1
|
Huang C, Wang X, Xie D. The Robustness of White Matter Brain Networks Decreases with Aging. J Integr Neurosci 2025; 24:25816. [PMID: 39862007 DOI: 10.31083/jin25816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND White matter (WM) is a principal component of the human brain, forming the structural basis for neural transmission between cortico-cortical and subcortical structures. The impairment of WM integrity is closely associated with the aging process, manifesting as the reorganization of brain networks based on graph theoretical analysis of complex networks and increased volume of white matter hyperintensities (WMHs) in imaging studies. METHODS This study investigated changes in the robustness of WM brain networks during aging and assessed their correlation with WMHs. We constructed WM brain networks for 159 volunteers from a community sample dataset using diffusion tensor imaging (DTI). We then calculated the robustness of these networks by simulating neurodegeneration based on network attack analysis, and studied the correlations between WM network robustness, age, and the proportion of WMHs. RESULTS The analysis revealed a moderate, negative correlation between WM network robustness and age, and a weak and negative correlation between WM network robustness and the proportion of WMHs. CONCLUSIONS These findings suggest that WM pathologies are associated with aging and offer new insights into the imaging characteristics of the aging brain.
Collapse
Affiliation(s)
- Chenye Huang
- Department of Brain Disease Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, 230031 Hefei, Anhui, China
| | - Xie Wang
- Department of Brain Disease Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, 230031 Hefei, Anhui, China
| | - Daojun Xie
- Department of Brain Disease Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, 230031 Hefei, Anhui, China
| |
Collapse
|
2
|
Gu Y, Guo L, Cai X, Yang Q, Sun J, Li Y, Zhu J, Zhang W, Huang P, Jiang Y, Bo B, Li Y, Zhang Y, Zhang M, Wu J, Shi H, Liu S, He Q, Yao X, Zhang Q, Wei H, Zhang X, Zhang H. Connectome-based predictive modelling of ageing, overall cognitive functioning and memory performance. Eur J Neurosci 2024. [PMID: 39523689 DOI: 10.1111/ejn.16559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) and brain functional connectome (we use 'brain connectome' hereafter for simplicity) have advanced our understanding of the ageing brain and age-related changes in cognitive function. Previous studies have investigated the association among brain connectome and age, global cognition, and memory function separately. However, very few have predicted age, overall cognitive functioning and memory performance in a single study to better understand their complex relationship. In this cross-sectional study, we applied an exploratory, data-driven method to investigate the brain connectome markers that could predict ageing, overall cognitive functioning assessed as intelligence quotient (IQ, measured by Wechsler Memory Scale) and memory performance assessed as memory quotient (MQ, measured by Wechsler Memory Scale) in a carefully designed, multicentre, normal ageing cohort (n = 313). Our results showed that brain connectome could predict ageing and IQ, but the association with MQ was weak. We found that the connectivity with orbital frontal cortex was associated with both ageing and IQ. Mediation analysis further showed that the brain connectome mediated the relationship between age and overall cognitive functioning, suggesting a protective brain connectomic mechanism for maintaining normal cognitive functions during healthy ageing. This work may shed light on the potential neural correlates of healthy ageing, overall cognitive functioning and memory performance.
Collapse
Affiliation(s)
- Yi Gu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Lianghu Guo
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Xinyi Cai
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Qing Yang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
- Shanghai Brain-Intelligence Project, Shanghai, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Jian Sun
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Yufei Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- School of Mathematics and Computer Science, Chifeng University, Chifeng, China
| | - Jiayu Zhu
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, China
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| | - Weijun Zhang
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Jiang
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
| | - Bin Bo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yaoyu Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinsong Wu
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai, China
- Medical College, Fudan University, Shanghai, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Siwei Liu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang He
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, China
- United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, China
| | - Xing Yao
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, China
| | - Qiang Zhang
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Zhang
- Shanghai Brain-Intelligence Project, Shanghai, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Han Zhang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
- Shanghai Brain-Intelligence Project, Shanghai, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trail Center, Shanghai, China
| |
Collapse
|
3
|
Loprinzi PD, Frith E. Association Between Perceived Physical Activity and Cognitive Function in Older Adults. Psychol Rep 2018; 122:108-116. [PMID: 29307247 DOI: 10.1177/0033294117750632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There is irrefutable evidence that regular participation in physical activity is favorably associated with numerous positive health outcomes, including cognitive function. Emerging work suggests that perceived physical activity, independent of actual physical activity behavior, is inversely associated with mortality risk. In this study, we evaluate whether perceived physical activity, independent of actual physical activity, is associated with cognitive function, a robust indicator of mortality risk. Data from the cross-sectional 1999-2002 National Health and Nutrition Examination Survey were employed ( N = 2352; 60+ years of age). Actual physical activity was assessed via a validated survey. Perceived physical activity was assessed using the following question: "Compared with others of the same age, would you say that you are: more active, less active, or about the same?" Cognitive function was assessed from the Digit Symbol Substitution Test. When examined in separate models, both actual and perceived physical activity were positively and statistically significantly associated with cognitive function. However, when considered in the same model, actual physical activity was no longer statistically significantly associated with cognitive function, but perceived physical activity was. Perceived physical activity, independent of actual physical activity, is independently associated with cognitive function. If these findings are replicated, future work should consider evaluating perceived physical activity when examining the effects of actual physical activity behavior on cognitive function.
Collapse
Affiliation(s)
- Paul D Loprinzi
- Exercise Psychology Laboratory, Physical Activity Epidemiology Laboratory, School of Applied Sciences, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, Oxford, MS, USA
| | - Emily Frith
- Exercise Psychology Laboratory, Physical Activity Epidemiology Laboratory, School of Applied Sciences, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, Oxford, MS, USA
| |
Collapse
|
4
|
Chen Y, Wang W, Zhao X, Sha M, Liu Y, Zhang X, Ma J, Ni H, Ming D. Age-Related Decline in the Variation of Dynamic Functional Connectivity: A Resting State Analysis. Front Aging Neurosci 2017; 9:203. [PMID: 28713261 PMCID: PMC5491557 DOI: 10.3389/fnagi.2017.00203] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/06/2017] [Indexed: 11/23/2022] Open
Abstract
Normal aging is typically characterized by abnormal resting-state functional connectivity (FC), including decreasing connectivity within networks and increasing connectivity between networks, under the assumption that the FC over the scan time was stationary. In fact, the resting-state FC has been shown in recent years to vary over time even within minutes, thus showing the great potential of intrinsic interactions and organization of the brain. In this article, we assumed that the dynamic FC consisted of an intrinsic dynamic balance in the resting brain and was altered with increasing age. Two groups of individuals (N = 36, ages 20–25 for the young group; N = 32, ages 60–85 for the senior group) were recruited from the public data of the Nathan Kline Institute. Phase randomization was first used to examine the reliability of the dynamic FC. Next, the variation in the dynamic FC and the energy ratio of the dynamic FC fluctuations within a higher frequency band were calculated and further checked for differences between groups by non-parametric permutation tests. The results robustly showed modularization of the dynamic FC variation, which declined with aging; moreover, the FC variation of the inter-network connections, which mainly consisted of the frontal-parietal network-associated and occipital-associated connections, decreased. In addition, a higher energy ratio in the higher FC fluctuation frequency band was observed in the senior group, which indicated the frequency interactions in the FC fluctuations. These results highly supported the basis of abnormality and compensation in the aging brain and might provide new insights into both aging and relevant compensatory mechanisms.
Collapse
Affiliation(s)
- Yuanyuan Chen
- College of Microelectronics, Tianjin UniversityTianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjin, China
| | - Weiwei Wang
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjin, China.,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin UniversityTianjin, China
| | - Xin Zhao
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjin, China.,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin UniversityTianjin, China
| | - Miao Sha
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjin, China.,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin UniversityTianjin, China
| | - Ya'nan Liu
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjin, China.,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin UniversityTianjin, China
| | - Xiong Zhang
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjin, China.,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin UniversityTianjin, China
| | - Jianguo Ma
- College of Microelectronics, Tianjin UniversityTianjin, China
| | - Hongyan Ni
- Department of Radiology, Tianjin First Center HospitalTianjin, China
| | - Dong Ming
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjin, China.,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin UniversityTianjin, China
| |
Collapse
|