1
|
Kenmochi M, Ochi K, Kinoshita H, Kasugai S, Nakamura M, Komori M. Effect of lidocaine on salicylate-induced tinnitus in guinea pigs: A focus on the auditory cortex. PLoS One 2024; 19:e0306607. [PMID: 39116141 PMCID: PMC11309428 DOI: 10.1371/journal.pone.0306607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
This study aimed to investigate the effects of the intravenous administration of lidocaine in the auditory cortex after the systemic administration of salicylate. Healthy male albino Hartley guinea pigs were divided into two groups. The control group received only lidocaine, whereas the experimental group received lidocaine after checking for the effects of salicylate. Extracellular recordings of spikes in the primary auditory cortex and dorsocaudal areas in healthy albino Hartley guinea pigs were continuously documented (pre- and post-lidocaine, pre- and post-salicylate, and post-salicylate after adding lidocaine to post-salicylate). We recorded 160 single units in the primary auditory cortex from five guinea pigs and 155 single units in the dorsocaudal area from another five guinea pigs to confirm the effects of lidocaine on untreated animals. No significant change was detected in either the threshold or Q10dB value after lidocaine administration in the primary auditory cortex and dorsocaudal areas. Spontaneous firing activity significantly decreased after lidocaine administration in the primary auditory cortex and dorsocaudal areas. Next, we recorded 160 single units in the primary auditory cortex from five guinea pigs and 137 single units in the dorsocaudal area from another five guinea pigs to determine the effects of lidocaine on salicylate-treated animals. The threshold was significantly elevated after salicylate administration; however, no additional change was detected after adding lidocaine to the primary auditory cortex and dorsocaudal areas. Regarding the Q10dB value, lidocaine negated the significant changes induced by salicylate in the primary auditory cortex and dorsocaudal areas. Moreover, lidocaine negated the significant changes in spontaneous firing activities induced by salicylate in the primary auditory cortex and dorsocaudal areas. In conclusion, changes in the Q10dB value and spontaneous firing activities induced by salicylate administration are abolished by lidocaine administration, suggesting that these changes are related to the presence of tinnitus.
Collapse
Affiliation(s)
- Mutsumi Kenmochi
- Department of Otolaryngology St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kentaro Ochi
- Department of Otolaryngology St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hirotsugu Kinoshita
- Department of Otolaryngology St. Marianna University School of Medicine, Kawasaki, Japan
| | - Shigeru Kasugai
- Department of Otolaryngology St. Marianna University School of Medicine, Kawasaki, Japan
| | - Manabu Nakamura
- Department of Otolaryngology St. Marianna University School of Medicine, Kawasaki, Japan
| | - Manabu Komori
- Department of Otolaryngology St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
2
|
Lai H, Gao M, Yang H. The potassium channels: Neurobiology and pharmacology of tinnitus. J Neurosci Res 2024; 102:e25281. [PMID: 38284861 DOI: 10.1002/jnr.25281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 01/30/2024]
Abstract
Tinnitus is a widespread public health issue that imposes a significant social burden. The occurrence and maintenance of tinnitus have been shown to be associated with abnormal neuronal activity in the auditory pathway. Based on this view, neurobiological and pharmacological developments in tinnitus focus on ion channels and synaptic neurotransmitter receptors in neurons in the auditory pathway. With major breakthroughs in the pathophysiology and research methodology of tinnitus in recent years, the role of the largest family of ion channels, potassium ion channels, in modulating the excitability of neurons involved in tinnitus has been increasingly demonstrated. More and more potassium channels involved in the neural mechanism of tinnitus have been discovered, and corresponding drugs have been developed. In this article, we review animal (mouse, rat, hamster, and guinea-pig), human, and genetic studies on the different potassium channels involved in tinnitus, analyze the limitations of current clinical research on potassium channels, and propose future prospects. The aim of this review is to promote the understanding of the role of potassium ion channels in tinnitus and to advance the development of drugs targeting potassium ion channels for tinnitus.
Collapse
Affiliation(s)
- Haohong Lai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minqian Gao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| |
Collapse
|
3
|
The Effect of Noise Trauma and Deep Brain Stimulation of the Medial Geniculate Body on Tissue Activity in the Auditory Pathway. Brain Sci 2022; 12:brainsci12081099. [PMID: 36009162 PMCID: PMC9405782 DOI: 10.3390/brainsci12081099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Tinnitus is defined as the phantom perception of sound. To date, there is no curative treatment, and contemporary treatments have failed to show beneficial outcomes. Deep brain stimulation has been suggested as a potential therapy for refractory tinnitus. However, the optimal target and stimulation regimens remain to be defined. Herein, we investigated metabolic and neuronal activity changes using cytochrome C oxidase histochemistry and c-Fos immunohistochemistry in a noise trauma-induced rat model of tinnitus. We also assessed changes in neuronal activity following medial geniculate body (MGB) high-frequency stimulation (HFS). Metabolic activity was reduced in the primary auditory cortex, MGB and CA1 region of the hippocampus in noise-exposed rats. Additionally, c-Fos expression was increased in the primary auditory cortex of those animals. Furthermore, MGB-HFS enhanced c-Fos expression in the thalamic reticular nucleus. We concluded that noise trauma alters tissue activity in multiple brain areas including the auditory and limbic regions. MGB-HFS resulted in higher neuronal activity in the thalamic reticular nucleus. Given the prominent role of the auditory thalamus in tinnitus, these data provide more rationales towards targeting the MGB with HFS as a symptom management tool in tinnitus.
Collapse
|
4
|
The blinking eye as a window into tinnitus: A new animal model of tinnitus in the macaque. Hear Res 2022; 420:108517. [DOI: 10.1016/j.heares.2022.108517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/16/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022]
|
5
|
Koch L, Gaese BH, Nowotny M. Strain Comparison in Rats Differentiates Strain-Specific from More General Correlates of Noise-Induced Hearing Loss and Tinnitus. J Assoc Res Otolaryngol 2021; 23:59-73. [PMID: 34796410 PMCID: PMC8782999 DOI: 10.1007/s10162-021-00822-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022] Open
Abstract
Experiments in rodent animal models help to reveal the characteristics and underlying mechanisms of pathologies related to hearing loss such as tinnitus or hyperacusis. However, a reliable understanding is still lacking. Here, four different rat strains (Sprague Dawley, Wistar, Long Evans, and Lister Hooded) underwent comparative analysis of electrophysiological (auditory brainstem responses, ABRs) and behavioral measures after noise trauma induction to differentiate between strain-dependent trauma effects and more consistent changes across strains, such as frequency dependence or systematic temporal changes. Several hearing- and trauma-related characteristics were clearly strain-dependent. Lister Hooded rats had especially high hearing thresholds and were unable to detect a silent gap in continuous background noise but displayed the highest startle amplitudes. After noise exposure, ABR thresholds revealed a strain-dependent pattern of recovery. ABR waveforms varied in detail among rat strains, and the difference was most prominent at later peaks arising approximately 3.7 ms after stimulus onset. However, changes in ABR waveforms after trauma were small compared to consistent strain-dependent differences between individual waveform components. At the behavioral level, startle-based gap-prepulse inhibition (gap-PPI) was used to evaluate the occurrence and characteristics of tinnitus after noise exposure. A loss of gap-PPI was found in 33% of Wistar, 50% of Sprague Dawley, and 75% of Long Evans rats. Across strains, the most consistent characteristic was a frequency-specific pattern of the loss of gap-PPI, with the highest rates at approximately one octave above trauma. An additional range exhibiting loss of gap-PPI directly below trauma frequency was revealed in Sprague Dawley and Long Evans rats. Further research should focus on these frequency ranges when investigating the underlying mechanisms of tinnitus induction.
Collapse
Affiliation(s)
- L Koch
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - B H Gaese
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Manuela Nowotny
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany. .,Animal Physiology Group, Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany.
| |
Collapse
|
6
|
Zimdahl JW, Thomas H, Bolland SJ, Leggett K, Barry KM, Rodger J, Mulders WHAM. Excitatory Repetitive Transcranial Magnetic Stimulation Over Prefrontal Cortex in a Guinea Pig Model Ameliorates Tinnitus. Front Neurosci 2021; 15:693935. [PMID: 34366777 PMCID: PMC8339289 DOI: 10.3389/fnins.2021.693935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
Tinnitus, a phantom auditory perception that can seriously affect quality of life, is generally triggered by cochlear trauma and associated with aberrant activity throughout the auditory pathways, often referred to as hyperactivity. Studies suggest that non-auditory structures, such as prefrontal cortex (PFC), may be involved in tinnitus generation, by affecting sensory gating in auditory thalamus, allowing hyperactivity to reach the cortex and lead to perception. Indeed, human studies have shown that repetitive transcranial magnetic stimulation (rTMS) of PFC can alleviate tinnitus. The current study investigated whether this therapeutic effect is achieved through inhibition of thalamic hyperactivity, comparing effects of two common clinical rTMS protocols with sham treatment, in a guinea pig tinnitus model. Animals underwent acoustic trauma and once tinnitus developed were treated with either intermittent theta burst stimulation (iTBS), 20 Hz rTMS, or sham rTMS (10 days, 10 min/day; weekdays only). Tinnitus was reassessed and extracellular recordings of spontaneous tonic and burst firing rates in auditory thalamus made. To verify effects in PFC, densities of neurons positive for calcium-binding proteins, calbindin and parvalbumin, were investigated using immunohistochemistry. Both rTMS protocols significantly reduced tinnitus compared to sham. However, spontaneous tonic firing decreased following 20 Hz stimulation and increased following iTBS in auditory thalamus. Burst rate was significantly different between 20 Hz and iTBS stimulation, and burst duration was increased only after 20 Hz treatment. Density of calbindin, but not parvalbumin positive neurons, was significantly increased in the most dorsal region of PFC indicating that rTMS directly affected PFC. Our results support the involvement of PFC in tinnitus modulation, and the therapeutic benefit of rTMS on PFC in treating tinnitus, but indicate this is not achieved solely by suppression of thalamic hyperactivity.
Collapse
Affiliation(s)
- Jack W Zimdahl
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Harrison Thomas
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Samuel J Bolland
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia.,Perron Institute for Neurological and Translational Research, Crawley, WA, Australia
| | - Kerry Leggett
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Kristin M Barry
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Jennifer Rodger
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia.,Perron Institute for Neurological and Translational Research, Crawley, WA, Australia
| | | |
Collapse
|
7
|
Zemaitis K, Kaliyappan K, Frerichs V, Friedman A, Krishnan Muthaiah VP. Mass spectrometry imaging of blast overpressure induced modulation of GABA/glutamate levels in the central auditory neuraxis of Chinchilla. Exp Mol Pathol 2021; 119:104605. [PMID: 33453279 DOI: 10.1016/j.yexmp.2021.104605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/09/2021] [Accepted: 01/10/2021] [Indexed: 11/15/2022]
Abstract
Acoustic trauma damages inner ear neural structures including cochlear hair cells which result in hearing loss and neurotransmitter imbalances within the synapses of the central auditory pathway. Disruption of GABA/glutamate levels underlies, tinnitus, a phantom perception of sound that persists post-exposure to blast noise which may manifest in tandem with acute/chronic loss of hearing. Many putative theories explain tinnitus physiology based on indirect and direct assays in animal models and humans, although there is no comprehensive evidence to explain the phenomenon. Here, GABA/glutamate levels were imaged and quantified in a blast overpressure model of chinchillas using Fourier transform ion cyclotron resonance mass spectrometry imaging. The direct measurement from whole-brain sections identified the relative levels of GABA/glutamate in the central auditory neuraxis centers including the cochlear nucleus, inferior colliculus, and auditory cortex. These preliminary results provide insight on the homeostasis of GABA/glutamate within whole-brain sections of chinchilla for investigation of the pathomechanism of blast-induced tinnitus.
Collapse
Affiliation(s)
- Kevin Zemaitis
- Chemistry Instrument Center, Department of Chemistry, Natural Sciences Complex, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Kathiravan Kaliyappan
- Department of Rehabilitation Sciences, School of Publich Health and Health Professions, Kimball Tower, University at Buffalo, State University of New York, Buffalo, NY 14215, USA
| | - Valerie Frerichs
- Chemistry Instrument Center, Department of Chemistry, Natural Sciences Complex, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Alan Friedman
- Department of Materials Design and Innovation, School of Engineering and Applied Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Vijaya Prakash Krishnan Muthaiah
- Department of Rehabilitation Sciences, School of Publich Health and Health Professions, Kimball Tower, University at Buffalo, State University of New York, Buffalo, NY 14215, USA.
| |
Collapse
|
8
|
Abstract
This volume has highlighted the many recent advances in tinnitus theory, models, diagnostics, therapies, and therapeutics. But tinnitus knowledge is far from complete. In this chapter, contributors to the Behavioral Neuroscience of Tinnitus consider emerging topics and areas of research needed in light of recent findings. New research avenues and methods to explore are discussed. Issues pertaining to current assessment, treatment, and research methods are outlined, along with recommendations on new avenues to explore with research.
Collapse
|
9
|
Domarecka E, Olze H, Szczepek AJ. Auditory Brainstem Responses (ABR) of Rats during Experimentally Induced Tinnitus: Literature Review. Brain Sci 2020; 10:brainsci10120901. [PMID: 33255266 PMCID: PMC7760291 DOI: 10.3390/brainsci10120901] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 12/31/2022] Open
Abstract
Tinnitus is a subjective phantom sound perceived only by the affected person and a symptom of various auditory and non-auditory conditions. The majority of methods used in clinical and basic research for tinnitus diagnosis are subjective. To better understand tinnitus-associated changes in the auditory system, an objective technique measuring auditory sensitivity-the auditory brainstem responses (ABR)-has been suggested. Therefore, the present review aimed to summarize ABR's features in a rat model during experimentally induced tinnitus. PubMed, Web of Science, Science Direct, and Scopus databanks were searched using Medical Subject Heading (MeSH) terms: auditory brainstem response, tinnitus, rat. The search identified 344 articles, and 36 of them were selected for the full-text analyses. The experimental protocols and results were evaluated, and the gained knowledge was synthesized. A high level of heterogeneity between the studies was found regarding all assessed areas. The most consistent finding of all studies was a reduction in the ABR wave I amplitude following exposure to noise and salicylate. Simultaneously, animals with salicylate-induced but not noise-induced tinnitus had an increased amplitude of wave IV. Furthermore, the present study identified a need to develop a consensus experimental ABR protocol applied in future tinnitus studies using the rat model.
Collapse
Affiliation(s)
- Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (E.D.); (H.O.)
| | - Heidi Olze
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (E.D.); (H.O.)
| | - Agnieszka J. Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (E.D.); (H.O.)
- Faculty of Medicine and Health Sciences, University of Zielona Gora, 65-046 Zielona Gora, Poland
- Correspondence:
| |
Collapse
|
10
|
Hafner A, Schoisswohl S, Simoes J, Schlee W, Schecklmann M, Langguth B, Neff P. Impact of personality on acoustic tinnitus suppression and emotional reaction to stimuli sounds. PROGRESS IN BRAIN RESEARCH 2020; 260:187-203. [PMID: 33637217 DOI: 10.1016/bs.pbr.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Acoustic stimulation was shown to be effective in short-term suppression of tinnitus. However, tinnitus cannot be suppressed in all patients. Recent insights from mental health research suggests that personality traits may be important factors in prediction of treatment outcomes or improvement of tinnitus over time. No previous acoustic stimulation study investigated the effects of personality traits on tinnitus suppression and rating of sound stimuli. OBJECTIVES The aim of this study was therefore to examine whether personality is capable to predict tinnitus suppression in chronic tinnitus patients as well as related emotional stimulus evaluation. METHODS Personality data (Big Five Index 2; BFI-2) of two acoustic stimulation experiments were pooled for this analysis. Both experiments were conducted at the University of Regensburg, Germany in the time period between April 2018 and October 2019 and consisted of individual designed noise and amplitude modulated tones matched to the participants' tinnitus pitch. Logistic regressions or linear mixed effect models were performed with tinnitus suppression as well as valence and arousal data as dependent variables and BFI-2 personality dimensions as predictors. RESULTS 28% of the participants showed pronounced short-term tinnitus suppression after acoustic stimulation (50% reduction in subjective tinnitus loudness). Analyzing BFI-2 data, no significant impact of the big five personality traits (neuroticism, agreeableness, extraversion, conscientiousness, openness) were found, neither on acoustic tinnitus suppression, nor on emotional stimulus evaluation, namely arousal. CONCLUSION Personality was not shown to be a predictive factor, neither for acoustic stimulation, nor for emotional reaction to stimuli sounds in our studies. However, since tinnitus cannot be suppressed by acoustic stimulation in all patients, future studies should investigate other explaining factors such as patient-related or (neuro)physiological characteristics.
Collapse
Affiliation(s)
- Anita Hafner
- Department of Psychiatry and Psychotherapy, Bezirksklinikum, University of Regensburg, Regensburg, Germany.
| | - Stefan Schoisswohl
- Department of Psychiatry and Psychotherapy, Bezirksklinikum, University of Regensburg, Regensburg, Germany
| | - Jorge Simoes
- Department of Psychiatry and Psychotherapy, Bezirksklinikum, University of Regensburg, Regensburg, Germany
| | - Winfried Schlee
- Department of Psychiatry and Psychotherapy, Bezirksklinikum, University of Regensburg, Regensburg, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, Bezirksklinikum, University of Regensburg, Regensburg, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, Bezirksklinikum, University of Regensburg, Regensburg, Germany
| | - Patrick Neff
- Department of Psychiatry and Psychotherapy, Bezirksklinikum, University of Regensburg, Regensburg, Germany; University Research Priority Program Dynamics of Healthy Aging, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Abstract
Tinnitus is a common symptom. Standard therapies aim at improving the quality of life and reducing the psychological stress associated with tinnitus. Most interventions have little or no effect on the main symptom. Those affected subjects, however, want such a change and prefer a specific solution, such as pharmacologic therapy to other modalities. Scientific efforts have not yet led to significant improvement in the range of therapies. This article outlines existing efforts and develops ideas on how research for improved tinnitus therapy might look in the future.
Collapse
Affiliation(s)
- Tobias Kleinjung
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 24, Zurich CH 8091, Switzerland.
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, Interdisciplinary Tinnitus Center, University of Regensburg, Universitätsstrasse 84, Regensburg D 93053, Germany
| |
Collapse
|
12
|
Eggermont JJ. Separate auditory pathways for the induction and maintenance of tinnitus and hyperacusis? PROGRESS IN BRAIN RESEARCH 2020; 260:101-127. [PMID: 33637214 DOI: 10.1016/bs.pbr.2020.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tinnitus and hyperacusis often occur together, however tinnitus may occur without hyperacusis or hyperacusis without tinnitus. Based on animal research one could argue that hyperacusis results from noise exposures that increase central gain in the lemniscal, tonotopically organized, pathways, whereas tinnitus requires increased burst firing and neural synchrony in the extra-lemniscal pathway. However, these substrates are not sufficient and require involvement of the central nervous system. The dominant factors in changing cortical networks in tinnitus patients are foremost the degree and type of hearing loss, and comorbidities such as distress and mood. So far, no definite changes have been established for tinnitus proper, albeit that changes in connectivity between the dorsal attention network and the parahippocampal area, as well as the default-mode network-precuneus decoupling, appear to be strong candidates. I conclude that there is still a strong need for further integrating animal and human research into tinnitus and hyperacusis.
Collapse
Affiliation(s)
- Jos J Eggermont
- Department of Psychology, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
13
|
Kapolowicz MR, Thompson LT. Plasticity in Limbic Regions at Early Time Points in Experimental Models of Tinnitus. Front Syst Neurosci 2020; 13:88. [PMID: 32038184 PMCID: PMC6992603 DOI: 10.3389/fnsys.2019.00088] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023] Open
Abstract
Tinnitus is one of the most prevalent auditory disorders worldwide, manifesting in both chronic and acute forms. The pathology of tinnitus has been mechanistically linked to induction of harmful neural plasticity stemming from traumatic noise exposure, exposure to ototoxic medications, input deprivation from age-related hearing loss, and in response to injuries or disorders damaging the conductive apparatus of the ears, the cochlear hair cells, the ganglionic cells of the VIIIth cranial nerve, or neurons of the classical auditory pathway which link the cochlear nuclei through the inferior colliculi and medial geniculate nuclei to auditory cortices. Research attempting to more specifically characterize the neural plasticity occurring in tinnitus have used a wide range of techniques, experimental paradigms, and sampled at different windows of time to reach different conclusions about why and which specific brain regions are crucial in the induction or ongoing maintenance of tinnitus-related plasticity. Despite differences in experimental methodologies, evidence reveals similar findings that strongly suggest that immediate and prolonged activation of non-classical auditory structures (i.e., amygdala, hippocampus, and cingulate cortex) may contribute to the initiation and development of tinnitus in addition to the ongoing maintenance of this devastating condition. The overarching focus of this review, therefore, is to highlight findings from the field supporting the hypothesis that abnormal early activation of non-classical sensory limbic regions are involved in tinnitus induction, with activation of these regions continuing to occur at different temporal stages. Since initial/early stages of tinnitus are difficult to control and to quantify in human clinical populations, a number of different animal paradigms have been developed and assessed in experimental investigations. Reviews of traumatic noise exposure and ototoxic doses of sodium salicylate, the most prevalently used animal models to induce experimental tinnitus, indicate early limbic system plasticity (within hours, minutes, or days after initial insult), supports subsequent plasticity in other auditory regions, and contributes to the pathophysiology of tinnitus. Understanding this early plasticity presents additional opportunities for intervention to reduce or eliminate tinnitus from the human condition.
Collapse
Affiliation(s)
- Michelle R. Kapolowicz
- Center for Hearing Research, University of California, Irvine, Irvine, CA, United States
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Lucien T. Thompson
- Department of Neurobiology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
14
|
Berlot E, Arts R, Smit J, George E, Gulban OF, Moerel M, Stokroos R, Formisano E, De Martino F. A 7 Tesla fMRI investigation of human tinnitus percept in cortical and subcortical auditory areas. NEUROIMAGE-CLINICAL 2020; 25:102166. [PMID: 31958686 PMCID: PMC6970183 DOI: 10.1016/j.nicl.2020.102166] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/12/2019] [Accepted: 01/09/2020] [Indexed: 01/13/2023]
Abstract
Tinnitus is a clinical condition defined by hearing a sound in the absence of an objective source. Early experiments in animal models have suggested that tinnitus stems from an alteration of processing in the auditory system. However, translating these results to humans has proven challenging. One limiting factor has been the insufficient spatial resolution of non-invasive measurement techniques to investigate responses in subcortical auditory nuclei, like the inferior colliculus and the medial geniculate body (MGB). Here we employed ultra-high field functional magnetic resonance imaging (UHF-fMRI) at 7 Tesla to investigate the frequency-specific processing in sub-cortical and cortical regions in a cohort of six tinnitus patients and six hearing loss matched controls. We used task-based fMRI to perform tonotopic mapping and compared the magnitude and tuning of frequency-specific responses between the two groups. Additionally, we used resting-state fMRI to investigate the functional connectivity. Our results indicate frequency-unspecific reductions in the selectivity of frequency tuning that start at the level of the MGB and continue in the auditory cortex, as well as reduced thalamocortical and cortico-cortical connectivity with tinnitus. These findings suggest that tinnitus may be associated with reduced inhibition in the auditory pathway, potentially leading to increased neural noise and reduced functional connectivity. Moreover, these results indicate the relevance of high spatial resolution UHF-fMRI for the investigation of the role of sub-cortical auditory regions in tinnitus.
Collapse
Affiliation(s)
- Eva Berlot
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands; The Brain and Mind Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Remo Arts
- Cochlear Benelux NV, Mechelen Campus - Industrie Noord, Schaliënhoevedreef 20, Building I, Mechelen B-2800, Belgium
| | - Jasper Smit
- Department of Ear Nose and Throat/Head and Neck Surgery, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Ear Nose and Throat/Head and Neck Surgery, Zuyderland Medical Center, Sittard/Heerlen, the Netherlands
| | - Erwin George
- Department of Ear Nose and Throat /Audiology, School for Mental Health and Neuroscience (MHENS), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Omer Faruk Gulban
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Michelle Moerel
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands
| | - Robert Stokroos
- UMC Utrecht, department of Otolaryngology- Head and Neck Surgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Elia Formisano
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands
| | - Federico De Martino
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands; Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
15
|
Cousins RPC. Medicines discovery for auditory disorders: Challenges for industry. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3652. [PMID: 31795652 DOI: 10.1121/1.5132706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Currently, no approved medicines are available for the prevention or treatment of hearing loss. Pharmaceutical industry productivity across all therapeutic indications has historically been disappointing, with a 90% chance of failure in delivering a marketed drug after entering clinical evaluation. To address these failings, initiatives have been applied in the three cornerstones of medicine discovery: target selection, clinical candidate selection, and clinical studies. These changes aimed to enable data-informed decisions on the translation of preclinical observations into a safe, clinically effective medicine by ensuring the best biological target is selected, the most appropriate chemical entity is advanced, and that the clinical studies enroll the correct patients. The specific underlying pathologies need to be known to allow appropriate patient selection, so improved diagnostics are required, as are methodologies for measuring in the inner ear target engagement, drug delivery and pharmacokinetics. The different therapeutic strategies of protecting hearing or preventing hearing loss versus restoring hearing are reviewed along with potential treatments for tinnitus. Examples of current investigational drugs are discussed to highlight key challenges in drug discovery and the learnings being applied to improve the probability of success of launching a marketed medicine.
Collapse
Affiliation(s)
- Rick P C Cousins
- University College London Ear Institute, University College London, London, WC1X 8EE, United Kingdom
| |
Collapse
|
16
|
Theodoroff SM, Kaltenbach JA. The Role of the Brainstem in Generating and Modulating Tinnitus. Am J Audiol 2019; 28:225-238. [PMID: 31022358 DOI: 10.1044/2018_aja-ttr17-18-0035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose The purpose of this work is to present a perspective article summarizing ideas pertaining to the brainstem's role in generating and modulating tinnitus. It is organized in 4 sections: Part 1, the role of the brainstem as a tinnitus generator; Part 2, the role of the brainstem in modulating tinnitus; Part 3, the role of the brainstem in nonauditory comorbid conditions associated with tinnitus; and Part 4, clinical implications. In Part 1, well-established neurophysiological models are discussed providing the framework of evidence that auditory brainstem nuclei play a role in generating tinnitus. In Part 2, ideas are presented explaining modulatory effects on tinnitus related to underlying pathways originating from or projecting to brainstem auditory and nonauditory nuclei. This section addresses multiple phenomena including somatic-related, attention-mediated, and emotion-mediated changes in the tinnitus percept. In Part 3, the role of the brainstem in common nonauditory comorbidities that occur in patients with tinnitus is discussed. Part 4 presents clinical implications of these new ideas related to the brainstem's involvement in generating and modulating tinnitus. Impact Knowledge of the brainstem's involvement in generating and modulating tinnitus provides a context for health care professionals to understand the temporal relationship between tinnitus and common nonauditory comorbid conditions.
Collapse
Affiliation(s)
- Sarah M. Theodoroff
- VA RR&D, National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, OR
- Department of Otolaryngology, Head & Neck Surgery, Oregon Health & Science University, Portland
| | - James A. Kaltenbach
- Department of Neurosciences, Lerner Research Institute/Head and Neck Institute, Cleveland Clinic, OH
| |
Collapse
|
17
|
Wilson CA, Berger JI, de Boer J, Sereda M, Palmer AR, Hall DA, Wallace MN. Gap-induced inhibition of the post-auricular muscle response in humans and guinea pigs. Hear Res 2019; 374:13-23. [PMID: 30685571 PMCID: PMC6408328 DOI: 10.1016/j.heares.2019.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/14/2018] [Accepted: 01/15/2019] [Indexed: 12/11/2022]
Abstract
A common method for measuring changes in temporal processing sensitivity in both humans and animals makes use of GaP-induced Inhibition of the Acoustic Startle (GPIAS). It is also the basis of a common method for detecting tinnitus in rodents. However, the link to tinnitus has not been properly established because GPIAS has not yet been used to objectively demonstrate tinnitus in humans. In guinea pigs, the Preyer (ear flick) myogenic reflex is an established method for measuring the acoustic startle for the GPIAS test, while in humans, it is the eye-blink reflex. Yet, humans have a vestigial remnant of the Preyer reflex, which can be detected by measuring skin surface potentials associated with the Post-Auricular Muscle Response (PAMR). A similar electrical potential can be measured in guinea pigs and we aimed to show that the PAMR could be used to demonstrate GPIAS in both species. In guinea pigs, we compare the GPIAS measured using the pinna movement of the Preyer reflex and the electrical potential of the PAMR to demonstrate that the two are at least equivalent. In humans, we establish for the first time that the PAMR provides a reliable way of measuring GPIAS that is a pure acoustic alternative to the multimodal eye-blink reflex. Further exploratory tests showed that while eye gaze position influenced the size of the PAMR response, it did not change the degree of GPIAS. Our findings confirm that the PAMR is a sensitive method for measuring GPIAS and suggest that it may allow direct comparison of temporal processing between humans and animals and may provide a basis for an objective test of tinnitus. Myogenic potentials from the guinea pig pinna show gap induced pre-pulse inhibition. Startle inhibition is also shown by gaps in background noise using the Preyer reflex. Startle potentials recorded behind the human pinna show gap-induced inhibition. Human post-auricular muscle potentials may form an objective test for tinnitus.
Collapse
Affiliation(s)
- Caroline A Wilson
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, UK; Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
| | - Joel I Berger
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jessica de Boer
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, UK; Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
| | - Magdalena Sereda
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Ropewalk House, 113 The Ropewalk, Nottingham, UK
| | - Alan R Palmer
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, UK
| | - Deborah A Hall
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Ropewalk House, 113 The Ropewalk, Nottingham, UK; Nottingham University Hospitals NHS Trust, Queens Medical Centre, Derby Road, Nottingham, NG7 2UH, UK; University of Nottingham Malaysia, Jalan Broga, 43500, Semeniyh, Selangor Darul Ehsan, Malaysia
| | - Mark N Wallace
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, UK; Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
18
|
Langguth B, Elgoyhen AB, Cederroth CR. Therapeutic Approaches to the Treatment of Tinnitus. Annu Rev Pharmacol Toxicol 2019; 59:291-313. [DOI: 10.1146/annurev-pharmtox-010818-021556] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tinnitus is a highly prevalent condition that is associated with hearing loss in most cases. In the absence of external stimuli, phantom perceptions of sounds emerge from alterations in neuronal activity within central auditory and nonauditory structures. Pioneering studies using lidocaine revealed that tinnitus is susceptible to pharmacological interventions. However, lidocaine is not effective in all patients, and no other drug has been identified with clear efficacy for the long-term treatment of tinnitus. In this review, we present recent advances in tinnitus research, including more detailed knowledge of its pathophysiology and involved neurotransmitter systems. Moreover, we summarize results from animal and clinical treatment studies as well as from studies that identified tinnitus as a side effect of pharmacological treatments. Finally, we focus on challenges in the development of pharmacological compounds for the treatment of tinnitus, namely the limitations of available animal models and of standardized clinical research methodologies.
Collapse
Affiliation(s)
- Berthold Langguth
- Department of Psychiatry and Psychotherapy, and Interdisciplinary Tinnitus Clinic, University of Regensburg, 93053 Regensburg, Germany
| | - Ana Belen Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres,” Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires, Argentina
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | | |
Collapse
|
19
|
Abstract
Tinnitus is the sensation of hearing a sound with no external auditory stimulus present. It is a public health issue correlated with multiple comorbidities and precipitating factors such as noise exposure, military service, and traumatic brain injury, migraine, insomnia, small vessel disease, smoking history, stress exposure, anxiety, depression, and socioeconomic status. Clinical experience and a recent literature review point at tinnitus as a neuropsychiatric condition involving both auditory and nonauditory cortical areas of the brain and affecting brain-auditory circuitry. In fact, brain-ear connections have been highlighted in different models. Forward management of this disorder should take this body of research into consideration as tinnitus remains a challenging condition to evaluate and treat with current management protocols still symptomatic at best. With a better understanding of the etiologic factors and comorbidities of tinnitus, additional research trials and new therapeutic approaches could see the light to tackle this public health disability bringing hope to patients and doctors.
Collapse
Affiliation(s)
- Zeina Chemali
- Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - R Nehmé
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, United States
| | - Gregory Fricchione
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Cederroth CR, Dyhrfjeld-Johnsen J, Langguth B. An update: emerging drugs for tinnitus. Expert Opin Emerg Drugs 2018; 23:251-260. [DOI: 10.1080/14728214.2018.1555240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- Interdisciplinary Tinnitus Clinic, University of Regensburg, Regensburg, Germany
| |
Collapse
|
21
|
Diseases and targets for local drug delivery to the inner ear. Hear Res 2018; 368:3-9. [PMID: 29778289 DOI: 10.1016/j.heares.2018.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/06/2018] [Accepted: 05/09/2018] [Indexed: 01/09/2023]
|
22
|
Namikawa M, Sano A, Tateno T. Salicylate-Induced Suppression of Electrically Driven Activity in Brain Slices from the Auditory Cortex of Aging Mice. Front Aging Neurosci 2017; 9:395. [PMID: 29311894 PMCID: PMC5732918 DOI: 10.3389/fnagi.2017.00395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/14/2017] [Indexed: 11/15/2022] Open
Abstract
The prevalence of tinnitus is known to increase with age. The age-dependent mechanisms of tinnitus may have important implications for the development of new therapeutic treatments. High doses of salicylate can be used experimentally to induce transient tinnitus and hearing loss. Although accumulating evidence indicates that salicylate induces tinnitus by directly targeting neurons in the peripheral and central auditory systems, the precise effect of salicylate on neural networks in the auditory cortex (AC) is unknown. Here, we examined salicylate-induced changes in stimulus-driven laminar responses of AC slices with salicylate superfusion in young and aged senescence-accelerated-prone (SAMP) and -resistant (SAMR) mice. Of the two strains, SAMP1 is known to be a more suitable model of presbycusis. We recorded stimulus-driven laminar local field potential (LFP) responses at multi sites in AC slice preparations. We found that for all AC slices in the two strains, salicylate always reduced stimulus-driven LFP responses in all layers. However, for the amplitudes of the LFP responses, the two senescence-accelerated mice (SAM) strains showed different laminar properties between the pre- and post-salicylate conditions, reflecting strain-related differences in local circuits. As for the relationships between auditory brainstem response (ABR) thresholds and the LFP amplitude ratios in the pre- vs. post-salicylate condition, we found negative correlations in layers 2/3 and 4 for both older strains, and in layer 5 (L5) in older SAMR1. In contrast, the GABAergic agonist muscimol (MSC) led to positive correlations between ABR thresholds and LFP amplitude ratios in the pre- vs. post-MSC condition in younger SAM mice from both strains. Further, in younger mice, salicylate decreased the firing rate in AC L4 pyramidal neurons. Thus, salicylate can directly reduce neural excitability of L4 pyramidal neurons and thereby influence AC neural circuit activity. That we observed age-dependent effects of salicylate and varied GABAergic sensitivity in the AC among mouse strains with hearing loss implies that potential therapeutic mechanisms for tinnitus may operate differently in young vs. aged subjects. Therefore, scientists developing new therapeutic modalities for tinnitus treatment should consider using both aged and young animals.
Collapse
Affiliation(s)
- Minoru Namikawa
- Department of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Ayaka Sano
- Department of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Takashi Tateno
- Department of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| |
Collapse
|
23
|
Moreno-Paublete R, Canlon B, Cederroth CR. Differential Neural Responses Underlying the Inhibition of the Startle Response by Pre-Pulses or Gaps in Mice. Front Cell Neurosci 2017; 11:19. [PMID: 28239338 PMCID: PMC5302757 DOI: 10.3389/fncel.2017.00019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/23/2017] [Indexed: 11/17/2022] Open
Abstract
Gap pre-pulse inhibition of the acoustic startle (GPIAS) is a behavioral paradigm used for inferring the presence of tinnitus in animal models as well as humans. In contrast to pre-pulse inhibition (PPI), the neural circuitry controlling GPIAS is poorly understood. To increase our knowledge on GPIAS, a comparative study with PPI was performed in mice combining these behavioral tests and c-Fos activity mapping in brain areas involved in the inhibition of the acoustic startle reflex (ASR). Both pre-pulses and gaps efficiently inhibited the ASR and abolished the induction of c-Fos in the pontine reticular nucleus. Differential c-Fos activation was found between PPI and GPIAS in the forebrain whereby PPI activated the lateral globus pallidus and GPIAS activated the primary auditory cortex. Thus, different neural maps are regulating the inhibition of the startle response by pre-pulses or gaps. To further investigate this differential response to PPI and GPIAS, we pharmacologically disrupted PPI and GPIAS with D-amphetamine or Dizocilpine (MK-801) to target dopamine efflux and to block NMDA receptors, respectively. Both D-amp and MK-801 efficiently decreased PPI and GPIAS. We administered Baclofen, an agonist GABAB receptor, but failed to detect any robust rescue of the effects of D-amp and MK-801 suggesting that PPI and GPIAS are GABAB-independent. These novel findings demonstrate that the inhibition of the ASR by pre-pulses or gaps is orchestrated by different neural pathways.
Collapse
Affiliation(s)
- Rocio Moreno-Paublete
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - Barbara Canlon
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - Christopher R Cederroth
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|