1
|
Chen IH, Lin LF, Lin CJ, Wang CY, Hu CC, Lee SC. Effect of fear of falling on turning performance among patients with chronic stroke. Gait Posture 2024; 113:145-150. [PMID: 38901386 DOI: 10.1016/j.gaitpost.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Turning difficulties have been reported in stroke persons, but studies have indicated that fall history might not significantly affect turning performance. Fear of falling (FOF) is common after a fall, although it can occur in individuals without a fall history. RESEARCH QUESTION Could FOF have an impact on turning performance among chronic stroke patients? METHODS This cross-sectional study recruited 97 stroke persons. They were instructed to perform 180° and 360° turns, and their performance was represented by angular velocity. FOF was evaluated using the Falls Efficacy Scale-International (FES-I). Falls that occurred 12 months prior to the study assessment were recorded. RESULTS A higher FES-I score was significantly correlated with a decline in angular velocity in all turning tasks after adjustment for demographic data. The correlation remained significant after controlling for falls history. Participants with a high level of FOF exhibited significantly slower angular velocities during all turning tasks compared with those with a low level of FOF. Participants with a moderate level of FOF had a significantly slower angular velocity than did those with a low level of FOF during the 360° turn to the paretic side only. SIGNIFICANCE A higher level of FOF, regardless of fall history, was significantly associated with a reduced angular velocity during turning. A high level of FOF affected turning performance in all tasks. Turning performance may not be affected by fall experience. Anxiety about falling may have a greater effect on turning performance than does fall history.
Collapse
Affiliation(s)
- I-Hsuan Chen
- Department of Physical Therapy, Fooyin University, Kaohsiung City, Taiwan
| | - Li-Fong Lin
- School of Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, Shuang-Ho Hospital-Taipei Medical University, New Taipei, Taiwan
| | - Chen-Ju Lin
- Department of Rehabilitation Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Chien-Yung Wang
- Department of Physical Medicine and Rehabilitation, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Chia-Chen Hu
- Division of Physical Therapy, Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shu-Chun Lee
- School of Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei, Taiwan; International PhD Program in Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Zatti C, Pilotto A, Hansen C, Rizzardi A, Catania M, Romijnders R, Purin L, Pasolini MP, Schaeffer E, Galbiati A, Ferini-Strambi L, Berg D, Maetzler W, Padovani A. Turning alterations detected by mobile health technology in idiopathic REM sleep behavior disorder. NPJ Parkinsons Dis 2024; 10:64. [PMID: 38499543 PMCID: PMC10948811 DOI: 10.1038/s41531-024-00682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
Idiopathic REM sleep Behavior Disorder (iRBD) is a condition at high risk of developing Parkinson's disease (PD) and other alpha-synucleinopathies. The aim of the study was to evaluate subtle turning alterations by using Mobile health technology in iRBD individuals without subthreshold parkinsonism. A total of 148 participants (23 persons with polysomnography-confirmed iRBD without subthreshold parkinsonism, 60 drug-naïve PD patients, and 65 age-matched controls were included in this prospective cross-sectional study. All underwent a multidimensional assessment including cognitive and non-motor symptoms assessment. Then a Timed-Up-and-Go test (TUG) at normal and fast speed was performed using mobile health technology on the lower back (Rehagait®, Hasomed, Germany). Duration, mean, and peak angular velocities of the turns were compared using a multivariate model correcting for age and sex. Compared to controls, PD patients showed longer turn durations and lower mean and peak angular velocities of the turns in both TUGs (all p ≤ 0.001). iRBD participants also showed a longer turn duration and lower mean (p = 0.006) and peak angular velocities (p < 0.001) compared to controls, but only in the TUG at normal speed. Mobile health technology assessment identified subtle alterations of turning in subjects with iRBD in usual, but not fast speed. Longitudinal studies are warranted to evaluate the value of objective turning parameters in defining the risk of conversion to PD in iRBD and in tracking motor progression in prodromal PD.
Collapse
Affiliation(s)
- Cinzia Zatti
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
- Laboratory of digital Neurology and biosensors, University of Brescia, Brescia, Italy
- Department of continuity of care and frailty, Neurology Unit, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Andrea Pilotto
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy.
- Laboratory of digital Neurology and biosensors, University of Brescia, Brescia, Italy.
- Department of continuity of care and frailty, Neurology Unit, ASST Spedali Civili of Brescia, Brescia, Italy.
| | - Clint Hansen
- Department of Neurology, University Hospital Schleswig-Holstein and Kiel University, Kiel, Germany
| | - Andrea Rizzardi
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
- Laboratory of digital Neurology and biosensors, University of Brescia, Brescia, Italy
| | - Marcello Catania
- Laboratory of digital Neurology and biosensors, University of Brescia, Brescia, Italy
- Department of continuity of care and frailty, Neurology Unit, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Robbin Romijnders
- Department of Neurology, University Hospital Schleswig-Holstein and Kiel University, Kiel, Germany
| | - Leandro Purin
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
- Laboratory of digital Neurology and biosensors, University of Brescia, Brescia, Italy
- Department of continuity of care and frailty, Neurology Unit, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Maria P Pasolini
- Department of Clinical and Experimental Sciences, Neurophysiology Unit, University of Brescia, Brescia, Italy
| | - Eva Schaeffer
- Department of Neurology, University Hospital Schleswig-Holstein and Kiel University, Kiel, Germany
| | - Andrea Galbiati
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences, Neurology-Sleep Disorders Centre, Milan, Italy
- Faculty of Psychology, "Vita-Salute" San Raffaele University, Milan, Italy
| | - Luigi Ferini-Strambi
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences, Neurology-Sleep Disorders Centre, Milan, Italy
- Faculty of Psychology, "Vita-Salute" San Raffaele University, Milan, Italy
| | - Daniela Berg
- Department of Neurology, University Hospital Schleswig-Holstein and Kiel University, Kiel, Germany
| | - Walter Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein and Kiel University, Kiel, Germany
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
- Laboratory of digital Neurology and biosensors, University of Brescia, Brescia, Italy
- Department of continuity of care and frailty, Neurology Unit, ASST Spedali Civili of Brescia, Brescia, Italy
- Department of Clinical and Experimental Sciences, Neurophysiology Unit, University of Brescia, Brescia, Italy
| |
Collapse
|
3
|
Oğuz S, Ertürk G, Polat MG, Apaydın H. The effect of kinesiophobia on physical activity, balance, and fear of falling in patients with Parkinson's disease. Physiother Theory Pract 2023; 39:865-872. [PMID: 35042438 DOI: 10.1080/09593985.2022.2028325] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Kinesiophobia is defined as the fear of movement and activity resulting from a feeling of vulnerability to painful injury or re-injury. This study aimed to determine the effect of kinesiophobia on physical activity, balance, and fear of falling in patients with Parkinson's disease. METHODS The study, which was designed as a cross-sectional type, was conducted with 86 patients with Parkinson's disease (age 61.25 SD [9.72] years old) by face-to-face interviews with the patients. The Tampa Scale of Kinesiophobia, International Physical Activity Questionnaire-Short Form, Berg Balance Scale, Falls Efficacy Scale, Visual Analog Scale - Fear of Falling, Unified Parkinson's Disease Rating Scale - motor score, and the Hoehn and Yahr scale were used to evaluate the patients. RESULTS Patients with Parkinson's disease who had high levels of kinesiophobia had lower levels of physical activity, worse balance, and higher disease severity and fear of falling. A correlation was found between the Tampa Scale score and physical activity, balance, fear of falling, falls efficacy, and disease motor score (p < .001; r = -0.38, -0.54, 0.67, 0.57, and 0.37, respectively). According to multiple linear regression analysis, kinesiophobia explained the dependent variables to varying degrees ranging from 13% to 44% (p < .001). CONCLUSIONS Patients with Parkinson's disease may have kinesiophobia. Rehabilitation programs to support functional capacity for these patients should be developed considering the presence of kinesiophobia.
Collapse
Affiliation(s)
- Semra Oğuz
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Marmara University, Istanbul, Turkey
| | - Gamze Ertürk
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Istanbul Kültür University, Istanbul, Turkey
| | - Mine Gülden Polat
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Marmara University, Istanbul, Turkey
| | - Hülya Apaydın
- Cerrahpaşa Medical Faculty, Department of Neurology, Istanbul University - Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
4
|
Shah VV, Jagodinsky A, McNames J, Carlson-Kuhta P, Nutt JG, El-Gohary M, Sowalsky K, Harker G, Mancini M, Horak FB. Gait and turning characteristics from daily life increase ability to predict future falls in people with Parkinson's disease. Front Neurol 2023; 14:1096401. [PMID: 36937534 PMCID: PMC10015637 DOI: 10.3389/fneur.2023.1096401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/02/2023] [Indexed: 03/05/2023] Open
Abstract
Objectives To investigate if digital measures of gait (walking and turning) collected passively over a week of daily activities in people with Parkinson's disease (PD) increases the discriminative ability to predict future falls compared to fall history alone. Methods We recruited 34 individuals with PD (17 with history of falls and 17 non-fallers), age: 68 ± 6 years, MDS-UPDRS III ON: 31 ± 9. Participants were classified as fallers (at least one fall) or non-fallers based on self-reported falls in past 6 months. Eighty digital measures of gait were derived from 3 inertial sensors (Opal® V2 System) placed on the feet and lower back for a week of passive gait monitoring. Logistic regression employing a "best subsets selection strategy" was used to find combinations of measures that discriminated future fallers from non-fallers, and the Area Under Curve (AUC). Participants were followed via email every 2 weeks over the year after the study for self-reported falls. Results Twenty-five subjects reported falls in the follow-up year. Quantity of gait and turning measures (e.g., number of gait bouts and turns per hour) were similar in future fallers and non-fallers. The AUC to discriminate future fallers from non-fallers using fall history alone was 0.77 (95% CI: [0.50-1.00]). In contrast, the highest AUC for gait and turning digital measures with 4 combinations was 0.94 [0.84-1.00]. From the top 10 models (all AUCs>0.90) via the best subsets strategy, the most consistently selected measures were variability of toe-out angle of the foot (9 out of 10), pitch angle of the foot during mid-swing (8 out of 10), and peak turn velocity (7 out of 10). Conclusions These findings highlight the importance of considering precise digital measures, captured via sensors strategically placed on the feet and low back, to quantify several different aspects of gait (walking and turning) during daily life to improve the classification of future fallers in PD.
Collapse
Affiliation(s)
- Vrutangkumar V. Shah
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- APDM Wearable Technologies, A Clario Company, Portland, OR, United States
| | - Adam Jagodinsky
- APDM Wearable Technologies, A Clario Company, Portland, OR, United States
| | - James McNames
- APDM Wearable Technologies, A Clario Company, Portland, OR, United States
- Department of Electrical and Computer Engineering, Portland State University, Portland, OR, United States
| | - Patricia Carlson-Kuhta
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - John G. Nutt
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Mahmoud El-Gohary
- APDM Wearable Technologies, A Clario Company, Portland, OR, United States
| | - Kristen Sowalsky
- APDM Wearable Technologies, A Clario Company, Portland, OR, United States
| | - Graham Harker
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Martina Mancini
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Fay B. Horak
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- APDM Wearable Technologies, A Clario Company, Portland, OR, United States
| |
Collapse
|
5
|
Shah VV, McNames J, Carlson‐Kuhta P, Nutt JG, El‐Gohary M, Sowalsky K, Mancini M, Horak FB. Effect of Levodopa and Environmental Setting on Gait and Turning Digital Markers Related to Falls in People with Parkinson's Disease. Mov Disord Clin Pract 2023; 10:223-230. [PMID: 36825056 PMCID: PMC9941945 DOI: 10.1002/mdc3.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/11/2022] Open
Abstract
Background It is unknown whether medication status (off and on levodopa) or laboratory versus home settings plays a role in discriminating fallers and non-fallers in people with Parkinson's disease (PD). Objectives To investigate which specific digital gait and turning measures, obtained with body-worn sensors, best discriminated fallers from non-fallers with PD in the clinic and during daily life. Methods We recruited 34 subjects with PD (17 fallers and 17 non-fallers based on the past 6 month's falls). Subjects wore three inertial sensors attached to both feet and the lumbar region in the laboratory for a 3-minute walking task (both off and on levodopa) and during daily life activities for a week. We derived 24 digital (18 gait and 6 turn) measures from the 3-minute walk and from daily life. Results In clinic, none of the gait and turning measures collected during on levodopa state were significantly different between fallers and non-fallers. In contrast, digital measures collected in the off levodopa state were significantly different between groups, (average turn velocity, average number of steps to complete a turn, and variability of gait speed, P < 0.03). During daily life, the variability of average turn velocity (P = 0.023) was significantly different in fallers than non-fallers. Last, the average number of steps to complete a turn was significantly correlated with the patient-reported outcomes. Conclusions Digital measures of turning, but not gait, were different in fallers compared to non-fallers with PD, in the laboratory when off medication and during a daily life.
Collapse
Affiliation(s)
- Vrutangkumar V. Shah
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
- APDM Wearable Technologies, a Clario companyPortlandOregonUSA
| | - James McNames
- APDM Wearable Technologies, a Clario companyPortlandOregonUSA
- Department of Electrical and Computer EngineeringPortland State UniversityPortlandOregonUSA
| | | | - John G. Nutt
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
| | | | | | - Martina Mancini
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
| | - Fay B. Horak
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
- APDM Wearable Technologies, a Clario companyPortlandOregonUSA
| |
Collapse
|
6
|
Uhlig M, Prell T. Gait Characteristics Associated with Fear of Falling in Hospitalized People with Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2023; 23:1111. [PMID: 36772149 PMCID: PMC9919788 DOI: 10.3390/s23031111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/26/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Fear of falling (FOF) is common in Parkinson's disease (PD) and associated with distinct gait changes. Here, we aimed to answer, how quantitative gait assessment can improve our understanding of FOF-related gait in hospitalized geriatric patients with PD. METHODS In this cross-sectional study of 79 patients with advanced PD, FOF was assessed with the Falls Efficacy Scale International (FES-I), and spatiotemporal gait parameters were recorded with a mobile gait analysis system with inertial measurement units at each foot while normal walking. In addition, demographic parameters, disease-specific motor (MDS-revised version of the Unified Parkinson's Disease Rating Scale, Hoehn & Yahr), and non-motor (Non-motor Symptoms Questionnaire, Montreal Cognitive Assessment) scores were assessed. RESULTS According to the FES-I, 22.5% reported low, 28.7% moderate, and 47.5% high concerns about falling. Most concerns were reported when walking on a slippery surface, on an uneven surface, or up or down a slope. In the final regression model, previous falls, more depressive symptoms, use of walking aids, presence of freezing of gait, and lower walking speed explained 42% of the FES-I variance. CONCLUSION Our study suggests that FOF is closely related to gait changes in hospitalized PD patients. Therefore, FOF needs special attention in the rehabilitation of these patients, and targeting distinct gait parameters under varying walking conditions might be a promising part of a multimodal treatment program in PD patients with FOF. The effect of these targeted interventions should be investigated in future trials.
Collapse
Affiliation(s)
- Manuela Uhlig
- Department of Neurology, Jena University Hospital, 07743 Jena, Germany
| | - Tino Prell
- Department of Neurology, Jena University Hospital, 07743 Jena, Germany
- Department of Geriatrics, Halle University Hospital, 06120 Halle, Germany
| |
Collapse
|
7
|
Geritz J, Welzel J, Hansen C, Maetzler C, Hobert MA, Elshehabi M, Knacke H, Aleknonytė-Resch M, Kudelka J, Bunzeck N, Maetzler W. Cognitive parameters can predict change of walking performance in advanced Parkinson's disease - Chances and limits of early rehabilitation. Front Aging Neurosci 2022; 14:1070093. [PMID: 36620765 PMCID: PMC9813446 DOI: 10.3389/fnagi.2022.1070093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Links between cognition and walking performance in patients with Parkinson's disease (PD), which both decline with disease progression, are well known. There is lack of knowledge regarding the predictive value of cognition for changes in walking performance after individualized therapy. The aim of this study is to identify relevant predictive cognitive and affective parameters, measurable in daily clinical routines, for change in quantitative walking performance after early geriatric rehabilitation. Methods Forty-seven acutely hospitalized patients with advanced PD were assessed at baseline (T1) and at the end (T2) of a 2-week early rehabilitative geriatric complex treatment (ERGCT). Global cognitive performance (Montreal Cognitive Assessment, MoCA), EF and divided attention (Trail Making Test B minus A, delta TMT), depressive symptoms, and fear of falling were assessed at T1. Change in walking performance was determined by the difference in quantitative walking parameters extracted from a sensor-based movement analysis over 20 m straight walking in single (ST, fast and normal pace) and dual task (DT, with secondary cognitive, respectively, motor task) conditions between T1 and T2. Bayesian regression (using Bayes Factor BF10) and multiple linear regression models were used to determine the association of non-motor characteristics for change in walking performance. Results Under ST, there was moderate evidence (BF10 = 7.8, respectively, BF10 = 4.4) that lower performance in the ∆TMT at baseline is associated with lower reduction of step time asymmetry after treatment (R 2 adj = 0.26, p ≤ 0.008, respectively, R 2 adj = 0.18, p ≤ 0.009). Under DT walking-cognitive, there was strong evidence (BF10 = 29.9, respectively, BF10 = 27.9) that lower performance in the ∆TMT is associated with more reduced stride time and double limb support (R 2 adj = 0.62, p ≤ 0.002, respectively, R 2 adj = 0.51, p ≤ 0.009). There was moderate evidence (BF10 = 5.1) that a higher MoCA total score was associated with increased gait speed after treatment (R 2 adj = 0.30, p ≤ 0.02). Discussion Our results indicate that the effect of ERGT on change in walking performance is limited for patients with deficits in EF and divided attention. However, these patients also seem to walk more cautiously after treatment in walking situations with additional cognitive demand. Therefore, future development of individualized treatment algorithms is required, which address individual needs of these vulnerable patients.
Collapse
Affiliation(s)
- Johanna Geritz
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany,Department of Psychology, University of Lübeck, Lübeck, Germany,*Correspondence: Johanna Geritz,
| | - Julius Welzel
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Clint Hansen
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Corina Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Markus A. Hobert
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Morad Elshehabi
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Henrike Knacke
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Jennifer Kudelka
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nico Bunzeck
- Department of Psychology, University of Lübeck, Lübeck, Germany,Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Walter Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
8
|
Morgan C, Jameson J, Craddock I, Tonkin EL, Oikonomou G, Isotalus HK, Heidarivincheh F, McConville R, Tourte GJL, Kinnunen KM, Whone A. Understanding how people with Parkinson's disease turn in gait from a real-world in-home dataset. Parkinsonism Relat Disord 2022; 105:114-122. [PMID: 36413901 PMCID: PMC10391706 DOI: 10.1016/j.parkreldis.2022.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Turning in gait digital parameters may be useful in measuring disease progression in Parkinson's disease (PD), however challenges remain over algorithm validation in real-world settings. The influence of clinician observation on turning outcomes is poorly understood. Our objective is to describe a unique in-home video dataset and explore the use of turning parameters as biomarkers in PD. METHODS 11 participants with PD, 11 control participants stayed in a home-like setting living freely for 5 days (with two sessions of clinical assessment), during which high-resolution video was captured. Clinicians watched the videos, identified turns and documented turning parameters. RESULTS From 85 hours of video 3869 turns were evaluated, averaging at 22.7 turns per hour per person. 6 participants had significantly different numbers of turning steps and/or turn duration between "ON" and "OFF" medication states. Positive Spearman correlations were seen between the Movement Disorders Society-sponsored revision of the Unified Parkinson's Disease Rating Scale III score with a) number of turning steps (rho = 0.893, p < 0.001), and b) duration of turn (rho = 0.744, p = 0.009) "OFF" medications. A positive correlation was seen "ON" medications between number of turning steps and clinical rating scale score (rho = 0.618, p = 0.048). Both cohorts took more steps and shorter durations of turn during observed clinical assessments than when free-living. CONCLUSION This study shows proof of concept that real-world free-living turn duration and number of turning steps recorded can distinguish between PD medication states and correlate with gold-standard clinical rating scale scores. It illustrates a methodology for ecological validation of real-world digital outcomes.
Collapse
Affiliation(s)
- Catherine Morgan
- Translational Health Sciences, University of Bristol, 5 Tyndall Ave, Bristol, BS8 1UD, UK; Movement Disorders Group, Bristol Brain Centre, North Bristol NHS Trust, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK.
| | - Jack Jameson
- Movement Disorders Group, Bristol Brain Centre, North Bristol NHS Trust, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK.
| | - Ian Craddock
- Faculty of Engineering, University of Bristol, Digital Health Offices, 1 Cathedral Square, Bristol, BS1 5DD, UK.
| | - Emma L Tonkin
- Faculty of Engineering, University of Bristol, Digital Health Offices, 1 Cathedral Square, Bristol, BS1 5DD, UK.
| | - George Oikonomou
- Faculty of Engineering, University of Bristol, Digital Health Offices, 1 Cathedral Square, Bristol, BS1 5DD, UK.
| | - Hanna Kristiina Isotalus
- Faculty of Engineering, University of Bristol, Digital Health Offices, 1 Cathedral Square, Bristol, BS1 5DD, UK.
| | - Farnoosh Heidarivincheh
- Faculty of Engineering, University of Bristol, Digital Health Offices, 1 Cathedral Square, Bristol, BS1 5DD, UK.
| | - Ryan McConville
- Faculty of Engineering, University of Bristol, Digital Health Offices, 1 Cathedral Square, Bristol, BS1 5DD, UK.
| | - Gregory J L Tourte
- Faculty of Engineering, University of Bristol, Digital Health Offices, 1 Cathedral Square, Bristol, BS1 5DD, UK.
| | - Kirsi M Kinnunen
- Research and Development, IXICO, 4th Floor, Griffin Court, 15 Long Ln, Barbican, London, EC1A 9PN, UK.
| | - Alan Whone
- Translational Health Sciences, University of Bristol, 5 Tyndall Ave, Bristol, BS8 1UD, UK; Movement Disorders Group, Bristol Brain Centre, North Bristol NHS Trust, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK.
| |
Collapse
|
9
|
Scherbaum R, Moewius A, Oppermann J, Geritz J, Hansen C, Gold R, Maetzler W, Tönges L. Parkinson's disease multimodal complex treatment improves gait performance: an exploratory wearable digital device-supported study. J Neurol 2022; 269:6067-6085. [PMID: 35864214 PMCID: PMC9553759 DOI: 10.1007/s00415-022-11257-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Wearable device-based parameters (DBP) objectively describe gait and balance impairment in Parkinson's disease (PD). We sought to investigate correlations between DBP of gait and balance and clinical scores, their respective changes throughout the inpatient multidisciplinary Parkinson's Disease Multimodal Complex Treatment (PD-MCT), and correlations between their changes. METHODS This exploratory observational study assessed 10 DBP and clinical scores at the start (T1) and end (T2) of a two-week PD-MCT of 25 PD in patients (mean age: 66.9 years, median HY stage: 2.5). Subjects performed four straight walking tasks under single- and dual-task conditions, and four balance tasks. RESULTS At T1, reduced gait velocity and larger sway area correlated with motor severity. Shorter strides during motor-motor dual-tasking correlated with motor complications. From T1 to T2, gait velocity improved, especially under dual-task conditions, stride length increased for motor-motor dual-tasking, and clinical scores measuring motor severity, balance, dexterity, executive functions, and motor complications changed favorably. Other gait parameters did not change significantly. Changes in motor complications, motor severity, and fear of falling correlated with changes in stride length, sway area, and measures of gait stability, respectively. CONCLUSION DBP of gait and balance reflect clinical scores, e.g., those of motor severity. PD-MCT significantly improves gait velocity and stride length and favorably affects additional DBP. Motor complications and fear of falling are factors that may influence the response to PD-MCT. A DBP-based assessment on admission to PD inpatient treatment could allow for more individualized therapy that can improve outcomes. TRIAL REGISTRATION NUMBER AND DATE DRKS00020948 number, 30-Mar-2020, retrospectively registered.
Collapse
Affiliation(s)
- Raphael Scherbaum
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, 44791, Bochum, Germany
| | - Andreas Moewius
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, 44791, Bochum, Germany
| | - Judith Oppermann
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, 44791, Bochum, Germany
| | - Johanna Geritz
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Clint Hansen
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, 44791, Bochum, Germany
- Neurodegeneration Research, Protein Research Unit Ruhr (PURE), Ruhr University Bochum, 44801, Bochum, Germany
| | - Walter Maetzler
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Lars Tönges
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, 44791, Bochum, Germany.
- Neurodegeneration Research, Protein Research Unit Ruhr (PURE), Ruhr University Bochum, 44801, Bochum, Germany.
| |
Collapse
|
10
|
Chen PH, Yang YY, Liao YY, Cheng SJ, Wang PN, Cheng FY. Factors Associated with Fear of Falling in Individuals with Different Types of Mild Cognitive Impairment. Brain Sci 2022; 12:brainsci12080990. [PMID: 35892431 PMCID: PMC9332262 DOI: 10.3390/brainsci12080990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Mild cognitive impairment (MCI) is considered an intermediate state between normal aging and early dementia. Fear of falling (FOF) could be considered a risk indicator for falls and quality of life in individuals with MCI. Our objective was to explore factors associated with FOF in those with MCI due to Alzheimer’s disease (AD-MCI) and mild cognitive impairment in Parkinson’s disease (PD-MCI). Seventy-one participants were separated into two groups, AD-MCI (n = 37) and PD-MCI (n = 34), based on the disease diagnosis. FOF was assessed using the Activities-specific Balance Confidence scale. The neuropsychological assessment and gait assessment were also measured. FOF was significantly correlated with global cognitive function, attention and working memory, executive function, Tinetti assessment scale scores, gait speed, and stride length in the AD-MCI group. Moreover, attention and working memory were the most important factors contributing to FOF. In the PD-MCI group, FOF was significantly correlated with gait speed, and time up and go subtask performance. Furthermore, turn-to-walk was the most important factor contributing to FOF. We noted that FOF in different types of MCI was determined by different factors. Therapies that aim to lower FOF in AD-MCI and PD-MCI populations may address attention and working memory and turn-to-walk, respectively.
Collapse
Affiliation(s)
- Pei-Hao Chen
- Department of Neurology, MacKay Memorial Hospital, Taipei 104, Taiwan; (P.-H.C.); (S.-J.C.)
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
- Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Ya-Yuan Yang
- Institute of Long-Term Care, MacKay Medical College, New Taipei City 252, Taiwan;
- Kaifeng Minquan Day Care Center, Taipei 104, Taiwan
| | - Ying-Yi Liao
- Department of Gerontological Health Care, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan;
| | - Shih-Jung Cheng
- Department of Neurology, MacKay Memorial Hospital, Taipei 104, Taiwan; (P.-H.C.); (S.-J.C.)
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- Department of Neurology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Fang-Yu Cheng
- Institute of Long-Term Care, MacKay Medical College, New Taipei City 252, Taiwan;
- Correspondence: ; Tel.: +886-226-360-303
| |
Collapse
|
11
|
Weston AR, Loyd BJ, Taylor C, Hoppes C, Dibble LE. Head and Trunk Kinematics during Activities of Daily Living with and without Mechanical Restriction of Cervical Motion. SENSORS (BASEL, SWITZERLAND) 2022; 22:3071. [PMID: 35459056 PMCID: PMC9026113 DOI: 10.3390/s22083071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
Alterations in head and trunk kinematics during activities of daily living can be difficult to recognize and quantify with visual observation. Incorporating wearable sensors allows for accurate and measurable assessment of movement. The aim of this study was to determine the ability of wearable sensors and data processing algorithms to discern motion restrictions during activities of daily living. Accelerometer data was collected with wearable sensors from 10 healthy adults (age 39.5 ± 12.47) as they performed daily living simulated tasks: coin pick up (pitch plane task), don/doff jacket (yaw plane task), self-paced community ambulation task [CAT] (pitch and yaw plane task) without and with a rigid cervical collar. Paired t-tests were used to discern differences between non-restricted (no collared) performance and restricted (collared) performance of tasks. Significant differences in head rotational velocity (jacket p = 0.03, CAT-pitch p < 0.001, CAT-yaw p < 0.001), head rotational amplitude (coin p = 0.03, CAT-pitch p < 0.001, CAT-yaw p < 0.001), trunk rotational amplitude (jacket p = 0.01, CAT-yaw p = 0.005), and head−trunk coupling (jacket p = 0.007, CAT-yaw p = 0.003) were captured by wearable sensors between the two conditions. Alterations in turning movement were detected at the head and trunk during daily living tasks. These results support the ecological validity of using wearable sensors to quantify movement alterations during real-world scenarios.
Collapse
Affiliation(s)
- Angela R. Weston
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA;
| | - Brian J. Loyd
- Department of Physical Therapy and Rehabilitation Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812, USA;
| | - Carolyn Taylor
- Department of Orthopedics, University of Utah, 590 Wakara Way, Salt Lake City, UT 84108, USA;
| | - Carrie Hoppes
- Army Baylor University Doctoral Program in Physical Therapy, U.S. Army Medical Center of Excellence, 3630 Stanley Road, San Antonio, TX 78234, USA;
| | - Leland E. Dibble
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA;
| |
Collapse
|
12
|
Fear of Falling Does Not Influence Dual-Task Gait Costs in People with Parkinson's Disease: A Cross-Sectional Study. SENSORS 2022; 22:s22052029. [PMID: 35271176 PMCID: PMC8914753 DOI: 10.3390/s22052029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/20/2022] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
Cognitive deficits and fear of falling (FOF) can both influence gait patterns in Parkinson’s disease (PD). While cognitive deficits contribute to gait changes under dual-task (DT) conditions, it is unclear if FOF also influences changes to gait while performing a cognitive task. Here, we aimed to explore the association between FOF and DT costs in PD, we additionally describe associations between FOF, cognition, and gait parameters under single-task and DT. In 40 PD patients, motor symptoms (MDS-revised version of the Unified Parkinson’s Disease Rating Scale, Hoehn and Yahr), FOF (Falls Efficacy Scale International), and Montreal Cognitive Assessment (MoCA) were assessed. Spatiotemporal gait parameters were recorded with a validated mobile gait analysis system with inertial measurement units at each foot while patients walked in a 50 m hallway at their preferred speed under single-task and DT conditions. Under single-task conditions, stride length (β = 0.798) and spatial variability (β = 0.202) were associated with FOF (adjusted R2 = 0.19, p < 0.001) while the MoCA was only weakly associated with temporal variability (adjusted R2 = 0.05, p < 0.001). Under DT conditions, speed, stride length, and cadence decreased, while spatial variability, temporal variability, and stride duration increased with the largest effect size for speed. DT costs of stride length (β = 0.42) and age (β = 0.58) explained 18% of the MoCA variance. However, FOF was not associated with the DT costs of gait parameters. Gait difficulties in PD may exacerbate when cognitive tasks are added during walking. However, FOF does not appear to have a relevant effect on dual-task costs of gait.
Collapse
|
13
|
Silva FD, Alvarez AM, Nunes SFL, Silva MEM, Santos SMAD. Avaliação do risco de quedas entre pessoas com doença de Parkinson. ESCOLA ANNA NERY 2022. [DOI: 10.1590/2177-9465-ean-2021-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO Objetivo identificar os fatores associados ao risco de quedas entre as pessoas com doença de Parkinson cadastradas na Associação Parkinson Santa Catarina. Método estudo transversal exploratório descritivo e de abordagem quantitativa, realizado com 53 pessoas cadastradas na Associação Parkinson Santa Catarina, no município de Florianópolis, Brasil, no período de junho a setembro de 2019. Foram aplicados questionário sociodemográfico, Escala de Hoehn e Yahr, Mini Exame do Estado Mental e Teste de Rastreio do Risco de Queda no Idoso. Os dados foram tabulados e analisados por meio do Sistema online de Ensino-Aprendizagem de Estatística SEstatNet®. Resultados foram identificados fatores de risco, como sexo, aumento da idade, redução da força muscular, instabilidade postural e diminuição da velocidade da marcha. Em relação aos estágios da doença, foi constatado que em todos houve piora da velocidade da marcha e o medo de cair é constante, aumentando com o agravamento da doença e o tempo de diagnóstico. Conclusão e implicações para a prática ao aprofundar o estudo do tema, o enfermeiro consegue compreender os acometimentos motores que levam à fragilização e à queda em pessoas com doença de Parkinson, elaborando estratégias para preveni-las.
Collapse
|
14
|
Atrsaei A, Hansen C, Elshehabi M, Solbrig S, Berg D, Liepelt-Scarfone I, Maetzler W, Aminian K. Effect of Fear of Falling on Mobility Measured During Lab and Daily Activity Assessments in Parkinson's Disease. Front Aging Neurosci 2021; 13:722830. [PMID: 34916920 PMCID: PMC8669821 DOI: 10.3389/fnagi.2021.722830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
In chronic disorders such as Parkinson’s disease (PD), fear of falling (FOF) is associated with falls and reduced quality of life. With inertial measurement units (IMUs) and dedicated algorithms, different aspects of mobility can be obtained during supervised tests in the lab and also during daily activities. To our best knowledge, the effect of FOF on mobility has not been investigated in both of these settings simultaneously. Our goal was to evaluate the effect of FOF on the mobility of 26 patients with PD during clinical assessments and 14 days of daily activity monitoring. Parameters related to gait, sit-to-stand transitions, and turns were extracted from IMU signals on the lower back. Fear of falling was assessed using the Falls Efficacy Scale-International (FES-I) and the patients were grouped as with (PD-FOF+) and without FOF (PD-FOF−). Mobility parameters between groups were compared using logistic regression as well as the effect size values obtained using the Wilcoxon rank-sum test. The peak angular velocity of the turn-to-sit transition of the timed-up-and-go (TUG) test had the highest discriminative power between PD-FOF+ and PD-FOF− (r-value of effect size = 0.61). Moreover, PD-FOF+ had a tendency toward lower gait speed at home and a lower amount of walking bouts, especially for shorter walking bouts. The combination of lab and daily activity parameters reached a higher discriminative power [area under the curve (AUC) = 0.75] than each setting alone (AUC = 0.68 in the lab, AUC = 0.54 at home). Comparing the gait speed between the two assessments, the PD-FOF+ showed higher gait speeds in the capacity area compared with their TUG test in the lab. The mobility parameters extracted from both lab and home-based assessments contribute to the detection of FOF in PD. This study adds further evidence to the usefulness of mobility assessments that include different environments and assessment strategies. Although this study was limited in the sample size, it still provides a helpful method to consider the daily activity measurement of the patients with PD into clinical evaluation. The obtained results can help the clinicians with a more accurate prevention and treatment strategy.
Collapse
Affiliation(s)
- Arash Atrsaei
- Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Clint Hansen
- Department of Neurology, UKSH, Christian-Albrechts-University, Kiel, Germany
| | - Morad Elshehabi
- Department of Neurology, UKSH, Christian-Albrechts-University, Kiel, Germany
| | - Susanne Solbrig
- Department of Neurodegeneration, Center for Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Daniela Berg
- Department of Neurology, UKSH, Christian-Albrechts-University, Kiel, Germany.,Department of Neurodegeneration, Center for Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Inga Liepelt-Scarfone
- Department of Neurodegeneration, Center for Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany.,IB-Hochschule, Stuttgart, Germany
| | - Walter Maetzler
- Department of Neurology, UKSH, Christian-Albrechts-University, Kiel, Germany
| | - Kamiar Aminian
- Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
15
|
Abdollahi M, Kuber PM, Hoang C, Shiraishi M, Soangra R, Rashedi E. Kinematic Assessment of Turning and Walking Tasks Among Stroke Survivors by Employing Wearable Sensors and Pressure Platform. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6635-6638. [PMID: 34892629 DOI: 10.1109/embc46164.2021.9630791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stroke survivors often experience reduced movement capabilities due to alterations in their neuromusculoskeletal systems. Modern sensor technologies and motion analyses can facilitate the determination of these changes. Our work aims to assess the potential of using wearable motion sensors to analyze the movement of stroke survivors and identifying the affected functions. We recruited 10 participants (5 stroke survivors, 5 healthy individuals) and conducted a controlled laboratory evaluation for two of the most common daily activities: turning and walking. Among the extracted kinematic parameters, range of trunk and sacrum lateral bending in turning were significantly larger in stroke survivors (p-value<0.02). However, no statistical difference in mean angular velocity and range of motion for trunk/sacrum/shank flexion-extension were obtained in the turning task. Our results also indicated that during walking, while there was no difference in swing time, double support portion of gait among the stroke group was significantly larger (p-value = 0.001). Outcomes of this investigation may help in designing new rehabilitation programs for stroke and other neurological disorders and/or in improving the efficacy of such programs.Clinical Relevance- This study may provide a better insight on the detailed functional differences between stroke survivors and healthy individuals which in turn could be used to develop a more efficient rehabilitation program for stroke community.
Collapse
|
16
|
The Effect of Different Turn Speeds on Whole-Body Coordination in Younger and Older Healthy Adults. SENSORS 2021; 21:s21082827. [PMID: 33923838 PMCID: PMC8074235 DOI: 10.3390/s21082827] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/03/2021] [Accepted: 04/14/2021] [Indexed: 01/12/2023]
Abstract
Difficulty in turning is prevalent in older adults and results in postural instability and risk of falling. Despite this, the mechanisms of turning problems have yet to be fully determined, and it is unclear if different speeds directly result in altered posture and turning characteristics. The aim of this study was to identify the effects of turning speeds on whole-body coordination and to explore if these can be used to help inform fall prevention programs in older adults. Forty-two participants (21 healthy older adults and 21 younger adults) completed standing turns on level ground. Inertial Measurement Units (XSENS) were used to measure turning kinematics and stepping characteristics. Participants were randomly tasked to turn 180° at one of three speeds; fast, moderate, or slow to the left and right. Two factors mixed model analysis of variance (MM ANOVA) with post hoc pairwise comparisons were performed to assess the two groups and three turning speeds. Significant interaction effects (p < 0.05) were seen in; reorientation onset latency of head, pelvis, and feet, peak segmental angular separation, and stepping characteristics (step frequency and step size), which all changed with increasing turn speed. Repeated measures ANOVA revealed the main effects of speeds within the older adults group on those variables as well as the younger adults group. Our results suggest that turning speeds result in altered whole-body coordination and stepping behavior in older adults, which use the same temporospatial sequence as younger adults. However, some characteristics differ significantly, e.g., onset latency of segments, peak head velocity, step frequency, and step size. Therefore, the assessment of turning speeds elucidates the exact temporospatial differences between older and younger healthy adults and may help to determine some of the issues that the older population face during turning, and ultimately the altered whole-body coordination, which lead to falls.
Collapse
|
17
|
Comparison of 360° Turn Cycles among Individuals after Stroke and Healthy Older Adults. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stroke survivors are at high risk of falling during turning. The kinematics of performing a 360° turn have not been fully analyzed among individuals after stroke. Quantitative differences in the parameters of turning between healthy older adults and those after stroke could provide detailed information on turning ability among these groups. The purpose of the current study was to characterize differences between healthy older adults and adults after stroke in 360° turn kinematics. Fourteen individuals with chronic stroke (mean age: 69 ± 8.4 years) and 14 healthy older adults (mean age: 74 ± 8.7 years) performed three trials of 360° turning. Kinematics data were collected using 26 reflective markers at several body landmarks. This new method for quantifying turning revealed that stroke significantly affected the number of turn cycles, number of single support (SS) critical phases, and critical time. In some cases, falls among individuals with stroke may be related to the combination of impaired movement patterns and the complexity of tasks such as turning. Understanding turning kinematics can inform clinical interventions targeting improvements in turning ability and consequently, fall risk reduction in individuals after stroke.
Collapse
|
18
|
Gait speed in clinical and daily living assessments in Parkinson's disease patients: performance versus capacity. NPJ Parkinsons Dis 2021; 7:24. [PMID: 33674597 PMCID: PMC7935857 DOI: 10.1038/s41531-021-00171-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023] Open
Abstract
Gait speed often referred as the sixth vital sign is the most powerful biomarker of mobility. While a clinical setting allows the estimation of gait speed under controlled conditions that present functional capacity, gait speed in real-life conditions provides the actual performance of the patient. The goal of this study was to investigate objectively under what conditions during daily activities, patients perform as well as or better than in the clinic. To this end, we recruited 27 Parkinson's disease (PD) patients and measured their gait speed by inertial measurement units through several walking tests in the clinic as well as their daily activities at home. By fitting a bimodal Gaussian model to their gait speed distribution, we found that on average, patients had similar modes in the clinic and during daily activities. Furthermore, we observed that the number of medication doses taken throughout the day had a moderate correlation with the difference between clinic and home. Performing a cycle-by-cycle analysis on gait speed during the home assessment, overall only about 3% of the strides had equal or greater gait speeds than the patients' capacity in the clinic. These strides were during long walking bouts (>1 min) and happened before noon, around 26 min after medication intake, reaching their maximum occurrence probability 3 h after Levodopa intake. These results open the possibility of better control of medication intake in PD by considering both functional capacity and continuous monitoring of gait speed during real-life conditions.
Collapse
|
19
|
Del Din S, Kirk C, Yarnall AJ, Rochester L, Hausdorff JM. Body-Worn Sensors for Remote Monitoring of Parkinson's Disease Motor Symptoms: Vision, State of the Art, and Challenges Ahead. JOURNAL OF PARKINSON'S DISEASE 2021; 11:S35-S47. [PMID: 33523020 PMCID: PMC8385520 DOI: 10.3233/jpd-202471] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
The increasing prevalence of neurodegenerative conditions such as Parkinson's disease (PD) and related mobility issues places a serious burden on healthcare systems. The COVID-19 pandemic has reinforced the urgent need for better tools to manage chronic conditions remotely, as regular access to clinics may be problematic. Digital health technology in the form of remote monitoring with body-worn sensors offers significant opportunities for transforming research and revolutionizing the clinical management of PD. Significant efforts are being invested in the development and validation of digital outcomes to support diagnosis and track motor and mobility impairments "off-line". Imagine being able to remotely assess your patient, understand how well they are functioning, evaluate the impact of any recent medication/intervention, and identify the need for urgent follow-up before overt, irreparable change takes place? This could offer new pragmatic solutions for personalized care and clinical research. So the question remains: how close are we to achieving this? Here, we describe the state-of-the-art based on representative papers published between 2017 and 2020. We focus on remote (i.e., real-world, daily-living) monitoring of PD using body-worn sensors (e.g., accelerometers, inertial measurement units) for assessing motor symptoms and their complications. Despite the tremendous potential, existing challenges exist (e.g., validity, regulatory) that are preventing the widespread clinical adoption of body-worn sensors as a digital outcome. We propose a roadmap with clear recommendations for addressing these challenges and future directions to bring us closer to the implementation and widespread adoption of this important way of improving the clinical care, evaluation, and monitoring of PD.
Collapse
Affiliation(s)
- Silvia Del Din
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Cameron Kirk
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Alison J. Yarnall
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jeffrey M. Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv Israel
- Department of Physical Therapy, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Rush Alzheimer’s Disease Center and Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
20
|
Morris R, Mancin M. Lab-on-a-chip: wearables as a one stop shop for free-living assessments. Digit Health 2021. [DOI: 10.1016/b978-0-12-818914-6.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
21
|
Shah VV, Curtze C, Mancini M, Carlson-Kuhta P, Nutt JG, Gomez CM, El-Gohary M, Horak FB, McNames J. Inertial Sensor Algorithms to Characterize Turning in Neurological Patients With Turn Hesitations. IEEE Trans Biomed Eng 2020; 68:2615-2625. [PMID: 33180719 DOI: 10.1109/tbme.2020.3037820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND One difficulty in turning algorithm design for inertial sensors is detecting two discrete turns in the same direction, close in time. A second difficulty is under-estimation of turn angle due to short-duration hesitations by people with neurological disorders. We aimed to validate and determine the generalizability of a: I. Discrete Turn Algorithm for variable and sequential turns close in time and II: Merged Turn Algorithm for a single turn angle in the presence of hesitations. METHODS We validated the Discrete Turn Algorithm with motion capture in healthy controls (HC, n = 10) performing a spectrum of turn angles. Subsequently, the generalizability of the Discrete Turn Algorithm and associated, Merged Turn Algorithm were tested in people with Parkinson's disease (PD, n = 124), spinocerebellar ataxia (SCA, n = 51), and HC (n = 125). RESULTS The Discrete Turn Algorithm shows improved agreement with optical motion capture and with known turn angles, compared to our previous algorithm by El-Gohary et al. The Merged Turn algorithm that merges consecutive turns in the same direction with short hesitations resulted in turn angle estimates closer to a fixed 180-degree turn angle in the PD, SCA, and HC subjects compared to our previous turn algorithm. Additional metrics were proposed to capture turn hesitations in PD and SCA. CONCLUSION The Discrete Turn Algorithm may be particularly useful to characterize turns when the turn angle is unknown, i.e., during free-living conditions. The Merged Turn algorithm is recommended for clinical tasks in which the single-turn angle is known, especially for patients who hesitate while turning.
Collapse
|
22
|
Rehman RZU, Klocke P, Hryniv S, Galna B, Rochester L, Del Din S, Alcock L. Turning Detection During Gait: Algorithm Validation and Influence of Sensor Location and Turning Characteristics in the Classification of Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5377. [PMID: 32961799 PMCID: PMC7570702 DOI: 10.3390/s20185377] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder resulting in a range of mobility deficits affecting gait, balance and turning. In this paper, we present: (i) the development and validation of an algorithm to detect turns during gait; (ii) a method to extract turn characteristics; and (iii) the classification of PD using turn characteristics. Thirty-seven people with PD and 56 controls performed 180-degree turns during an intermittent walking task. Inertial measurement units were attached to the head, neck, lower back and ankles. A turning detection algorithm was developed and validated by two raters using video data. Spatiotemporal and signal-based characteristics were extracted and used for PD classification. There was excellent absolute agreement between the rater and the algorithm for identifying turn start and end (ICC ≥ 0.99). Classification modeling (partial least square discriminant analysis (PLS-DA)) gave the best accuracy of 97.85% when trained on upper body and ankle data. Balanced sensitivity (97%) and specificity (96.43%) were achieved using turning characteristics from the neck, lower back and ankles. Turning characteristics, in particular angular velocity, duration, number of steps, jerk and root mean square distinguished mild-moderate PD from controls accurately and warrant future examination as a marker of mobility impairment and fall risk in PD.
Collapse
Affiliation(s)
- Rana Zia Ur Rehman
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.Z.U.R.); (B.G.); (L.R.); (S.D.D.)
- Clinical Ageing Research Unit, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (P.K.); (S.H.)
| | - Philipp Klocke
- Clinical Ageing Research Unit, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (P.K.); (S.H.)
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Sofia Hryniv
- Clinical Ageing Research Unit, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (P.K.); (S.H.)
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Brook Galna
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.Z.U.R.); (B.G.); (L.R.); (S.D.D.)
- Clinical Ageing Research Unit, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (P.K.); (S.H.)
- School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.Z.U.R.); (B.G.); (L.R.); (S.D.D.)
- Clinical Ageing Research Unit, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (P.K.); (S.H.)
- The Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne NE1 1AA, UK
| | - Silvia Del Din
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.Z.U.R.); (B.G.); (L.R.); (S.D.D.)
- Clinical Ageing Research Unit, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (P.K.); (S.H.)
| | - Lisa Alcock
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.Z.U.R.); (B.G.); (L.R.); (S.D.D.)
- Clinical Ageing Research Unit, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (P.K.); (S.H.)
| |
Collapse
|
23
|
Khobkhun F, Hollands K, Hollands M, Ajjimaporn A. Effectiveness of exercise-based rehabilitation for the treatment of axial rigidity in people with Parkinson’s disease: A Scoping Review. PHYSICAL THERAPY REVIEWS 2020. [DOI: 10.1080/10833196.2020.1816127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fuengfa Khobkhun
- Brain and Behaviour Lab, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
- College of Sports Science and Technology, Mahidol University, Nakhon Pathom, Thailand
- Department of Physical Therapy, Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand
| | - Kristen Hollands
- Centre for Health Sciences Research Allerton Building, University of Salford, Salford, UK
| | - Mark Hollands
- Brain and Behaviour Lab, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Amornpan Ajjimaporn
- College of Sports Science and Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
24
|
Long-term unsupervised mobility assessment in movement disorders. Lancet Neurol 2020; 19:462-470. [PMID: 32059811 DOI: 10.1016/s1474-4422(19)30397-7] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/26/2019] [Accepted: 10/07/2019] [Indexed: 12/25/2022]
Abstract
Mobile health technologies (wearable, portable, body-fixed sensors, or domestic-integrated devices) that quantify mobility in unsupervised, daily living environments are emerging as complementary clinical assessments. Data collected in these ecologically valid, patient-relevant settings can overcome limitations of conventional clinical assessments, as they capture fluctuating and rare events. These data could support clinical decision making and could also serve as outcomes in clinical trials. However, studies that directly compared assessments made in unsupervised and supervised (eg, in the laboratory or hospital) settings point to large disparities, even in the same parameters of mobility. These differences appear to be affected by psychological, physiological, cognitive, environmental, and technical factors, and by the types of mobilities and diagnoses assessed. To facilitate the successful adaptation of the unsupervised assessment of mobility into clinical practice and clinical trials, clinicians and researchers should consider these disparities and the multiple factors that contribute to them.
Collapse
|
25
|
Geritz J, Maetzold S, Steffen M, Pilotto A, Corrà MF, Moscovich M, Rizzetti MC, Borroni B, Padovani A, Alpes A, Bang C, Barcellos I, Baron R, Bartsch T, Becktepe JS, Berg D, Bergeest LM, Bergmann P, Bouça-Machado R, Drey M, Elshehabi M, Farahmandi S, Ferreira JJ, Franke A, Friederich A, Geisler C, Hüllemann P, Gierthmühlen J, Granert O, Heinzel S, Heller MK, Hobert MA, Hofmann M, Jemlich B, Kerkmann L, Knüpfer S, Krause K, Kress M, Krupp S, Kudelka J, Kuhlenbäumer G, Kurth R, Leypoldt F, Maetzler C, Maia LF, Moewius A, Neumann P, Niemann K, Ortlieb CT, Paschen S, Pham MH, Puehler T, Radloff F, Riedel C, Rogalski M, Sablowsky S, Schanz EM, Schebesta L, Schicketmüller A, Studt S, Thieves M, Tönges L, Ullrich S, Urban PP, Vila-Chã N, Wiegard A, Warmerdam E, Warnecke T, Weiss M, Welzel J, Hansen C, Maetzler W. Motor, cognitive and mobility deficits in 1000 geriatric patients: protocol of a quantitative observational study before and after routine clinical geriatric treatment - the ComOn-study. BMC Geriatr 2020; 20:45. [PMID: 32028945 PMCID: PMC7006407 DOI: 10.1186/s12877-020-1445-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/27/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Motor and cognitive deficits and consequently mobility problems are common in geriatric patients. The currently available methods for diagnosis and for the evaluation of treatment in this vulnerable cohort are limited. The aims of the ComOn (COgnitive and Motor interactions in the Older populatioN) study are (i) to define quantitative markers with clinical relevance for motor and cognitive deficits, (ii) to investigate the interaction between both motor and cognitive deficits and (iii) to assess health status as well as treatment outcome of 1000 geriatric inpatients in hospitals of Kiel (Germany), Brescia (Italy), Porto (Portugal), Curitiba (Brazil) and Bochum (Germany). METHODS This is a prospective, explorative observational multi-center study. In addition to the comprehensive geriatric assessment, quantitative measures of reduced mobility and motor and cognitive deficits are performed before and after a two week's inpatient stay. Components of the assessment are mobile technology-based assessments of gait, balance and transfer performance, neuropsychological tests, frailty, sarcopenia, autonomic dysfunction and sensation, and questionnaires to assess behavioral deficits, activities of daily living, quality of life, fear of falling and dysphagia. Structural MRI and an unsupervised 24/7 home assessment of mobility are performed in a subgroup of participants. The study will also investigate the minimal clinically relevant change of the investigated parameters. DISCUSSION This study will help form a better understanding of symptoms and their complex interactions and treatment effects in a large geriatric cohort.
Collapse
Affiliation(s)
- Johanna Geritz
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sara Maetzold
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Maren Steffen
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andrea Pilotto
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Marta F. Corrà
- Neurology Department, Centro Hospitalar do Porto, Porto, Portugal
| | - Mariana Moscovich
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Maria C. Rizzetti
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Annekathrin Alpes
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Igor Barcellos
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Ralf Baron
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Thorsten Bartsch
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jos S. Becktepe
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Daniela Berg
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Lu M. Bergeest
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Philipp Bergmann
- Department of Internal Medicine I, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Raquel Bouça-Machado
- Instituto de Medicina Molecular, Lisbon, Portugal. CNS-Campus Neurológico Sénior, Torres Vedras, Portugal. Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Michael Drey
- Medical Clinic and Policlinic IV, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Morad Elshehabi
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Susan Farahmandi
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Joaquim J. Ferreira
- Instituto de Medicina Molecular, Lisbon, Portugal. CNS-Campus Neurológico Sénior, Torres Vedras, Portugal. Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Anja Friederich
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Corinna Geisler
- Institute of Human nutrition, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Philipp Hüllemann
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Janne Gierthmühlen
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Oliver Granert
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sebastian Heinzel
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Maren K. Heller
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Markus A. Hobert
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Björn Jemlich
- Third Medical Clinic for Gastroenterology/Rheumatology, Städtisches Krankenhaus Kiel, Kiel, Germany
| | - Laura Kerkmann
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stephanie Knüpfer
- Department of Urology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Katharina Krause
- Department of Internal Medicine I, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Maximilian Kress
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sonja Krupp
- Research Group Geriatrics Lübeck, Red Cross Hospital Geriatric Centre, Lübeck, Germany
| | - Jennifer Kudelka
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Gregor Kuhlenbäumer
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Roland Kurth
- Department of Psychiatry and Psychotherapy, ZIP, Centre for Integrative Psychiatry, Kiel, Germany
| | - Frank Leypoldt
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Corina Maetzler
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Luis F. Maia
- Neurology Department, Centro Hospitalar do Porto, Porto, Portugal
| | - Andreas Moewius
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| | - Patricia Neumann
- Department of Neurology, Asklepios Klinik Barmbek, Hamburg, Germany
| | - Katharina Niemann
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Steffen Paschen
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Minh H. Pham
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Digital Signal Processing and System Theory, Faculty of Engineering, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Thomas Puehler
- Department of Cardiac and Vascular Surgery, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Franziska Radloff
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christian Riedel
- Department of Radiology and Neuroradiology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Marten Rogalski
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Simone Sablowsky
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Elena M. Schanz
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Linda Schebesta
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department of Cardiac and Vascular Surgery, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | | | - Simone Studt
- Department of Psychiatry and Psychotherapy, ZIP, Centre for Integrative Psychiatry, Kiel, Germany
| | - Martina Thieves
- Geriatric Clinic, Städtisches Krankenhaus Kiel, Kiel, Germany
| | - Lars Tönges
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| | - Sebastian Ullrich
- Third Medical Clinic for Gastroenterology/Rheumatology, Städtisches Krankenhaus Kiel, Kiel, Germany
| | - Peter P. Urban
- Department of Neurology, Asklepios Klinik Barmbek, Hamburg, Germany
| | - Nuno Vila-Chã
- Neurology Department, Centro Hospitalar do Porto, Porto, Portugal
| | - Anna Wiegard
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Elke Warmerdam
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Digital Signal Processing and System Theory, Faculty of Engineering, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Tobias Warnecke
- Department of Neurology, University Hospital Muenster, Muenster, Germany
| | - Michael Weiss
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Julius Welzel
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Clint Hansen
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Walter Maetzler
- Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
26
|
Morgan C, Rolinski M, McNaney R, Jones B, Rochester L, Maetzler W, Craddock I, Whone AL. Systematic Review Looking at the Use of Technology to Measure Free-Living Symptom and Activity Outcomes in Parkinson's Disease in the Home or a Home-like Environment. JOURNAL OF PARKINSON'S DISEASE 2020; 10:429-454. [PMID: 32250314 PMCID: PMC7242826 DOI: 10.3233/jpd-191781] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The emergence of new technologies measuring outcomes in Parkinson's disease (PD) to complement the existing clinical rating scales has introduced the possibility of measurement occurring in patients' own homes whilst they freely live and carry out normal day-to-day activities. OBJECTIVE This systematic review seeks to provide an overview of what technology is being used to test which outcomes in PD from free-living participant activity in the setting of the home environment. Additionally, this review seeks to form an impression of the nature of validation and clinimetric testing carried out on the technological device(s) being used. METHODS Five databases (Medline, Embase, PsycInfo, Cochrane and Web of Science) were systematically searched for papers dating from 2000. Study eligibility criteria included: adults with a PD diagnosis; the use of technology; the setting of a home or home-like environment; outcomes measuring any motor and non-motor aspect relevant to PD, as well as activities of daily living; unrestricted/unscripted activities undertaken by participants. RESULTS 65 studies were selected for data extraction. There were wide varieties of participant sample sizes (<10 up to hundreds) and study durations (<2 weeks up to a year). The metrics evaluated by technology, largely using inertial measurement units in wearable devices, included gait, tremor, physical activity, bradykinesia, dyskinesia and motor fluctuations, posture, falls, typing, sleep and activities of daily living. CONCLUSIONS Home-based free-living testing in PD is being conducted by multiple groups with diverse approaches, focussing mainly on motor symptoms and sleep.
Collapse
Affiliation(s)
- Catherine Morgan
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, Faculty of Engineering, University of Bristol, Bristol, UK
- Movement Disorders Group, Bristol Brain Centre, Southmead Hospital, North Bristol National Health Service Trust, Bristol, UK
| | - Michal Rolinski
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Movement Disorders Group, Bristol Brain Centre, Southmead Hospital, North Bristol National Health Service Trust, Bristol, UK
| | - Roisin McNaney
- School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, Faculty of Engineering, University of Bristol, Bristol, UK
| | - Bennet Jones
- Library and Knowledge Service, Learning and Research, Southmead Hospital, North Bristol National Health Service Trust, Bristol, UK
| | - Lynn Rochester
- Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK
- Newcastle Upon Tyne Hospitals National Health Service Foundation Trust, Newcastle Upon Tyne, UK
| | - Walter Maetzler
- Department of Neurology, Christian-Albrechts University, Kiel, Germany
| | - Ian Craddock
- School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, Faculty of Engineering, University of Bristol, Bristol, UK
| | - Alan L. Whone
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Movement Disorders Group, Bristol Brain Centre, Southmead Hospital, North Bristol National Health Service Trust, Bristol, UK
| |
Collapse
|
27
|
Begue J, Peyrot N, Dalleau G, Caderby T. Age-related changes in the control of whole-body angular momentum during stepping. Exp Gerontol 2019; 127:110714. [DOI: 10.1016/j.exger.2019.110714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
|
28
|
Chen P, Li X. Study on Effect of Striatal mGluR2/3 in Alleviating Motor Dysfunction in Rat PD Model Treated by Exercise Therapy. Front Aging Neurosci 2019; 11:255. [PMID: 31632264 PMCID: PMC6783497 DOI: 10.3389/fnagi.2019.00255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Exercise therapy has been widely applied in clinical rehabilitation as an important practical and side effect-free adjuvant therapy, with a significant effect in alleviating motor dysfunction of patients with Parkinson's disease (PD) or animal PD models. This study focuses on the effect of exercise therapy in reducing the concentration of extracellular glutamate (Glu) in the striatum in a rat PD model by upregulating the expression of group II metabotropic Glu receptor (mGluR2/3), so as to alleviate motor dysfunction in the rat PD model. Methods: Neurotoxin 6-hydroxydopamine (6-OHDA) was injected into the right medial forebrain bundle (MFB) of the rats to establish the semi-lateral cerebral damage PD model. The sham-operated group was given an equal amount of normal saline at the same site and taken as the control group. The apomorphine (APO)-induced rotational behavior test combined with immunohistochemical staining with tyrosine hydroxylase (TH) in the substantia nigra (SNc) and striatum was performed to assess the reliability of the model. The exercise group was given treadmill exercise intervention for 4 weeks (11 m/min, 30 min/day, 5 days/week) 1 week after the operation. The open field test (OFT) was performed to assess the locomotor activity of the rats; the Western blot technique was used to detect SNc TH and striatal mGluR2/3 protein expressions; real-time polymerase chain reaction (RT-PCR) was applied to detect striatal mGluR2 and mGluR3 mRNA expressions; the microdialysis-high-performance liquid chromatography (HPLC) method was adopted to detect the concentration of extracellular Glu in striatal neurons. Results: Compared with the control group, the number of rotations of each model group at the first week was significantly increased (P < 0.01); compared with the PD group, the number of rotations of the PD + exercise group at the third week and the fifth week was significantly decreased (P < 0.05, P < 0.01). Compared with the control group, the total movement distance, the total movement time, and the mean velocity of each model group at the first week were significantly reduced (P < 0.05); compared with the PD group, the total movement distance, the total movement time, and the mean velocity of the PD + exercise group at the third week and the fifth week were significantly increased (P < 0.01). Compared with the control group, the count of immunopositive cells and protein expression of SNc TH, and the content of immunopositive fiber terminals in the striatal TH of each model group significantly declined (P < 0.01). Compared with the PD group, the striatal mGluR2/3 protein expression of the PD + exercise group significantly rose (P < 0.01). Compared with the control group, the concentration of extracellular Glu in striatal neurons of each model group at the first week significantly grew (P < 0.05); compared with the PD group, the concentration of extracellular Glu in striatal neurons of the PD + exercise group at the third week and the fifth week was significantly decreased (P < 0.01); compared with the PD + exercise group, the concentration of extracellular Glu in striatal neurons of the group injected with mGluR2/3 antagonist (RS)-1-amino-5-phosphonoindan-1-carboxylic acid (APICA) into the striatum at the third week and the fifth week was significantly increased (P < 0.05, P < 0.01). Compared with the control group, the striatal mGluR2/3 protein expression of the PD group was significantly downregulated (P < 0.01); compared with the PD group, the striatal mGluR2/3 protein expression of the PD + exercise group was significantly upregulated (P < 0.05); compared with the control group, the striatal mGluR3 mRNA expression of the PD group was significantly downregulated (P < 0.01); compared with the PD group, the striatal mGluR3 mRNA expression of the PD + exercise group was significantly upregulated (P < 0.01); 6-OHDA damage and exercise intervention had no significant effect on the striatal mGluR2 mRNA expression (P > 0.05). Compared with the PD + exercise group, the total movement distance, the total movement time, and the mean velocity of the PD + exercise + APICA group were significantly decreased (P < 0.05); compared with the PD group, the PD + exercise + APICA group had no significant change in the total movement distance, the total movement time, and the mean velocity (P > 0.05). Conclusion: These data collectively demonstrate that the mGluR2/3-mediated glutamatergic transmission in the striatum is sensitive to dopamine (DA) depletion and may serve as a target of exercise intervention for mediating the therapeutic effect of exercise intervention in a rat model of PD.
Collapse
Affiliation(s)
- Ping Chen
- College of Sport Science, JiShou Univerity, JiShou, China
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Xiaodong Li
- College of Sport Science, JiShou Univerity, JiShou, China
| |
Collapse
|
29
|
Bongartz M, Kiss R, Lacroix A, Eckert T, Ullrich P, Jansen CP, Feißt M, Mellone S, Chiari L, Becker C, Hauer K. Validity, reliability, and feasibility of the uSense activity monitor to register physical activity and gait performance in habitual settings of geriatric patients. Physiol Meas 2019; 40:095005. [PMID: 31499487 DOI: 10.1088/1361-6579/ab42d3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of the study was to investigate the psychometric quality of a newly developed activity monitor (uSense) to document established physical activity parameters as well as innovative qualitative and quantitative gait characteristics in geriatric patients. APPROACH Construct and concurrent validity, test-retest reliability, and feasibility of established as well as innovative characteristics for qualitative gait analysis were analyzed in multi-morbid, geriatric patients with cognitive impairment (CI) (n = 110), recently discharged from geriatric rehabilitation. MAIN RESULTS Spearman correlations of established and innovative uSense parameters reflecting active behavior with clinically relevant construct parameters were on average moderate to high for motor performance and life-space and low to moderate for other parameters, while correlations with uSense parameters reflecting inactive behavior were predominantly low. Concurrent validity of established physical activity parameters showed consistently high correlations between the uSense and an established comparator system (PAMSys™), but the absolute agreement between both sensor systems was low. On average excellent test-retest reliability for all uSense parameters and good feasibility could be documented. SIGNIFICANCE The uSense monitor allows the assessment of established and-for the first time-a semi-qualitative gait assessment of habitual activity behavior in older persons most affected by motor and CI and activity restrictions. On average moderate to good construct validity, high test-retest reliability, and good feasibility indicated a sound psychometric quality of most measures, while the results of concurrent validity as measured by a comparable system indicated high correlation but low absolute agreement based on different algorithms used.
Collapse
Affiliation(s)
- Martin Bongartz
- Department of Geriatric Research; AGAPLESION Bethanien-Hospital, Geriatric Centre at Heidelberg University, Rohrbacher Str. 149, 69126 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hopfner F, Hobert MA, Maetzler C, Hansen C, Pham MH, Moreau C, Berg D, Devos D, Maetzler W. Mobility Deficits Assessed With Mobile Technology: What Can We Learn From Brain Iron-Altered Animal Models? Front Neurol 2019; 10:833. [PMID: 31440200 PMCID: PMC6694697 DOI: 10.3389/fneur.2019.00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/18/2019] [Indexed: 12/02/2022] Open
Abstract
Background: Recent developments in mobile technology have enabled the investigation of human movements and mobility under natural conditions, i.e., in the home environment. Iron accumulation in the basal ganglia is deleterious in Parkinson's disease (i.e., iron accumulation with lower striatal level of dopamine). The effect of iron chelation (i.e., re-deployment of iron) in Parkinson's disease patients is currently tested in a large investigator-initiated multicenter study. Conversely, restless legs syndrome (RLS) is associated with iron depletion and higher striatal level of dopamine. To determine from animal models which movement and mobility parameters might be associated with iron content modulation and the potential effect of therapeutic chelation inhuman. Methods: We recapitulated pathophysiological aspects of the association between iron, dopamine, and neuronal dysfunction and deterioration in the basal ganglia, and systematically searched PubMed to identify original articles reporting about quantitatively assessed mobility deficits in animal models of brain iron dyshomeostasis. Results: We found six original studies using murine and fly models fulfilling the inclusion criteria. Especially postural and trunk stability were altered in animal models with iron overload. Animal models with lowered basal ganglia iron suffered from alterations in physical activity, mobility, and sleep fragmentation. Conclusion: From preclinical investigations in the animal model, we can deduce that possibly also in humans with iron accumulation in the basal ganglia undergoing therapeutic chelation may primarily show changes in physical activity (such as daily “motor activity”), postural and trunk stability and sleep fragmentation. These changes can readily be monitored with currently available mobile technology.
Collapse
Affiliation(s)
- Franziska Hopfner
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus A Hobert
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Corina Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Clint Hansen
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Minh Hoang Pham
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Caroline Moreau
- Department of Movement Disorders and Neurology, Faculty of Medicine, Lille University Hospital, Lille University, INSERM U1171, Lille, France
| | - Daniela Berg
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - David Devos
- Departments of Medical Pharmacology and Movement Disorders, Lille University Hospital, Lille University, INSERM U1171, Lille, France
| | - Walter Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | | |
Collapse
|
31
|
Godi M, Giardini M, Schieppati M. Walking Along Curved Trajectories. Changes With Age and Parkinson's Disease. Hints to Rehabilitation. Front Neurol 2019; 10:532. [PMID: 31178816 PMCID: PMC6543918 DOI: 10.3389/fneur.2019.00532] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/03/2019] [Indexed: 01/11/2023] Open
Abstract
In this review, we briefly recall the fundamental processes allowing us to change locomotion trajectory and keep walking along a curved path and provide a review of contemporary literature on turning in older adults and people with Parkinson's Disease (PD). The first part briefly summarizes the way the body exploits the physical laws to produce a curved walking trajectory. Then, the changes in muscle and brain activation underpinning this task, and the promoting role of proprioception, are briefly considered. Another section is devoted to the gait changes occurring in curved walking and steering with aging. Further, freezing during turning and rehabilitation of curved walking in patients with PD is mentioned in the last part. Obviously, as the research on body steering while walking or turning has boomed in the last 10 years, the relevant critical issues have been tackled and ways to improve this locomotor task proposed. Rationale and evidences for successful training procedures are available, to potentially reduce the risk of falling in both older adults and patients with PD. A better understanding of the pathophysiology of steering, of the subtle but vital interaction between posture, balance, and progression along non-linear trajectories, and of the residual motor learning capacities in these cohorts may provide solid bases for new rehabilitative approaches.
Collapse
Affiliation(s)
- Marco Godi
- Division of Physical Medicine and Rehabilitation, ICS Maugeri SPA SB, Pavia, Italy
| | - Marica Giardini
- Division of Physical Medicine and Rehabilitation, ICS Maugeri SPA SB, Pavia, Italy
| | - Marco Schieppati
- Department of Exercise and Sport Science, International University of Health, Exercise and Sports, LUNEX University, Differdange, Luxembourg
| |
Collapse
|
32
|
Which Gait Parameters and Walking Patterns Show the Significant Differences Between Parkinson's Disease and Healthy Participants? BIOSENSORS-BASEL 2019; 9:bios9020059. [PMID: 31027153 PMCID: PMC6627461 DOI: 10.3390/bios9020059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 02/08/2023]
Abstract
This study investigated the difference in the gait of patients with Parkinson’s disease (PD), age-matched controls and young controls during three walking patterns. Experiments were conducted with 24 PD, 24 age-matched controls and 24 young controls, and four gait intervals were measured using inertial measurement units (IMU). Group differences between the mean and variance of the gait parameters (stride interval, stance interval, swing interval and double support interval) for the three groups were calculated and statistical significance was tested. The results showed that the variance in each of the four gait parameters of PD patients was significantly higher compared with the controls, irrespective of the three walking patterns. This study showed that the variance of any of the gait interval parameters obtained using IMU during any of the walking patterns could be used to differentiate between the gait of PD and control people.
Collapse
|
33
|
Pham MH, Warmerdam E, Elshehabi M, Schlenstedt C, Bergeest LM, Heller M, Haertner L, Ferreira JJ, Berg D, Schmidt G, Hansen C, Maetzler W. Validation of a Lower Back "Wearable"-Based Sit-to-Stand and Stand-to-Sit Algorithm for Patients With Parkinson's Disease and Older Adults in a Home-Like Environment. Front Neurol 2018; 9:652. [PMID: 30158894 PMCID: PMC6104484 DOI: 10.3389/fneur.2018.00652] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/20/2018] [Indexed: 01/17/2023] Open
Abstract
Introduction: Impaired sit-to-stand and stand-to-sit movements (postural transitions, PTs) in patients with Parkinson's disease (PD) and older adults (OA) are associated with risk of falling and reduced quality of life. Inertial measurement units (IMUs, also called "wearables") are powerful tools to monitor PT kinematics. The purpose of this study was to develop and validate an algorithm, based on a single IMU positioned at the lower back, for PT detection and description in the above-mentioned groups in a home-like environment. Methods: Four PD patients (two with dyskinesia) and one OA served as algorithm training group, and 21 PD patients (16 without and 5 with dyskinesia) and 11 OA served as test group. All wore an IMU on the lower back and were videotaped while performing everyday activities for 90-180 min in a non-standardized home-like environment. Accelerometer and gyroscope signals were analyzed using discrete wavelet transformation (DWT), a six degrees-of-freedom (DOF) fusion algorithm and vertical displacement estimation. Results: From the test group, 1,001 PTs, defined by video reference, were analyzed. The accuracy of the algorithm for the detection of PTs against video observation was 82% for PD patients without dyskinesia, 47% for PD patients with dyskinesia and 85% for OA. The overall accuracy of the PT direction detection was comparable across groups and yielded 98%. Mean PT duration values were 1.96 s for PD patients and 1.74 s for OA based on the algorithm (p < 0.001) and 1.77 s for PD patients and 1.51 s for OA based on clinical observation (p < 0.001). Conclusion: Validation of the PT detection algorithm in a home-like environment shows acceptable accuracy against the video reference in PD patients without dyskinesia and controls. Current limitations are the PT detection in PD patients with dyskinesia and the use of video observation as the video reference. Potential reasons are discussed.
Collapse
Affiliation(s)
- Minh H Pham
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany.,Digital Signal Processing and System Theory, Faculty of Engineering, Kiel University, Kiel, Germany
| | - Elke Warmerdam
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany.,Digital Signal Processing and System Theory, Faculty of Engineering, Kiel University, Kiel, Germany
| | - Morad Elshehabi
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany.,Department of Neurodegeneration, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Christian Schlenstedt
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Lu-Marie Bergeest
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Maren Heller
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Linda Haertner
- Department of Neurodegeneration, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Joaquim J Ferreira
- Clinical Pharmacology Unit, Instituto de Medicina Molecular, Lisbon, Portugal.,Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Daniela Berg
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany.,Department of Neurodegeneration, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Gerhard Schmidt
- Digital Signal Processing and System Theory, Faculty of Engineering, Kiel University, Kiel, Germany
| | - Clint Hansen
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Walter Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany.,Department of Neurodegeneration, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|