1
|
Yadav S, Deepika, Moar K, Kumar A, Khola N, Pant A, Kakde GS, Maurya PK. Reconsidering red blood cells as the diagnostic potential for neurodegenerative disorders. Biol Cell 2024; 116:e2400019. [PMID: 38822416 DOI: 10.1111/boc.202400019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Red blood cells (RBCs) are usually considered simple cells and transporters of gases to tissues. HYPOTHESIS However, recent research has suggested that RBCs may have diagnostic potential in major neurodegenerative disorders (NDDs). RESULTS This review summarizes the current knowledge on changes in RBC in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and other NDDs. It discusses the deposition of neuronal proteins like amyloid-β, tau, and α-synuclein, polyamines, changes in the proteins of RBCs like band-3, membrane transporter proteins, heat shock proteins, oxidative stress biomarkers, and altered metabolic pathways in RBCs during neurodegeneration. It also highlights the comparison of RBC diagnostic markers to other in-market diagnoses and discusses the challenges in utilizing RBCs as diagnostic tools, such as the need for standardized protocols and further validation studies. SIGNIFICANCE STATEMENT The evidence suggests that RBCs have diagnostic potential in neurodegenerative disorders, and this study can pave the foundation for further research which may lead to the development of novel diagnostic approaches and treatments.
Collapse
Affiliation(s)
- Somu Yadav
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| | - Deepika
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| | - Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| | - Akshay Kumar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| | - Nikhila Khola
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| | - Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| | - Ganseh S Kakde
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
2
|
Kozlova E, Sergunova V, Sherstyukova E, Grechko A, Lyapunova S, Inozemtsev V, Kozlov A, Gudkova O, Chernysh A. Mechanochemical Synergism of Reactive Oxygen Species Influences on RBC Membrane. Int J Mol Sci 2023; 24:5952. [PMID: 36983026 PMCID: PMC10057059 DOI: 10.3390/ijms24065952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
The influences of various factors on blood lead to the formation of extra reactive oxygen species (ROS), resulting in the disruption of morphology and functions of red blood cells (RBCs). This study considers the mechanisms of the mechanochemical synergism of OH• free radicals, which are most active in the initiation of lipid peroxidation (LPO) in RBC membranes, and H2O2 molecules, the largest typical diffusion path. Using kinetic models of differential equations describing CH2O2t and COH•t, we discuss two levels of mechanochemical synergism that occur simultaneously: (1) synergism that ensures the delivery of highly active free radicals OH• to RBC membranes and (2) a positive feedback system between H2O2 and OH•, resulting in the partial restoration of spent molecules. As a result of these ROS synergisms, the efficiency of LPO in RBC membranes sharply increases. In blood, the appearance of OH• free radicals is due to the interaction of H2O2 molecules with free iron ions (Fe2+) which arise as a result of heme degradation. We experimentally established the quantitative dependences of COH• CH2O2 using the methods of spectrophotometry and nonlinear curve fitting. This study extends the analysis of the influence of ROS mechanisms in RBC suspensions.
Collapse
Affiliation(s)
- Elena Kozlova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Faculty of Physics, Federal State Budget Educational Institution of Higher Education M.V. Lomonosov Moscow State University (Lomonosov MSU), 119234 Moscow, Russia
| | - Viktoria Sergunova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| | - Ekaterina Sherstyukova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Andrey Grechko
- Administration, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| | - Snezhanna Lyapunova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| | - Vladimir Inozemtsev
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| | - Aleksandr Kozlov
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Olga Gudkova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| | - Aleksandr Chernysh
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| |
Collapse
|
3
|
Kosenko E, Tikhonova L, Alilova G, Montoliu C. Erythrocytes Functionality in SARS-CoV-2 Infection: Potential Link with Alzheimer's Disease. Int J Mol Sci 2023; 24:5739. [PMID: 36982809 PMCID: PMC10051442 DOI: 10.3390/ijms24065739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a rapidly spreading acute respiratory infection caused by SARS-CoV-2. The pathogenesis of the disease remains unclear. Recently, several hypotheses have emerged to explain the mechanism of interaction between SARS-CoV-2 and erythrocytes, and its negative effect on the oxygen-transport function that depends on erythrocyte metabolism, which is responsible for hemoglobin-oxygen affinity (Hb-O2 affinity). In clinical settings, the modulators of the Hb-O2 affinity are not currently measured to assess tissue oxygenation, thereby providing inadequate evaluation of erythrocyte dysfunction in the integrated oxygen-transport system. To discover more about hypoxemia/hypoxia in COVID-19 patients, this review highlights the need for further investigation of the relationship between biochemical aberrations in erythrocytes and oxygen-transport efficiency. Furthermore, patients with severe COVID-19 experience symptoms similar to Alzheimer's, suggesting that their brains have been altered in ways that increase the likelihood of Alzheimer's. Mindful of the partly assessed role of structural, metabolic abnormalities that underlie erythrocyte dysfunction in the pathophysiology of Alzheimer's disease (AD), we further summarize the available data showing that COVID-19 neurocognitive impairments most probably share similar patterns with known mechanisms of brain dysfunctions in AD. Identification of parameters responsible for erythrocyte function that vary under SARS-CoV-2 may contribute to the search for additional components of progressive and irreversible failure in the integrated oxygen-transport system leading to tissue hypoperfusion. This is particularly relevant for the older generation who experience age-related disorders of erythrocyte metabolism and are prone to AD, and provide an opportunity for new personalized therapies to control this deadly infection.
Collapse
Affiliation(s)
- Elena Kosenko
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Lyudmila Tikhonova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Gubidat Alilova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Carmina Montoliu
- Hospital Clinico Research Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Pathology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
4
|
Molecular Mechanisms and Pathophysiological Significance of Eryptosis. Int J Mol Sci 2023; 24:ijms24065079. [PMID: 36982153 PMCID: PMC10049269 DOI: 10.3390/ijms24065079] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Despite lacking the central apoptotic machinery, senescent or damaged RBCs can undergo an unusual apoptosis-like cell death, termed eryptosis. This premature death can be caused by, or a symptom of, a wide range of diseases. However, various adverse conditions, xenobiotics, and endogenous mediators have also been recognized as triggers and inhibitors of eryptosis. Eukaryotic RBCs are unique among their cell membrane distribution of phospholipids. The change in the RBC membrane composition of the outer leaflet occurs in a variety of diseases, including sickle cell disease, renal diseases, leukemia, Parkinson’s disease, and diabetes. Eryptotic erythrocytes exhibit various morphological alterations such as shrinkage, swelling, and increased granulation. Biochemical changes include cytosolic Ca2+ increase, oxidative stress, stimulation of caspases, metabolic exhaustion, and ceramide accumulation. Eryptosis is an effective mechanism for the elimination of dysfunctional erythrocytes due to senescence, infection, or injury to prevent hemolysis. Nevertheless, excessive eryptosis is associated with multiple pathologies, most notably anemia, abnormal microcirculation, and prothrombotic risk; all of which contribute to the pathogenesis of several diseases. In this review, we provide an overview of the molecular mechanisms, physiological and pathophysiological relevance of eryptosis, as well as the potential role of natural and synthetic compounds in modulating RBC survival and death.
Collapse
|
5
|
Mariano A, Bigioni I, Misiti F, Fattorini L, d’Abusco AS, Rodio A. The Nutraceuticals as Modern Key to Achieve Erythrocyte Oxidative Stress Fighting in Osteoarthritis. Curr Issues Mol Biol 2022; 44:3481-3495. [PMID: 36005136 PMCID: PMC9406754 DOI: 10.3390/cimb44080240] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA), the most common joint disease, shows an increasing prevalence in the aging population in industrialized countries. OA is characterized by low-grade chronic inflammation, which causes degeneration of all joint tissues, such as articular cartilage, subchondral bone, and synovial membrane, leading to pain and loss of functionality. Erythrocytes, the most abundant blood cells, have as their primary function oxygen transport, which induces reactive oxygen species (ROS) production. For this reason, the erythrocytes have several mechanisms to counteract ROS injuries, which cause damage to lipids and proteins of the cell membrane. Oxidative stress and inflammation are highly correlated and are both causes of joint disorders. In the synovial fluid and blood of osteoarthritis patients, erythrocyte antioxidant enzyme expression is decreased. To date, OA is a non-curable disease, treated mainly with non-steroidal anti-inflammatory drugs and corticosteroids for a prolonged period of time, which cause several side effects; thus, the search for natural remedies with anti-inflammatory and antioxidant activities is always ongoing. In this review, we analyze several manuscripts describing the effect of traditional remedies, such as Harpagophytum procumbens, Curcumin longa, and Boswellia serrata extracts, in the treatments of OA for their anti-inflammatory, analgesic, and antioxidant activity. The effects of such remedies have been studied both in in vitro and in vivo models, considering both joint cells and erythrocytes.
Collapse
Affiliation(s)
- Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Irene Bigioni
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Misiti
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy
- Correspondence:
| | - Luigi Fattorini
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Anna Scotto d’Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Angelo Rodio
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy
| |
Collapse
|
6
|
Misiti F. Sphingosine Increases ATP Release From Red Blood Cells. Open Biochem J 2022. [DOI: 10.2174/1874091x-v16-e2204210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
RBC plays a pivotal role in oxygen delivery, improving distribution where it needs. When RBC enters a low oxygen area, a mechanism mediated by a signaling pathway releases ATP, responsible for vasodilatation.
Objective:
Clarify the potential role of sphingosine on the release of ATP from RBC.
Methods:
ATP release increases after sphingosine exposure in RBC under low oxygen conditions. ATP release in deoxygenated RBC shows data like that of control RBC: (1) RBC after band 3 modification by 4,4'- diisothio-cyanato-stilbene- 2,2'-disulphonic acid (DIDS); (2) CO-treated RBC.
Unlike phosphofructokinase, adenylate cyclase (AC) activity increases after exposure to sphingosine.
Results:
We show that cAMP synthesis and ATP release are not failed in sphingosine-treated red blood cells in response to incubation with mastoparan 7, forskolin plus 3-isobutyl-1-methyl xanthine, agents that stimulate cAMP synthesis.
Conclusion:
Deoxy-hemoglobin, band 3, and AC are involved in the signaling pathway responsible for ATP released after sphingosine exposure.
Collapse
|
7
|
Misiti F. Sphingosine Increases ATP Release From Red Blood Cells. Open Biochem J 2022. [DOI: 10.2174/874091x-v16-e2204210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
RBC plays a pivotal role in oxygen delivery, improving distribution where it needs. When RBC enters a low oxygen area, a mechanism mediated by a signaling pathway releases ATP, responsible for vasodilatation.
Objective:
Clarify the potential role of sphingosine on the release of ATP from RBC.
Methods:
ATP release increases after sphingosine exposure in RBC under low oxygen conditions. ATP release in deoxygenated RBC shows data like that of control RBC: (1) RBC after band 3 modification by 4,4'- diisothio-cyanato-stilbene- 2,2'-disulphonic acid (DIDS); (2) CO-treated RBC.
Unlike phosphofructokinase, adenylate cyclase (AC) activity increases after exposure to sphingosine.
Results:
We show that cAMP synthesis and ATP release are not failed in sphingosine-treated red blood cells in response to incubation with mastoparan 7, forskolin plus 3-isobutyl-1-methyl xanthine, agents that stimulate cAMP synthesis.
Conclusion:
Deoxy-hemoglobin, band 3, and AC are involved in the signaling pathway responsible for ATP released after sphingosine exposure.
Collapse
|
8
|
Notariale R, Perrone P, Mele L, Lettieri G, Piscopo M, Manna C. Olive Oil Phenols Prevent Mercury-Induced Phosphatidylserine Exposure and Morphological Changes in Human Erythrocytes Regardless of Their Different Scavenging Activity. Int J Mol Sci 2022; 23:ijms23105693. [PMID: 35628502 PMCID: PMC9147954 DOI: 10.3390/ijms23105693] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023] Open
Abstract
Phosphatidylserine (PS) translocation to the external membrane leaflet represents a key mechanism in the pathophysiology of human erythrocytes (RBC) acting as an "eat me" signal for the removal of aged/stressed cells. Loss of physiological membrane asymmetry, however, can lead to adverse effects on the cardiovascular system, activating a prothrombotic activity. The data presented indicate that structurally related olive oil phenols prevent cell alterations induced in intact human RBC exposed to HgCl2 (5-40 µM) or Ca2+ ionophore (5 µM), as measured by hallmarks including PS exposure, reactive oxygen species generation, glutathione depletion and microvesicles formation. The protective effect is observed in a concentration range of 1-30 µM, hydroxytyrosol being the most effective; its in vivo metabolite homovanillic alcohol still retains the biological activity of its dietary precursor. Significant protection is also exerted by tyrosol, in spite of its weak scavenging activity, indicating that additional mechanisms are involved in the protective effect. When RBC alterations are mediated by an increase in intracellular calcium, the protective effect is observed at higher concentrations, indicating that the selected phenols mainly act on Ca2+-independent mechanisms, identified as protection of glutathione depletion. Our findings strengthen the nutritional relevance of olive oil bioactive compounds in the claimed health-promoting effects of the Mediterranean Diet.
Collapse
Affiliation(s)
- Rosaria Notariale
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.N.); (P.P.)
| | - Pasquale Perrone
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.N.); (P.P.)
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.L.); (M.P.)
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.L.); (M.P.)
| | - Caterina Manna
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.N.); (P.P.)
- Correspondence:
| |
Collapse
|
9
|
Quantification of human plasma metalloproteins in multiple sclerosis, ischemic stroke and healthy controls reveals an association of haptoglobin-hemoglobin complexes with age. PLoS One 2022; 17:e0262160. [PMID: 35020753 PMCID: PMC8754309 DOI: 10.1371/journal.pone.0262160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/16/2021] [Indexed: 01/22/2023] Open
Abstract
Advanced analytical methods play an important role in quantifying serum disease biomarkers. The problem of separating thousands of proteins can be reduced by analyzing for a ‘sub-proteome’, such as the ‘metalloproteome’, defined as all proteins that contain bound metals. We employed size exclusion chromatography (SEC) coupled to an inductively coupled plasma atomic emission spectrometer (ICP-AES) to analyze plasma from multiple sclerosis (MS) participants (n = 21), acute ischemic stroke (AIS) participants (n = 17) and healthy controls (n = 21) for Fe, Cu and Zn-metalloproteins. Using ANOVA analysis to compare the mean peak areas among the groups revealed no statistically significant differences for ceruloplasmin (p = 0.31), α2macroglobulin (p = 0.51) and transferrin (p = 0.31). However, a statistically significant difference was observed for the haptoglobin-hemoglobin (Hp-Hb) complex (p = 0.04), being driven by the difference between the control group and AIS (p = 0.012), but not with the MS group (p = 0.13), based on Dunnes test. A linear regression model for Hp-Hb complex with the groups now adjusted for age found no statistically significant differences between the groups (p = 0.95), but was suggestive for age (p = 0.057). To measure the strength of association between the Hp-Hb complex and age without possible modifications due to disease, we calculated the Spearman rank correlation in the healthy controls. The latter revealed a positive association (r = 0.39, 95% Confidence Interval = (-0.05, 0.83), which suggests that either the removal of Hp-Hb complexes from the blood circulation slows with age or that the release of Hb from red blood cells increases with age. We also observed that the Fe-peak corresponding to the Hp-Hb complex eluted ~100 s later in ~14% of all study samples, which was not correlated with age or disease diagnosis, but is consistent with the presence of the smaller Hp (1–1) isoform in 15% of the population.
Collapse
|
10
|
Al-kuraishy HM, Al-Gareeb AI, Onohuean H, El-Saber Batiha G. COVID-19 and erythrocrine function: The roller coaster and danger. Int J Immunopathol Pharmacol 2022; 36:3946320221103151. [PMID: 35590466 PMCID: PMC9124636 DOI: 10.1177/03946320221103151] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Erythrocrine function refers to erythrocytes' ability to synthesize and release active signaling molecules such as ATP and nitric oxide (NO). Erythrocyte NO regulates its deformability and increases its perfusion and circulation that prevent tissue hypoxia. Recently, there is a connotation between SARS-CoV-2 infection and erythrocrine function due to alteration in the release of NO and ATP from erythrocytes. SARS-CoV-2 binds erythrocyte band3 protein, which has a similar characteristic of ACE2, leading to alteration of erythrocyte physiology like oxygen transport with development of hypoxia. Similarly, SARS-CoV-2 infection activates erythrocyte protein kinase C alpha (PKC-α), causing significant changes in the erythrocyte functions. The erythrocytes can bind SARS-CoV-2 and its active particles with subsequent virus delivery to the liver and spleen macrophages. Thus, the erythrocytes act as elimination for SARS-CoV-2 in COVID-19. Moreover, the erythrocyte stored, release sphingosine-1 phosphate (S1P) improves endothelial and regulates lymphocyte functions. SARS-CoV-2 ORF8 protein binds the porphyrin part of hemoglobin heme at the β1 chain, causing hemolysis and dysfunctional hemoglobin to reduce oxygen-carrying capacity. In conclusion, SARS-CoV-2 infection and associated pro-inflammatory disorders lead to abnormal erythrocrine function with subsequent inflammatory complications and endothelial dysfunction due to deficiency of protective released molecules (NO, G1P, and ATP) from functional erythrocytes. In vitro, preclinical, and clinical studies are mandatory in this regard.
Collapse
Affiliation(s)
- Hayder M Al-kuraishy
- Department of Clinical Pharmacology and
Medicine, College of Medicine, AL-mustansiriyiah University, AL-mustansiriyiah, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and
Medicine, College of Medicine, AL-mustansiriyiah University, AL-mustansiriyiah, Iraq
| | - Hope Onohuean
- Biopharmaceutics Unit, Department of
Pharmacology and Toxicology, School of Pharmacy, Kampala International University
Uganda, Western Campus, Ishaka-Bushenyi, Uganda
| | - Gaber El-Saber Batiha
- Department of Pharmacology and
Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, Egypt
| |
Collapse
|
11
|
Iheagwam FN, Batiha GES, Ogunlana OO, Chinedu SN. Terminalia catappa Extract Palliates Redox Imbalance and Inflammation in Diabetic Rats by Upregulating Nrf-2 Gene. Int J Inflam 2021; 2021:9778486. [PMID: 34956587 PMCID: PMC8702315 DOI: 10.1155/2021/9778486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022] Open
Abstract
This study aims at evaluating the ameliorative role of Terminalia catappa aqueous leaf extract (TCA) on hyperglycaemia-induced oxidative stress and inflammation in a high-fat, low dose streptozotocin-induced type 2 diabetic rat model. Experimental rats were treated orally with 400 and 800 mg/kg bw TCA daily for four weeks. Antioxidant enzyme activities, plasma glucose concentration, protein concentration, oxidative stress, and inflammation biomarkers were assayed using standard methods. Hepatic relative expressions of tumour necrosis factor-alpha (TNF-α), interleukin-six (IL-6), and nuclear factor-erythroid 2 related factor 2 (Nrf-2) were also assessed. Molecular docking and prediction of major TCA phytoconstituents' biological activity related to T2DM-induced oxidative stress were evaluated in silico. Induction of diabetes significantly (p < 0.05) reduced superoxide dismutase, glutathione-S-transferase, and peroxidase activities. Glutathione and protein stores were significantly (p < 0.05) depleted, while glucose, MDA, interleukin-six (IL-6), and tumour necrosis factor-α (TNF-α) concentrations were significantly (p < 0.05) increased. A significant (p < 0.05) upregulation of hepatic TNF-α and IL-6 expression and downregulation (p < 0.05) of Nrf-2 expression were observed during diabetes onset. TCA treatment significantly (p < 0.05) modulated systemic diabetic-induced oxidative stress and inflammation, mRNA expression dysregulation, and dysregulated macromolecule metabolism. However, only 800 mg/kg TCA treatment significantly (p < 0.05) downregulated hepatic TNF-α expression. 9-Oxabicyclo[3.3.1]nonane-2,6-diol and 1,2,3-Benzenetriol bound comparably to glibenclamide in Nrf-2, IL-6, and TNF-α binding pockets. They were predicted to be GST A and M substrate, JAK2 expression, ribulose-phosphate 3-epimerase, NADPH peroxidase, and glucose oxidase inhibitors. These results suggest that TCA ameliorates hyperglycaemia-induced oxidative stress and inflammation by activating Nrf-2 gene.
Collapse
Affiliation(s)
- Franklyn Nonso Iheagwam
- Department of Biochemistry, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC), Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Olubanke Olujoke Ogunlana
- Department of Biochemistry, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC), Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| | - Shalom Nwodo Chinedu
- Department of Biochemistry, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC), Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| |
Collapse
|
12
|
Kosmachevskaya OV, Novikova NN, Topunov AF. Carbonyl Stress in Red Blood Cells and Hemoglobin. Antioxidants (Basel) 2021; 10:253. [PMID: 33562243 PMCID: PMC7914924 DOI: 10.3390/antiox10020253] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The paper overviews the peculiarities of carbonyl stress in nucleus-free mammal red blood cells (RBCs). Some functional features of RBCs make them exceptionally susceptible to reactive carbonyl compounds (RCC) from both blood plasma and the intracellular environment. In the first case, these compounds arise from the increased concentrations of glucose or ketone bodies in blood plasma, and in the second-from a misbalance in the glycolysis regulation. RBCs are normally exposed to RCC-methylglyoxal (MG), triglycerides-in blood plasma of diabetes patients. MG modifies lipoproteins and membrane proteins of RBCs and endothelial cells both on its own and with reactive oxygen species (ROS). Together, these phenomena may lead to arterial hypertension, atherosclerosis, hemolytic anemia, vascular occlusion, local ischemia, and hypercoagulation phenotype formation. ROS, reactive nitrogen species (RNS), and RCC might also damage hemoglobin (Hb), the most common protein in the RBC cytoplasm. It was Hb with which non-enzymatic glycation was first shown in living systems under physiological conditions. Glycated HbA1c is used as a very reliable and useful diagnostic marker. Studying the impacts of MG, ROS, and RNS on the physiological state of RBCs and Hb is of undisputed importance for basic and applied science.
Collapse
Affiliation(s)
- Olga V. Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | | | - Alexey F. Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| |
Collapse
|
13
|
Microvesicle Formation Induced by Oxidative Stress in Human Erythrocytes. Antioxidants (Basel) 2020; 9:antiox9100929. [PMID: 32998418 PMCID: PMC7650597 DOI: 10.3390/antiox9100929] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) released by different cell types play an important role in many physiological and pathophysiological processes. In physiological conditions, red blood cell (RBC)-derived EVs compose 4–8% of all circulating EVs, and oxidative stress (OS) as a consequence of different pathophysiological conditions significantly increases the amount of circulated RBC-derived EVs. However, the mechanisms of EV formation are not yet fully defined. To analyze OS-induced EV formation and RBC transformations, we used flow cytometry to evaluate cell esterase activity, caspase-3 activity, and band 3 clustering. Band 3 clustering was additionally analyzed by confocal microscopy. Two original laser diffraction-based approaches were used for the analysis of cell deformability and band 3 activity. Hemoglobin species were characterized spectrophotometrically. We showed that cell viability in tert-Butyl hydroperoxide-induced OS directly correlated with oxidant concentration to cell count ratio, and that RBC-derived EVs contained hemoglobin oxidized to hemichrome (HbChr). OS induced caspase-3 activation and band 3 clustering in cells and EVs. Importantly, we showed that OS-induced EV formation is independent of calcium. The presented data indicated that during OS, RBCs eliminated HbChr by vesiculation in order to sacrifice the cell itself, thereby prolonging lifespan and delaying the untimely clearance of in all other respects healthy RBCs.
Collapse
|
14
|
Dotsenko OI, Mykutska IV, Taradina GV, Boiarska ZO. Potential role of cytoplasmic protein binding to erythrocyte membrane in counteracting oxidative and metabolic stress. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The ability of protein to reversibly bind with membrane components is considered to be one of the oldest mechanisms of cell response to external stimuli. Erythrocytes have a well-developed mechanism of an adaptive response involving sorption-desorption processes, e.g. interactions of key glycolytic enzymes and hemoglobin with band 3 protein. A few publications have shown that under oxidative stress, cytoplasmic enzymes such as catalase, glutathione peroxidase and рeroxiredoxin bind to the erythrocyte membrane. The present work is a continuation of research in this direction to determine the causes and consequences of the interaction of cytoplasmic proteins with the membrane under conditions of oxidative stress and different glucose content. Human erythrocytes were incubated for five hours at 20 °C in an oxidizing medium of AscH – 1 · 10–4 M, Cu2+– 5 · 10–6 M with different glucose content (0–8 mM). Dynamic changes in the accumulation of membrane-bound hemoglobin, the distribution of ligand forms of hemoglobin in the cytoplasmic and membrane-bound fractions, the activity of membrane-associated and cytoplasmic forms of Cu/Zn superoxide dismutase (SOD1) and catalase, H2O2 content in extracellular and intracellular media were recorded. It was shown that binding of catalase and SOD1 to the erythrocyte membrane is initiated by oxidative stress and is a physiological function aimed at complete inactivation of extracellular and H2O2 and protection against their entry into the cell. It was shown that under conditions of glucose depletion and oxidative loading, catalase and SOD1 bind to the erythrocyte membrane, leading to inactivation of these enzymes. Membrane-bound hemoglobin was higher in cells incubated under these conditions than in glucose experiments. Glucose introduced into the incubation medium in an amount 4–8 mM causes complete binding of SOD1 to the membrane of erythrocytes, by involving it in the processes of casein kinase stabilization and glycolytic fluxes regulation. With mild oxidation, the amount of hemoglobin bound to the membrane does not change, indicating the presence of certain binding sites for hemoglobin with membrane proteins. We show that the activity of membrane-bound SOD1 along with the content of ligand forms in the composition of membrane-bound hemoglobin are informative indicators of the metabolic and redox state of erythrocytes.
Collapse
|
15
|
Hayden MR. Type 2 Diabetes Mellitus Increases The Risk of Late-Onset Alzheimer's Disease: Ultrastructural Remodeling of the Neurovascular Unit and Diabetic Gliopathy. Brain Sci 2019; 9:brainsci9100262. [PMID: 31569571 PMCID: PMC6826500 DOI: 10.3390/brainsci9100262] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and late-onset Alzheimer’s disease–dementia (LOAD) are increasing in global prevalence and current predictions indicate they will only increase over the coming decades. These increases may be a result of the concurrent increases of obesity and aging. T2DM is associated with cognitive impairments and metabolic factors, which increase the cellular vulnerability to develop an increased risk of age-related LOAD. This review addresses possible mechanisms due to obesity, aging, multiple intersections between T2DM and LOAD and mechanisms for the continuum of progression. Multiple ultrastructural images in female diabetic db/db models are utilized to demonstrate marked cellular remodeling changes of mural and glia cells and provide for the discussion of functional changes in T2DM. Throughout this review multiple endeavors to demonstrate how T2DM increases the vulnerability of the brain’s neurovascular unit (NVU), neuroglia and neurons are presented. Five major intersecting links are considered: i. Aging (chronic age-related diseases); ii. metabolic (hyperglycemia advanced glycation end products and its receptor (AGE/RAGE) interactions and hyperinsulinemia-insulin resistance (a linking linchpin); iii. oxidative stress (reactive oxygen–nitrogen species); iv. inflammation (peripheral macrophage and central brain microglia); v. vascular (macrovascular accelerated atherosclerosis—vascular stiffening and microvascular NVU/neuroglial remodeling) with resulting impaired cerebral blood flow.
Collapse
Affiliation(s)
- Melvin R Hayden
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO 65212, USA.
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
16
|
Chen Z, Tao S, Li X, Zeng X, Zhang M, Yao Q. Anagliptin protects neuronal cells against endogenous amyloid β (Aβ)-induced cytotoxicity and apoptosis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2213-2220. [PMID: 31159590 DOI: 10.1080/21691401.2019.1609979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhenbo Chen
- Department of Neurosurgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Shanwei Tao
- Department of Neurosurgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Xiaohui Li
- Department of Neurosurgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Xudong Zeng
- Department of Neurosurgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Mirong Zhang
- Department of Neurosurgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Qinghe Yao
- Department of Neurosurgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| |
Collapse
|
17
|
Molochkina EM, Treshchenkova YA. The Effect of Alpha-Tocopherol on the Activity of Acetylcholinesterases from Different Sources. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419010161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|