Nadja Abele
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89069 Ulm, Germany; (N.A.); (F.Z.); (M.G.); (A.H.); (E.-M.W.); (M.H.); (E.C.)
| | - Franziska Münz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89069 Ulm, Germany; (N.A.); (F.Z.); (M.G.); (A.H.); (E.-M.W.); (M.H.); (E.C.)
- Clinic for Anesthesiology and Intensive Care, Ulm University Medical Center, 89069 Ulm, Germany
| | - Fabian Zink
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89069 Ulm, Germany; (N.A.); (F.Z.); (M.G.); (A.H.); (E.-M.W.); (M.H.); (E.C.)
| | - Michael Gröger
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89069 Ulm, Germany; (N.A.); (F.Z.); (M.G.); (A.H.); (E.-M.W.); (M.H.); (E.C.)
| | - Andrea Hoffmann
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89069 Ulm, Germany; (N.A.); (F.Z.); (M.G.); (A.H.); (E.-M.W.); (M.H.); (E.C.)
| | - Eva-Maria Wolfschmitt
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89069 Ulm, Germany; (N.A.); (F.Z.); (M.G.); (A.H.); (E.-M.W.); (M.H.); (E.C.)
| | - Melanie Hogg
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89069 Ulm, Germany; (N.A.); (F.Z.); (M.G.); (A.H.); (E.-M.W.); (M.H.); (E.C.)
| | - Enrico Calzia
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89069 Ulm, Germany; (N.A.); (F.Z.); (M.G.); (A.H.); (E.-M.W.); (M.H.); (E.C.)
| | - Christiane Waller
- Clinic for Psychosomatic Medicine and Psychotherapy, Paracelsus Medical Private University, 90402 Nuremberg, Germany;
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89069 Ulm, Germany; (N.A.); (F.Z.); (M.G.); (A.H.); (E.-M.W.); (M.H.); (E.C.)
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89069 Ulm, Germany; (N.A.); (F.Z.); (M.G.); (A.H.); (E.-M.W.); (M.H.); (E.C.)
- Clinic for Anesthesiology and Intensive Care, Ulm University Medical Center, 89069 Ulm, Germany
| |
Collapse
|