1
|
Zhu Z, Song M, Ren J, Liang L, Mao G, Chen M. Copper homeostasis and cuproptosis in central nervous system diseases. Cell Death Dis 2024; 15:850. [PMID: 39567497 PMCID: PMC11579297 DOI: 10.1038/s41419-024-07206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024]
Abstract
Copper (Cu), an indispensable micronutrient for the sustenance of living organisms, contributes significantly to a vast array of fundamental metabolic processes. The human body maintains a relatively low concentration of copper, which is mostly found in the bones, liver, and brain. Despite its low concentration, Cu plays a crucial role as an indispensable element in the progression and pathogenesis of central nervous system (CNS) diseases. Extensive studies have been conducted in recent years on copper homeostasis and copper-induced cell death in CNS disorders, including glioma, Alzheimer's disease, Amyotrophic lateral sclerosis, Huntington's disease, and stroke. Cuproptosis, a novel copper-induced cell death pathway distinct from apoptosis, necrosis, pyroptosis, and ferroptosis, has been identified as potentially intricately linked to the pathogenic mechanisms underlying various CNS diseases. Therefore, a systematic review of copper homeostasis and cuproptosis and their relationship with CNS disorders could deepen our understanding of the pathogenesis of these diseases. In addition, it may provide new insights and strategies for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Zhipeng Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurosurgery, Shangrao People's Hospital, Shangrao, China
| | - Min Song
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Jianxun Ren
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Lirong Liang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Guohua Mao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Min Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
2
|
Almalki NAR, Sabir JSM, Ibrahim A, Alhosin M, Asseri AH, Albiheyri RS, Zari AT, Bahieldin A, Javed A, Mély Y, Hamiche A, Mousli M, Bronner C. UHRF1 poly-auto-ubiquitination induced by the anti-cancer drug, thymoquinone, is involved in the DNA repair machinery recruitment. Int J Biochem Cell Biol 2024; 171:106582. [PMID: 38649007 DOI: 10.1016/j.biocel.2024.106582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
DNA methylation is one of the most important epigenetic mark involved in many physiologic cellular processes and pathologies. During mitosis, the transmission of DNA methylation patterns from a mother to the daughter cells is ensured through the action of the Ubiquitin-like, containing PHD and RING domains, 1/DNA methyltransferase 1 (UHRF1/DNMT1) tandem. UHRF1 is involved in the silencing of many tumor suppressor genes (TSGs) via mechanisms that remain largely to be deciphered. The present study investigated the role and the regulation of UHRF1 poly-ubiquitination induced by thymoquinone, a natural anti-cancer drug, known to enhance or re-activate the expression of TSGs. We found that the auto-ubiquitination of UHRF1, induced by TQ, is mediated by reactive oxygen species, and occurs following DNA damage. We demonstrated that the poly-ubiquitinated form of UHRF1 is K63-linked and can still silence the tumor suppressor gene p16INK4A/CDKN2A. We further showed that TQ-induced auto-ubiquitination is mediated via the activity of Tip60. Since this latter is known as a nuclear receptor co-factor, we investigated if the glucocorticoid receptor (GR) might be involved in the regulation of UHRF1 ubiquitination. Activation of the GR, with dexamethasone, did not influence auto-ubiquitination of UHRF1. However, we could observe that TQ induced a K48-linked poly-ubiquitination of GR, probably involved in the proteosomal degradation pathway. Mass-spectrometry analysis of FLAG-HA-tagged UHRF1 identified UHRF1 partners involved in DNA repair and showed that TQ increased their association with UHRF1, suggesting that poly-ubiquitination of UHRF1 is involved in the DNA repair process. We propose that poly-ubiquitination of UHRF1 serves as a scaffold to recruit the DNA repair machinery at DNA damage sites.
Collapse
Affiliation(s)
- Naif A R Almalki
- Department of Functional Genomics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR 7104, University of Strasbourg, "équipe labellisée" Ligue contre le Cancer, Illkirch-Graffenstaden 67404, France; Experimental Biochemistry unit, King Fahad medical research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jamal S M Sabir
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulkhaleg Ibrahim
- Department of Functional Genomics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR 7104, University of Strasbourg, "équipe labellisée" Ligue contre le Cancer, Illkirch-Graffenstaden 67404, France; National Research Centre for Tropical and Transboundary Diseases (NRCTTD), Alzentan 99316, Libya
| | - Mahmoud Alhosin
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amer H Asseri
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre for Artificial Intelligence in Precision Medicines, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia
| | - Raed S Albiheyri
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali T Zari
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Bahieldin
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aqib Javed
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Faculty of Pharmacy, Illkirch-Graffenstaden 67401, France
| | - Yves Mély
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Faculty of Pharmacy, Illkirch-Graffenstaden 67401, France
| | - Ali Hamiche
- Department of Functional Genomics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR 7104, University of Strasbourg, "équipe labellisée" Ligue contre le Cancer, Illkirch-Graffenstaden 67404, France; Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marc Mousli
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Faculty of Pharmacy, Illkirch-Graffenstaden 67401, France
| | - Christian Bronner
- Department of Functional Genomics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR 7104, University of Strasbourg, "équipe labellisée" Ligue contre le Cancer, Illkirch-Graffenstaden 67404, France.
| |
Collapse
|
3
|
Li X, Chen X, Gao X. Copper and cuproptosis: new therapeutic approaches for Alzheimer's disease. Front Aging Neurosci 2023; 15:1300405. [PMID: 38178962 PMCID: PMC10766373 DOI: 10.3389/fnagi.2023.1300405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024] Open
Abstract
Copper (Cu) plays a crucial role as a trace element in various physiological processes in humans. Nonetheless, free copper ions accumulate in the brain over time, resulting in a range of pathological changes. Compelling evidence indicates that excessive free copper deposition contributes to cognitive decline in individuals with Alzheimer's disease (AD). Free copper levels in the serum and brain of AD patients are notably elevated, leading to reduced antioxidant defenses and mitochondrial dysfunction. Moreover, free copper accumulation triggers a specific form of cell death, namely copper-dependent cell death (cuproptosis). This article aimed to review the correlation between copper dysregulation and the pathogenesis of AD, along with the primary pathways regulating copper homoeostasis and copper-induced death in AD. Additionally, the efficacy and safety of natural and synthetic agents, including copper chelators, lipid peroxidation inhibitors, and antioxidants, were examined. These treatments can restore copper equilibrium and prevent copper-induced cell death in AD cases. Another aim of this review was to highlight the significance of copper dysregulation and promote the development of pharmaceutical interventions to address it.
Collapse
Affiliation(s)
- Xiao Li
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinwang Chen
- College of Acupuncture-Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Acupuncture Clinic of the Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiyan Gao
- College of Acupuncture-Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Acupuncture Clinic of the Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Hosseini MJ, Arabiyan A, Mobassem S, Ghavimi H. Metformin attenuates depressive-like behaviour of methamphetamine withdrawal in mice: A mechanistic approach. World J Biol Psychiatry 2023; 24:209-222. [PMID: 35673936 DOI: 10.1080/15622975.2022.2086294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Methamphetamine (METH) as a potent psychostimulant drug with a high potency of dependence rate that results in neurotoxicity has become a major drug of abuse in many parts of the world. Unfortunately, there is limited evidence regarding treatment of METH withdrawal syndrome. Therefore, we aimed to investigate whether metformin mitigate the methamphetamine (METH) withdrawal syndrome in male mice. Based on the literature, depression and anxiety are the major METH withdrawal symptoms. METHODS Here, METH (2 mg/kg) was administered to mice twice a day for 14 constitutive days to induce animal model of METH-induced withdrawal syndrome. To do this, mice in control group and those with METH withdrawal syndrome were divided into treatment (receiving metformin in 3 doses of 50, 100 and 200 mg/kg for 10 days) and non-treatment sub-groups. Following the behavioural test, the animals were sacrificed; their hippocampus was dissected to measure oxidative stress parameters and expression of cellular energy homeostasis and immune-inflammatory genes. RESULTS Our data revealed that metformin provoked antidepressant effects in behavioural tests through AMPK overexpression as an important mitochondrial energetic sensor and inhibition of Tlr4 overexpression in the immune system gene expression. In addition, metformin was able to improve oxidative stress biomarkers and neuronal damage in the hippocampus and restore cellular energy homeostasis and immune system gene expression. CONCLUSIONS The data suggested that metformin can influence the hippocampus through targeting mitochondria and their performance, and consequently, neuroinflammation responses and brain metabolic changes. It is supposed to be a new therapeutic option in clinical trials of depression and anxiety following METH withdrawal treatment.
Collapse
Affiliation(s)
- Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Aisan Arabiyan
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sina Mobassem
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Ghavimi
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
5
|
Chen LL, Fan YG, Zhao LX, Zhang Q, Wang ZY. The metal ion hypothesis of Alzheimer's disease and the anti-neuroinflammatory effect of metal chelators. Bioorg Chem 2023; 131:106301. [PMID: 36455485 DOI: 10.1016/j.bioorg.2022.106301] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/13/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD), characterized by the β-amyloid protein (Aβ) deposition and tau hyperphosphorylation, is the most common dementia with uncertain etiology. The clinical trials of Aβ monoclonal antibody drugs have almost failed, giving rise to great attention on the other etiologic hypothesis regarding AD such as metal ions dysmetabolism and chronic neuroinflammation. Mounting evidence revealed that the metal ions (iron, copper, and zinc) were dysregulated in the susceptible brain regions of AD patients, which was highly associated with Aβ deposition, tau hyperphosphorylation, neuronal loss, as well as neuroinflammation. Further studies uncovered that iron, copper and zinc could not only enhance the production of Aβ but also directly bind to Aβ and tau to promote their aggregations. In addition, the accumulation of iron and copper could respectively promote ferroptosis and cuproptosis. Therefore, the metal ion chelators were recognized as promising agents for treating AD. This review comprehensively summarized the effects of metal ions on the Aβ dynamics and tau phosphorylation in the progression of AD. Furthermore, taking chronic neuroinflammation contributes to the progression of AD, we also provided a summary of the mechanisms concerning metal ions on neuroinflammation and highlighted the metal ion chelators may be potential agents to alleviate neuroinflammation under the condition of AD. Nevertheless, more investigations regarding metal ions on neuroinflammation should be taken into practice, and the effects of metal ion chelators on neuroinflammation should gain more attention. Running title: Metal chelators against neuroinflammation.
Collapse
Affiliation(s)
- Li-Lin Chen
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Qi Zhang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
6
|
Ambi A, Stanisavljevic A, Victor TW, Lowery AW, Davis J, Van Nostrand WE, Miller LM. Evaluation of Copper Chelation Therapy in a Transgenic Rat Model of Cerebral Amyloid Angiopathy. ACS Chem Neurosci 2023; 14:378-388. [PMID: 36651175 DOI: 10.1021/acschemneuro.2c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the accumulation of the amyloid β (Aβ) protein in blood vessels and leads to hemorrhages, strokes, and dementia in elderly individuals. Recent reports have shown elevated copper levels colocalized with vascular amyloid in human CAA and Alzheimer's disease patients, which have been suggested to contribute to cytotoxicity through the formation of reactive oxygen species. Here, we treated a transgenic rat model of CAA (rTg-DI) with the copper-specific chelator, tetrathiomolybdate (TTM), via intraperitoneal (IP) administration for 6 months to determine if it could lower copper content in vascular amyloid deposits and modify CAA pathology. Results showed that TTM treatment led to elevated Aβ load in the hippocampus of the rTg-DI rats and increased microbleeds in the wild type (WT) animals. X-ray fluorescence microscopy was performed to image the distribution of copper and revealed a surprising increase in copper colocalized with Aβ aggregates in TTM-treated rTg-DI rats. Unexpectedly, we also found an increase in the copper content in unaffected vessels of both rTg-DI and WT animals. These results show that IP administration of TTM was ineffective in removing copper from vascular Aβ aggregates in vivo and increased the development of disease pathology in CAA.
Collapse
Affiliation(s)
- Ashwin Ambi
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States.,National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Aleksandra Stanisavljevic
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island 02881, United States.,Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Tiffany W Victor
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Adam W Lowery
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States.,Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Judianne Davis
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island 02881, United States.,Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - William E Van Nostrand
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island 02881, United States.,Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Lisa M Miller
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States.,National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
7
|
He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW, Li B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther 2021; 6:425. [PMID: 34916492 PMCID: PMC8677728 DOI: 10.1038/s41392-021-00828-5] [Citation(s) in RCA: 567] [Impact Index Per Article: 141.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway plays a crucial role in various cellular processes and is aberrantly activated in cancers, contributing to the occurrence and progression of tumors. Examining the upstream and downstream nodes of this pathway could allow full elucidation of its function. Based on accumulating evidence, strategies targeting major components of the pathway might provide new insights for cancer drug discovery. Researchers have explored the use of some inhibitors targeting this pathway to block survival pathways. However, because oncogenic PI3K pathway activation occurs through various mechanisms, the clinical efficacies of these inhibitors are limited. Moreover, pathway activation is accompanied by the development of therapeutic resistance. Therefore, strategies involving pathway inhibitors and other cancer treatments in combination might solve the therapeutic dilemma. In this review, we discuss the roles of the PI3K/Akt pathway in various cancer phenotypes, review the current statuses of different PI3K/Akt inhibitors, and introduce combination therapies consisting of signaling inhibitors and conventional cancer therapies. The information presented herein suggests that cascading inhibitors of the PI3K/Akt signaling pathway, either alone or in combination with other therapies, are the most effective treatment strategy for cancer.
Collapse
Affiliation(s)
- Yan He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Miao Miao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Tumor Pathology, Zhengzhou, China
| | - Guo Geng Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jing Yang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Kui Sheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Tumor Pathology, Zhengzhou, China.
| | - Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
8
|
Yin Y, Peng J, Zhou J, Chen H, Peng D, Li D, Gan Y, Yin G, Tang Y. Tetrathiomolybdate Partially Alleviates Erectile Dysfunction of Type 1 Diabetic Rats Through Affecting Ceruloplasmin/eNOS and Inhibiting Corporal Fibrosis and Systemic Inflammation. Sex Med 2021; 10:100455. [PMID: 34818604 PMCID: PMC8847815 DOI: 10.1016/j.esxm.2021.100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Patients with erectile dysfunction induced by diabetes mellitus (DMED) show a poor effect rate for oral phosphodiesterase type 5 inhibitors (PDE5is). Therefore, the new therapeutic strategy is necessary in patients with DMED. AIM To investigate whether Tetrathiomolybdate (TM) supplementation could ameliorate DMED by activation of eNOS. METHODS Twenty-four diabetic rats were induced by intraperitoneal injection of streptozotocin (STZ) and the other 6 normal rats constituted the control group. Eight weeks later, the erectile function of rats was assessed with an apomorphine test. Only some rats with DMED were treated with TM orally every day for 4 weeks; the other rats remained in the same condition for 4 weeks. After 1 week washout, the erectile function of rats in each group was evaluated. Then, the serum concentration of IL-6 and histologic changes of corpus cavernosum were measured. MAIN OUTCOME MEASURE Erectile function was measured after DMED rats treated with TM. The cavernosum level of Ceruloplasmin (Cp), eNOS, endothelial cell content, corporal fibrosis, apoptosis rate and the serum level of IL-6 were also assayed. RESULTS Erectile function in the DMED group was significantly impaired compared with the control group and was partly, but significantly, improved in the DMED+TM group. The DMED group showed upregulation of Cp and inhibition of eNOS, but the inhibition was partly reversed in the DMED+TM group. The DMED group showed serious corporal fibrosis. However, TM supplementation partly increased the ratio of smooth muscle to collagen, decreased the ratio of apoptosis. What's more, gavage administration of TM profoundly decreased the serum level of IL-6 in DMED rats. CONCLUSION TM supplementation inhibits endothelial dysfunction, corporal fibrosis, and systemic inflammation, ultimately leading to partial improvement of DMED in rats. Yin Y, Peng J, Zhou J, et al., Tetrathiomolybdate Partially Alleviates Erectile Dysfunction of Type 1 Diabetic Rats Through Affecting Ceruloplasmin/eNOS and Inhibiting Corporal Fibrosis and Systemic Inflammation. Sex Med 2021;XX:XXXXXX.
Collapse
Affiliation(s)
- Yinghao Yin
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jingxuan Peng
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jun Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hanfei Chen
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dongyi Peng
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dongjie Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, China; Xiangya International Medical Center, Department of Geriatric Urology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Guangming Yin
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| |
Collapse
|
9
|
Redox-Active Metal Ions and Amyloid-Degrading Enzymes in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22147697. [PMID: 34299316 PMCID: PMC8307724 DOI: 10.3390/ijms22147697] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Redox-active metal ions, Cu(I/II) and Fe(II/III), are essential biological molecules for the normal functioning of the brain, including oxidative metabolism, synaptic plasticity, myelination, and generation of neurotransmitters. Dyshomeostasis of these redox-active metal ions in the brain could cause Alzheimer’s disease (AD). Thus, regulating the levels of Cu(I/II) and Fe(II/III) is necessary for normal brain function. To control the amounts of metal ions in the brain and understand the involvement of Cu(I/II) and Fe(II/III) in the pathogenesis of AD, many chemical agents have been developed. In addition, since toxic aggregates of amyloid-β (Aβ) have been proposed as one of the major causes of the disease, the mechanism of clearing Aβ is also required to be investigated to reveal the etiology of AD clearly. Multiple metalloenzymes (e.g., neprilysin, insulin-degrading enzyme, and ADAM10) have been reported to have an important role in the degradation of Aβ in the brain. These amyloid degrading enzymes (ADE) could interact with redox-active metal ions and affect the pathogenesis of AD. In this review, we introduce and summarize the roles, distributions, and transportations of Cu(I/II) and Fe(II/III), along with previously invented chelators, and the structures and functions of ADE in the brain, as well as their interrelationships.
Collapse
|
10
|
Malosio ML, Tecchio F, Squitti R. Molecular mechanisms underlying copper function and toxicity in neurons and their possible therapeutic exploitation for Alzheimer's disease. Aging Clin Exp Res 2021; 33:2027-2030. [PMID: 31965480 DOI: 10.1007/s40520-019-01463-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
|
11
|
Zhang X, Zhang X, Zhong M, Zhao P, Guo C, Li Y, Xu H, Wang T, Gao H. A Novel Cu(II)-Binding Peptide Identified by Phage Display Inhibits Cu 2+-Mediated Aβ Aggregation. Int J Mol Sci 2021; 22:6842. [PMID: 34202166 PMCID: PMC8269028 DOI: 10.3390/ijms22136842] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/23/2021] [Indexed: 01/19/2023] Open
Abstract
Copper (Cu) has been implicated in the progression of Alzheimer's disease (AD), and aggregation of Cu and amyloid β peptide (Aβ) are considered key pathological features of AD. Metal chelators are considered to be potential therapeutic agents for AD because of their capacity to reduce metal ion-induced Aβ aggregation through the regulation of metal ion distribution. Here, we used phage display technology to screen, synthesize, and evaluate a novel Cu(II)-binding peptide that specifically blocked Cu-triggered Aβ aggregation. The Cu(II)-binding peptide (S-A-Q-I-A-P-H, PCu) identified from the phage display heptapeptide library was used to explore the mechanism of PCu inhibition of Cu2+-mediated Aβ aggregation and Aβ production. In vitro experiments revealed that PCu directly inhibited Cu2+-mediated Aβ aggregation and regulated copper levels to reduce biological toxicity. Furthermore, PCu reduced the production of Aβ by inhibiting Cu2+-induced BACE1 expression and improving Cu(II)-mediated cell oxidative damage. Cell culture experiments further demonstrated that PCu had relatively low toxicity. This Cu(II)-binding peptide that we have identified using phage display technology provides a potential therapeutic approach to prevent or treat AD.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiancheng Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Manli Zhong
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
| | - Pu Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
| | - You Li
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
| | - He Xu
- Department of Histology and Embryology, School of Medicine, Shenzhen University, Shenzhen 518060, China;
| | - Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
| | - Huiling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
| |
Collapse
|
12
|
Zhang P, Southey BR, Sweedler JV, Pradhan A, Rodriguez-Zas SL. Enhanced Understanding of Molecular Interactions and Function Underlying Pain Processes Through Networks of Transcript Isoforms, Genes, and Gene Families. Adv Appl Bioinform Chem 2021; 14:49-69. [PMID: 33633454 PMCID: PMC7901473 DOI: 10.2147/aabc.s284986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/05/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Molecular networks based on the abundance of mRNA at the gene level and pathway networks that relate families or groups of paralog genes have supported the understanding of interactions between molecules. However, multiple molecular mechanisms underlying health and behavior, such as pain signal processing, are modulated by the abundances of the transcript isoforms that originate from alternative splicing, in addition to gene abundances. Alternative splice variants of growth factors, ion channels, and G-protein-coupled receptors can code for proteoforms that can have different effects on pain and nociception. Therefore, networks inferred using abundance from more agglomerative molecular units (eg, gene family, or gene) have limitations in capturing interactions at a more granular level (eg, gene, or transcript isoform, respectively) do not account for changes in the abundance at the transcript isoform level. Objective The objective of this study was to evaluate the relative benefits of network inference using abundance patterns at various aggregate levels. Methods Sparse networks were inferred using Gaussian Markov random fields and a novel aggregation criterion was used to aggregate network edges. The relative advantages of network aggregation were evaluated on two molecular systems that have different dimensions and connectivity, circadian rhythm and Toll-like receptor pathways, using RNA-sequencing data from mice representing two pain level groups, opioid-induced hyperalgesia and control, and two central nervous system regions, the nucleus accumbens and the trigeminal ganglia. Results The inferred networks were benchmarked against the Kyoto Encyclopedia of Genes and Genomes reference pathways using multiple criteria. Networks inferred using more granular information performed better than networks inferred using more aggregate information. The advantage of granular inference varied with the pathway and data set used. Discussion The differences in inferred network structure between data sets highlight the differences in OIH effect between central nervous system regions. Our findings suggest that inference of networks using alternative splicing variants can offer complementary insights into the relationship between genes and gene paralog groups.
Collapse
Affiliation(s)
- Pan Zhang
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Amynah Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Sandra L Rodriguez-Zas
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
13
|
Rieber M. Cancer Pro-oxidant Therapy Through Copper Redox Cycling: Repurposing Disulfiram and Tetrathiomolybdate. Curr Pharm Des 2020; 26:4461-4466. [DOI: 10.2174/1381612826666200628022113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
Background:
Copper (Cu) is a transition metal active in Fenton redox cycling from reduced Cu+ and
H2O2, to oxidized Cu2+ and the hydroxyl radical (·OH) highly reactive oxygen species (ROS). At homeostatic Cu
levels, ROS promote cell proliferation, migration, angiogenesis, and wound repair. To limit ROS toxicity, cells
use Cu-dependent chaperone proteins, Cu-binding ceruloplasmin, and Cu-modulated enzymes like superoxide
dismutases (SOD) like SOD1 and SOD3 to scavenge excess superoxide anions which favour Cu+ reduction, and
mitochondrial cytochrome c oxidase, important in aerobic energy production. Because Cu helps drive tumor cell
proliferation by promoting growth factor-independent receptor tyrosine kinase signaling, and Cu-dependent
MEK1 involved in oncogenic BRAF-V600E signaling, further augmenting bioavailable Cu may promote ROS overproduction,
cancer progression and eventually tumor cell death. For these reasons, the following clinically approved
copper chelators are being repurposed as anti-cancer agents: a) ammonium tetrathiomolybdate (TTM)
used to treat Wilson’s disease (copper overload) and Menkes disease (copper deficiency); b) Disulfiram (DSF),
used against alcoholism, since it inhibits Aldehyde Dehydrogenase (ALDH1) enzyme, important in ethanol detoxification,
and a key target against cancer stem cells. Moreover, TTM and DSF are also relevant in cancer clinical
trials, because they increase the uptake of both Cu and Platinum (Pt)-containing anti-cancer drugs, since Pt
and Cu share the same CTR1 copper transporter.
Purpose:
The majority of reports on Cu chelators dealt separately with either TTM, DSF or others. Here, we
compare in parallel, the anti-cancer efficacy of low doses of TTM and DSF, asking whether they can be synergistic
or antagonistic. The relevance of their unequal ROS inducing abilities and their different behavior as ionophores
is also addressed.
Significance:
The potential of Cu chelators as repurposed anti-cancer drugs, should be greater in patients with
higher endogenous Cu levels. Since platinum and Cu share uptake receptors, the synergism by drugs containing
these metals should not be under-estimated. The potential of disulfiram or its metabolically active Cu-containing
form, to inhibit ALDH1-positive tumor cells is therapeutically very important.
Collapse
Affiliation(s)
- Manuel Rieber
- IVIC, Cancer Cell Biology Laboratory, CMBC, Caracas 1020A, Venezuela
| |
Collapse
|
14
|
Mendonça BP, Cardoso JDS, Michels M, Vieira AC, Wendhausen D, Manfredini A, Singer M, Dal-Pizzol F, Dyson A. Neuroprotective effects of ammonium tetrathiomolybdate, a slow-release sulfide donor, in a rodent model of regional stroke. Intensive Care Med Exp 2020; 8:13. [PMID: 32274608 PMCID: PMC7145883 DOI: 10.1186/s40635-020-00300-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/23/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Several therapeutic strategies to rescue the brain from ischemic injury have improved outcomes after stroke; however, there is no treatment as yet for reperfusion injury, the secondary damage caused by necessary revascularization. Recently we characterized ammonium tetrathiomolybdate (ATTM), a drug used as a copper chelator over many decades in humans, as a new class of sulfide donor that shows efficacy in preclinical injury models. We hypothesized that ATTM could confer neuroprotection in a relevant rodent model of regional stroke. METHODS AND RESULTS Brain ischemia was induced by transient (90-min) middle cerebral artery occlusion (tMCAO) in anesthetized Wistar rats. To mimic a clinical scenario, ATTM (or saline) was administered intravenously just prior to reperfusion. At 24 h or 7 days post-reperfusion, rats were assessed using functional (rotarod test, spontaneous locomotor activity), histological (infarct size), and molecular (anti-oxidant enzyme capacity, oxidative damage, and inflammation) outcome measurements. ATTM-treated animals showed improved functional activity at both 24 h and 7-days post-reperfusion, in parallel with a significant reduction in infarct size. These effects were additionally associated with increased brain antioxidant enzyme capacity, decreased oxidative damage, and a late (7-day) effect on pro-inflammatory cytokine levels and nitric oxide products. CONCLUSION ATTM confers significant neuroprotection that, along with its known safety profile in humans, provides encouragement for its development as a novel adjunct therapy for revascularization following stroke.
Collapse
Affiliation(s)
- Bruna Pescador Mendonça
- Laboratory of Experimental Pathophysiology, University of Southern Santa Catarina, Criciúma, Brazil
| | | | - Monique Michels
- Laboratory of Experimental Pathophysiology, University of Southern Santa Catarina, Criciúma, Brazil
| | - Ana Carolina Vieira
- Laboratory of Experimental Pathophysiology, University of Southern Santa Catarina, Criciúma, Brazil
| | - Diogo Wendhausen
- Laboratory of Experimental Pathophysiology, University of Southern Santa Catarina, Criciúma, Brazil
| | - Andressa Manfredini
- Laboratory of Experimental Pathophysiology, University of Southern Santa Catarina, Criciúma, Brazil
| | - Mervyn Singer
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, Gower St, London, WC1E 6BT, UK
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, University of Southern Santa Catarina, Criciúma, Brazil
| | - Alex Dyson
- Laboratory of Experimental Pathophysiology, University of Southern Santa Catarina, Criciúma, Brazil. .,Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, Gower St, London, WC1E 6BT, UK.
| |
Collapse
|
15
|
Zhu X, Victor TW, Ambi A, Sullivan JK, Hatfield J, Xu F, Miller LM, Van Nostrand WE. Copper accumulation and the effect of chelation treatment on cerebral amyloid angiopathy compared to parenchymal amyloid plaques. Metallomics 2020; 12:539-546. [PMID: 32104807 DOI: 10.1039/c9mt00306a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Accumulation of fibrillar amyloid β-protein (Aβ) in parenchymal plaques and in blood vessels of the brain, the latter condition known as cerebral amyloid angiopathy (CAA), are hallmark pathologies of Alzheimer's disease (AD) and related disorders. Cerebral amyloid deposits have been reported to accumulate various metals, most notably copper and zinc. Here we show that, in human AD, copper is preferentially accumulated in amyloid-containing brain blood vessels compared to parenchymal amyloid plaques. In light of this observation, we evaluated the effects of reducing copper levels in Tg2576 mice, a transgenic model of AD amyloid pathologies. The copper chelator, tetrathiomolybdate (TTM), was administered to twelve month old Tg2576 mice for a period of five months. Copper chelation treatment significantly reduced both CAA and parenchymal plaque load in Tg2576 mice. Further, copper chelation reduced parenchymal plaque copper content but had no effect on CAA copper levels in this model. These findings indicate that copper is associated with both CAA deposits and parenchymal amyloid plaques in humans, but less in Tg2576 mice. TTM only reduces copper levels in plaques in Tg2576 mice. Reducing copper levels in the brain may beneficially lower amyloid pathologies associated with AD.
Collapse
Affiliation(s)
- Xiayoue Zhu
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hou Y, Zhang Y, Mi Y, Wang J, Zhang H, Xu J, Yang Y, Liu J, Ding L, Yang J, Chen G, Wu C. A Novel Quinolyl‐Substituted Analogue of Resveratrol Inhibits LPS‐Induced Inflammatory Responses in Microglial Cells by Blocking the NF‐κB/MAPK Signaling Pathways. Mol Nutr Food Res 2019; 63:e1801380. [DOI: 10.1002/mnfr.201801380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 07/13/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Yue Hou
- College of Life and Health SciencesNortheastern University Shenyang 110169 P. R. China
- Key Laboratory of Data Analytics and Optimization for Smart IndustryNortheastern University, Ministry of Education Shenyang 110169 P. R. China
| | - Yuchen Zhang
- Department of PharmacologyShenyang Pharmaceutical University Shenyang 110016 P. R. China
| | - Yan Mi
- College of Life and Health SciencesNortheastern University Shenyang 110169 P. R. China
- Key Laboratory of Data Analytics and Optimization for Smart IndustryNortheastern University, Ministry of Education Shenyang 110169 P. R. China
| | - Jian Wang
- Key Laboratory of Structure‐Based Drugs Design and Discovery of Ministry of EducationShenyang Pharmaceutical University Shenyang 110016 P. R. China
| | - Haotian Zhang
- Department of PharmacologyShenyang Pharmaceutical University Shenyang 110016 P. R. China
| | - Jikai Xu
- College of Life and Health SciencesNortheastern University Shenyang 110169 P. R. China
- Key Laboratory of Data Analytics and Optimization for Smart IndustryNortheastern University, Ministry of Education Shenyang 110169 P. R. China
| | - Yanqiu Yang
- College of Life and Health SciencesNortheastern University Shenyang 110169 P. R. China
| | - Jingyu Liu
- College of Life and Health SciencesNortheastern University Shenyang 110169 P. R. China
| | - Lingling Ding
- Department of PharmacologyShenyang Pharmaceutical University Shenyang 110016 P. R. China
| | - Jingyu Yang
- Department of PharmacologyShenyang Pharmaceutical University Shenyang 110016 P. R. China
| | - Guoliang Chen
- Key Laboratory of Structure‐Based Drugs Design and Discovery of Ministry of EducationShenyang Pharmaceutical University Shenyang 110016 P. R. China
| | - Chunfu Wu
- Department of PharmacologyShenyang Pharmaceutical University Shenyang 110016 P. R. China
| |
Collapse
|
17
|
Yu G, Qian L, Yu J, Tang M, Wang C, Zhou Y, Geng X, Zhu C, Yang Y, Pan Y, Shen X, Tang Z. Brucine alleviates neuropathic pain in mice via reducing the current of the sodium channel. JOURNAL OF ETHNOPHARMACOLOGY 2019; 233:56-63. [PMID: 30599222 DOI: 10.1016/j.jep.2018.12.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Strychnos nux-vomica L. (Loganiaceae) is grown extensively in South Asian. The dried seed of this plant, nux vomica, has been clinically used in Chinese medicine for relieving rheumatic pain, reducing swelling and treating cancer. Brucine, the second abundant alkaloid constituent of nux vomica, shows excellent clinical therapeutic effect, especially in relieving pain, but mechanism of brucine in relieving pain is still unclear. AIM OF THE STUDY Explore the analgesic effect of brucine, reveal the molecular mechanism of brucine analgesia. MATERIALS AND METHODS Antinociceptive effects of brucine were assessed in acute and chronic pain mice model. Electrophysiological experiments were used to evaluate the effects of brucine on neuronal activity and sodium channel function. RESULTS In acute pain models, brucine significantly inhibits response induced by nociceptive heat and mechanical stimulation. Furthermore, thermal hypersensitivity and mechanical allodynia were also alleviated by brucine treatment in a chronic constriction injury (CCI) mouse model. Sodium channel plays a crucial role in neuropathic pain. Electrophysiological results show that brucine inhibits the excitability of DRG neurons directly, the number of action potential (AP) was significantly reduced after brucine treatment, and this kind of inhibition is due to brucine inhibits both tetrodotoxin-sensitive (TTXs) and tetrodotoxin-resistant (TTXr) sodium channel. CONCLUSIONS Taken together, brucine is a novel drug candidate in treating acute and chronic pain diseases, which might be attributed to inhibition the excitability of sodium channel directly.
Collapse
Affiliation(s)
- Guang Yu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023 Jiangsu, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, Nanjing University of Chinese Medicine, 138 Xian in Rd, Nanjing, 210023 Jiangsu, China; State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China; Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Linnan Qian
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023 Jiangsu, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, Nanjing University of Chinese Medicine, 138 Xian in Rd, Nanjing, 210023 Jiangsu, China.
| | - Juanjuan Yu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023 Jiangsu, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, Nanjing University of Chinese Medicine, 138 Xian in Rd, Nanjing, 210023 Jiangsu, China.
| | - Min Tang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023 Jiangsu, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, Nanjing University of Chinese Medicine, 138 Xian in Rd, Nanjing, 210023 Jiangsu, China.
| | - Changming Wang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023 Jiangsu, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, Nanjing University of Chinese Medicine, 138 Xian in Rd, Nanjing, 210023 Jiangsu, China.
| | - Yuan Zhou
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023 Jiangsu, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, Nanjing University of Chinese Medicine, 138 Xian in Rd, Nanjing, 210023 Jiangsu, China.
| | - Xiao Geng
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023 Jiangsu, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, Nanjing University of Chinese Medicine, 138 Xian in Rd, Nanjing, 210023 Jiangsu, China.
| | - Chan Zhu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023 Jiangsu, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, Nanjing University of Chinese Medicine, 138 Xian in Rd, Nanjing, 210023 Jiangsu, China.
| | - Yan Yang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023 Jiangsu, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, Nanjing University of Chinese Medicine, 138 Xian in Rd, Nanjing, 210023 Jiangsu, China.
| | - Yang Pan
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, Nanjing University of Chinese Medicine, 138 Xian in Rd, Nanjing, 210023 Jiangsu, China.
| | - Xu Shen
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023 Jiangsu, China; State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China; Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zongxiang Tang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023 Jiangsu, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, Nanjing University of Chinese Medicine, 138 Xian in Rd, Nanjing, 210023 Jiangsu, China; State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China; Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
18
|
Li M, Zhang D, Ge X, Zhu X, Zhou Y, Zhang Y, Peng X, Shen A. TRAF6-p38/JNK-ATF2 axis promotes microglial inflammatory activation. Exp Cell Res 2019; 376:133-148. [PMID: 30763583 DOI: 10.1016/j.yexcr.2019.02.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/02/2019] [Accepted: 02/09/2019] [Indexed: 12/18/2022]
Abstract
Activating transcription factor 2 (ATF2), a member of the alkaline-leucine zipper family, is widely expressed in various tissues, and reportedly involved in inflammatory responses to various irritates, but its role in the central nervous system (CNS) remains unclear. This study aimed to investigate the expression and biological function of ATF2 in CNS inflammation. Utilizing the LPS-induced neuroinflammation model on mice, we first found ATF2 up-regulation and its co-localization with microglia in inflamed mice brain. In vitro, we revealed an increased expression, phosphorylation, and nuclear accumulation of ATF2 in LPS-treated BV2 microglia cells. Inhibiting ATF2 significantly decreased the expression of pro-inflammatory factors in LPS-treated microglia, and alleviated neuronal apoptosis induced by the conditioned medium of activated microglia. Knocking down TRAF6, an important adaptor of the TLR4/MAPK/NF-κB signaling pathway, suppressed the LPS-induced ATF2 expression and phosphorylation, accompanied by the decreased p38/JNK phosphorylation, in microglia. Blocking p38 or JNK signaling pathway by the specific inhibitors reversed the TRAF6-overexpression mediated ATF2 activation. Taken together, our data first proved the pro-inflammatory function of ATF2 in microglia, and suggested that the TRAF6-JNK/p38-ATF2 axis might promote microglial inflammatory activation and thus aggravate neuronal injury in brain, which might become a potential therapeutic target for CNS diseases.
Collapse
Affiliation(s)
- Mengmeng Li
- Clinical Medicine Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Jiangsu Key Laboratory of Neurogeneration, Nantong University, Nantong 226001, People's Republic of China
| | - Dongmei Zhang
- Clinical Medicine Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Xin Ge
- Clinical Medicine Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Jiangsu Key Laboratory of Neurogeneration, Nantong University, Nantong 226001, People's Republic of China
| | - Xiangyang Zhu
- Neurology Department, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Yong Zhou
- Neurology Department, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Yi Zhang
- Neurosurgery Department, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Xiao Peng
- Clinical Medicine Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Aiguo Shen
- Clinical Medicine Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Jiangsu Key Laboratory of Neurogeneration, Nantong University, Nantong 226001, People's Republic of China; Cancer Research Center of Nantong, Tumor Hospital Affiliated to Nantong University, Nantong 226361, People's Republic of China.
| |
Collapse
|
19
|
Xie XL, Zhou WT, Zhang KK, Chen LJ, Wang Q. METH-Induced Neurotoxicity Is Alleviated by Lactulose Pretreatment Through Suppressing Oxidative Stress and Neuroinflammation in Rat Striatum. Front Neurosci 2018; 12:802. [PMID: 30450033 PMCID: PMC6224488 DOI: 10.3389/fnins.2018.00802] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/15/2018] [Indexed: 11/13/2022] Open
Abstract
Abuse of methamphetamine (METH) results in neurological and psychiatric abnormalities. Lactulose is a poorly absorbed derivative of lactose and can effectively alleviate METH-induced neurotoxicity in rats. The present study was designed to investigate the effects of lactulose on METH-induced neurotoxicity. Rats received METH (15 mg/kg, 8 intraperitoneal injections, 12-h interval) or saline and received lactulose (5.3 g/kg, oral gavage, 12-h interval) or vehicle 2 days prior to the METH administration. Reactive oxygen species (ROS) and malondialdehyde (MDA) were measured. Protein levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), tumor necrosis factor receptor associated factor 6 (TRAF6), nuclear factor κB (NFκB), interleukin (IL)-1β, IL-6, TNF-α, cleaved caspase 3, and poly(ADP-ribose) polymerase-1 (PARP-1) were determined by western blotting. mRNA expressions of nuclear factor erythroid 2-relatted factor-2 (Nrf2), p62, and heme oxygenase-1 (HO-1) were assessed by RT-qPCR. The lactulose pretreatment decreased METH-induced cytoplasmic damage in rat livers according to histopathological observation. Compared to the control group, overproduction of ROS and MDA were observed in rat striatums in the METH alone-treated group, while the lactulose pretreatment significantly attenuated the METH-induced up-regulation of oxidative stress. The lactulose pretreatment significantly repressed over-expressions of proteins of TLR4, MyD88, TRAF6, NFκB, IL-1β, IL-6, TNF-α, cleaved caspase 3, PARP-1. The lactulose pretreatment increased mRNA expressions of Nrf2, p62, and HO-1. These findings suggest that lactulose pretreatment can alleviate METH-induced neurotoxicity through suppressing neuroinflammation and oxidative stress, which might be attributed to the activation of the Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, China
| | - Wen-Tao Zhou
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, China
| | - Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Jian Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Jiao FZ, Wang Y, Zhang HY, Zhang WB, Wang LW, Gong ZJ. Histone Deacetylase 2 Inhibitor CAY10683 Alleviates Lipopolysaccharide Induced Neuroinflammation Through Attenuating TLR4/NF-κB Signaling Pathway. Neurochem Res 2018; 43:1161-1170. [PMID: 29675728 DOI: 10.1007/s11064-018-2532-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/26/2018] [Accepted: 04/16/2018] [Indexed: 02/08/2023]
Abstract
Neuroinflammation involves in the progression of many central nervous system diseases. Several studies have shown that histone deacetylase (HDAC) inhibitors modulated inflammatory responses in lipopolysaccharide (LPS) stimulated microglia. While, the mechanism is still unclear. The aim of present study was to investigate the effect of HDAC2 inhibitor CAY10683 on inflammatory responses and TLR4/NF-κB signaling pathways in LPS activated BV2 microglial cells and LPS induced mice neuroinflammation. The effect of CAY10683 on cell viability of BV2 microglial cells was detected by CCK-8 assay. The expressions of inflammatory cytokines were analyzed by western blotting and RT-PCR respectively. The TLR4 protein expression was measured by western blotting, immunofluorescence, immunohistochemistry respectively. The protein expressions of MYD88, phospho-NF-κB p65, NF-κB-p65, acetyl-H3 (AH3), H3, and HDAC2 were analyzed by western blotting. We found that CAY10683 could inhibit expression levels of inflammatory cytokine TNF-α and IL-1β in LPS activated BV2 microglial cells and LPS induced mice neuroinflammation. It could induce TLR4, MYD88, phospho-NF-κB p65, and HDAC2 expressions. Moreover, CAY10683 increased the acetylation of histones H3 in LPS activated BV2 microglial cells and LPS induced mice neuroinflammation. Taken together, our findings suggested that HDAC2 inhibitor CAY10683 could suppress neuroinflammatory responses and TLR4/NF-κB signaling pathways by acetylation after LPS stimulation.
Collapse
Affiliation(s)
- Fang-Zhou Jiao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hai-Yue Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wen-Bin Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lu-Wen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zuo-Jiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|