1
|
Hassanzadeh K, Liu J, Maddila S, Mouradian MM. Posttranslational Modifications of α-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases. Pharmacol Rev 2024; 76:1254-1290. [PMID: 39164116 PMCID: PMC11549938 DOI: 10.1124/pharmrev.123.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various posttranslational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the cooccurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. SIGNIFICANCE STATEMENT: α-Synuclein is a key pathogenic protein in Parkinson's disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple posttranslational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease, and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Jun Liu
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Santhosh Maddila
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
2
|
Hong J, Li Y, Chen L, Han D, Li Y, Mi X, Liu K, Wang Q, Song Y, Liu T, Yang N, Liu Y, Li Z, Guo X. A53T α-synuclein mutation increases susceptibility to postoperative delayed neurocognitive recovery via hippocampal Ang-(1-7)/MasR axis. Biochem Pharmacol 2024; 224:116261. [PMID: 38705534 DOI: 10.1016/j.bcp.2024.116261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Delayed neurocognitive recovery (dNCR) is a common complication in geriatric surgical patients. The impact of anesthesia and surgery on patients with neurodegenerative diseases, such as Parkinson's disease (PD) or prion disease, has not yet been reported. In this study, we aimed to determine the association between a pre-existing A53T genetic background, which involves a PD-related point mutation, and the development of postoperative dNCR. We observed that partial hepatectomy induced hippocampus-dependent cognitive deficits in 5-month-old A53T transgenic mice, a model of early-stage PD without cognitive deficits, unlike in age-matched wild-type (WT) mice. We respectively examined molecular changes at 6 h, 1 day, and 2 days after partial hepatectomy and observed that cognitive changes were accompanied by weakened angiotensin-(1-7)/Mas receptor [Ang-(1-7)/MasR] axis, increased alpha-synuclein (α-syn) expression and phosphorylation, decreased methylated protein phosphatase-2A (Me-PP2A), and prompted microglia M1 polarization and neuronal apoptosis in the hippocampus at 1 day after surgery. Nevertheless, no changes in blood-brain barrier (BBB) integrity or plasma α-syn levels in either A53T or WT mice. Furthermore, intranasal administration of selective MasR agonist AVE 0991, reversed the mentioned cognitive deficits in A53T mice, enhanced MasR expression, reduced α-syn accumulation and phosphorylation, and attenuated microglia activation and apoptotic response. Our findings suggest that individuals with the A53T genetic background may be more susceptible to developing postoperative dNCR. This susceptibility could be linked to central α-syn accumulation mediated by the weakened Ang-(1-7)/MasR/methyl-PP2A signaling pathway in the hippocampus following surgery, independent of plasma α-syn level and BBB.
Collapse
Affiliation(s)
- Jingshu Hong
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Lei Chen
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Dengyang Han
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yitong Li
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Kaixi Liu
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Qian Wang
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yanan Song
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Beijing Center of Quality Control and Improvement on Clinical Anesthesia, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Taotao Liu
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yajie Liu
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Beijing Center of Quality Control and Improvement on Clinical Anesthesia, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Anesthesia and Perioperative Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care (CPAM), No. 49, North Garden Street, Haidian District, Beijing 100191, China.
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Beijing Center of Quality Control and Improvement on Clinical Anesthesia, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Anesthesia and Perioperative Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care (CPAM), No. 49, North Garden Street, Haidian District, Beijing 100191, China.
| |
Collapse
|
3
|
Adeyeye TA, Babatunde BR, Ehireme SE, Shallie PD. Caffeine alleviates anxiety-like behavior and brainstem lesions in a rotenone-induced rat model of Parkinson's disease. J Chem Neuroanat 2023; 132:102315. [PMID: 37481171 DOI: 10.1016/j.jchemneu.2023.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms. In 2016, approximately 6.1 million individuals were affected by PD, with 211,296 deaths attributed to the disease. The understanding of PD initially came from the observation of dopaminergic system alterations in a specific region of the brainstem, indicating that the core motor and non-motor features of PD are closely associated with brainstem dysfunction. The primary treatment approach for PD revolves around dopamine replacement, as many of the symptoms are responsive to this therapeutic intervention. However, long-term administration of this approach is linked to several complications, and a definitive gold-standard therapy for PD is yet to be identified. The pharmacological management of PD has been challenging and inconsistent, mainly due to the unclear underlying cause of the disease. This study aims to evaluate the effects of caffeine on the brainstem of rats with PD induced by rotenone. METHODOLOGY Fifty adult male Wistar rats weighing between 150 and 200 g were used in this study. The rats were randomly divided into five groups of ten rats each: Vehicle Group, Rotenone-only treated Group (rotenone only treated with 3 mg/kg, intraperitoneal administration [IP]), Preventive Group (caffeine 30 mg/kg + rotenone 3 mg/kg, IP), Curative Group (rotenone 3 mg/kg + caffeine 30 mg/kg, IP), and Caffeine only treated Group (caffeine only treated with 30 mg/kg, IP). The animals underwent neurobehavioral assessments, followed by sacrifice. The brains were then excised, weighed, and processed histologically. Appropriate brain sections were taken and processed. Photomicrographs were obtained, morphometric and statistical analysis was performed using an Omax LED digital RESULTS: The results demonstrated a significant (p < 0.05) reduction in body weight and relative brain weight, which were increased by caffeine treatments. Rotenone administration led to histological changes similar to those observed in PD, including neuronal structural derangement, degenerated nerve fibers, loss of myelinated neurons, and Nissl substance, as well as downregulation in the expressions of NRF2 and TH in the midbrain. However, these pathological features were counteracted or ameliorated by caffeine treatment. CONCLUSION Our study contributes additional evidence to the growing body of research supporting the therapeutic potential of caffeine in Parkinson's disease (PD). The results underscore the neuroprotective properties of caffeine and its capacity to mitigate oxidative stress by modulating TH (tyrosine hydroxylase) and cytoplasmic NRF2 (nuclear factor erythroid 2-related factor 2) in the mesencephalon. These findings suggest that caffeine holds promise as a viable treatment option for PD.
Collapse
|
4
|
Yang Q, Wang Y, Zhao C, Pang S, Lu J, Chan P. α-Synuclein aggregation causes muscle atrophy through neuromuscular junction degeneration. J Cachexia Sarcopenia Muscle 2023; 14:226-242. [PMID: 36416282 PMCID: PMC9891985 DOI: 10.1002/jcsm.13123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 09/15/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Sarcopenia is common in patients with Parkinson's disease (PD), showing mitochondrial oxidative stress in skeletal muscle. The aggregation of α-synuclein (α-Syn) to induce oxidative stress is a key pathogenic process of PD; nevertheless, we know little about its potential role in regulating peripheral nerves and the function of the muscles they innervate. METHODS To investigate the role of α-Syn aggregation on neuromuscular system, we used the Thy1 promoter to overexpress human α-Syn transgenic mice (mThy1-hSNCA). hα-Syn expression was evaluated by western blot, and its localization was determined by confocal microscopy. The impact of α-Syn aggregation on the structure and function of skeletal muscle mitochondria and neuromuscular junctions (NMJs), as well as muscle mass and function were characterized by flow cytometry, transmission electron microscopy, Seahorse XF24 metabolic assay, and AAV9 in vivo injection. We assessed the regenerative effect of mitochondrial-targeted superoxide dismutase (Mito-TEMPO) after skeletal muscle injury in mThy1-hSNCA mice. RESULTS Overexpressed hα-Syn protein localized in motor neuron axons and NMJs in muscle and formed aggregates. α-Syn aggregation increased the number of abnormal mitochondrial in the intramuscular axons and NMJs by over 60% (P < 0.01), which inhibited the release of acetylcholine (ACh) from presynaptic vesicles in NMJs (P < 0.05). The expression of genes associated with NMJ activity, neurotransmission and regulation of reactive oxygen species (ROS) metabolic process were significantly decreased in mThy1-hSNCA mice, resulting in ROS production elevated by ~220% (P < 0.05), thereby exacerbating oxidative stress. Such process altered mitochondrial spatial relationships to sarcomeric structures, decreased Z-line spacing by 36% (P < 0.05) and increased myofibre apoptosis by ~10% (P < 0.05). Overexpression of α-Syn altered the metabolic profile of muscle satellite cells (MuSCs), including basal respiratory capacity (~170% reduction) and glycolytic capacity (~150% reduction) (P < 0.05) and decreased cell migration and fusion during muscle regeneration (~60% and ~40%, respectively) (P < 0.05). We demonstrated that Mito-TEMPO treatment could restore the oxidative stress status (the complex I/V protein and enzyme activities increased ~200% and ~150%, respectively), which caused by α-Syn aggregation, and improve the ability of muscle regeneration after injury. In addition, the NMJ receptor fragmentation and ACh secretion were also improved. CONCLUSIONS These results reveal that the α-synuclein aggregation plays an important role in regulating acetylcholine release from neuromuscular junctions and induces intramuscular mitochondrial oxidative stress, which can provide new insights into the aetiology of muscle atrophy in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Qiumei Yang
- Department of Neurology, Geriatrics and Neurobiology, National Clinical Research Center of Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yanyan Wang
- Department of Neurology, Geriatrics and Neurobiology, National Clinical Research Center of Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chunsong Zhao
- Department of Neurology, Geriatrics and Neurobiology, National Clinical Research Center of Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shimin Pang
- Department of Neurology, Geriatrics and Neurobiology, National Clinical Research Center of Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Lu
- Department of Neurology, Geriatrics and Neurobiology, National Clinical Research Center of Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Piu Chan
- Department of Neurology, Geriatrics and Neurobiology, National Clinical Research Center of Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,Clinical Center for Parkinson's Disease, Capital Medical University, Beijing Institute of Geriatrics, Beijing, China.,Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Li G, Liu J, Guo M, Gu Y, Guan Y, Shao Q, Ma W, Ji X. Chronic hypoxia leads to cognitive impairment by promoting HIF-2α-mediated ceramide catabolism and alpha-synuclein hyperphosphorylation. Cell Death Dis 2022; 8:473. [PMID: 36450714 PMCID: PMC9712431 DOI: 10.1038/s41420-022-01260-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022]
Abstract
Chronic hypoxia leads to irreversible cognitive impairment, primarily due to hippocampal neurodegeneration, for which the underlying mechanism remains poorly understood. We administered hypoxia (13%) to C57BL mice for 1-14 days in this study. Chronic hypoxia for 7 or 14 d, but not 1 or 3 d, resulted in alpha-synuclein hyperphosphorylation at serine129 (α-Syn p-S129) and protein aggregation, hippocampal neurodegeneration, and cognitive deficits, whereas the latter could be prevented by alpha-synuclein knockdown or an administered short peptide competing at α-Syn S129. These results suggest that α-Syn p-S129 mediates hippocampal degeneration and cognitive impairment following chronic hypoxia. Furthermore, we found that chronic hypoxia enhanced ceramide catabolism by inducing hypoxia-inducible factor (HIF)-2α and HIF-2α-dependent transcriptional activation of alkaline ceramidase 2 (Acer2). Thus, the enzymatic activity of protein phosphatase 2A (PP2A), a specific phosphatase for α-syn, is inhibited, leading to the sustained induction of α-Syn p-S129. Finally, we found that intermittent hypoxic preconditioning protected against subsequent chronic hypoxia-induced hippocampal neurodegeneration and cognitive impairment by preventing α-Syn p-S129. These results proved the critical role of α-syn pathology in chronic hypoxia-afforded cognitive impairment and revealed a novel mechanism underlying α-syn hyperphosphorylation during chronic hypoxia. The findings bear implications in developing novel therapeutic interventions for chronic hypoxia-related brain disorders.
Collapse
Affiliation(s)
- Gaifen Li
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China ,grid.413259.80000 0004 0632 3337Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jia Liu
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Mengyuan Guo
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yakun Gu
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yuying Guan
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China ,grid.413259.80000 0004 0632 3337Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qianqian Shao
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Wei Ma
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China ,grid.413259.80000 0004 0632 3337Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Liu W, Zhang Q, Xing H, Gao G, Liu J, Huang Y, Yang H. Characterization of a Novel Monoclonal Antibody for Serine-129 Phosphorylated α-Synuclein: A Potential Application for Clinical and Basic Research. Front Neurol 2022; 13:821792. [PMID: 35250825 PMCID: PMC8893957 DOI: 10.3389/fneur.2022.821792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
The Lewy bodies (LBs) are the pathological hallmark of Parkinson's disease (PD). More than 90% of α-synuclein (α-syn) within LBs is phosphorylated at the serine-129 residue [pSer129 α-syn (p-α-syn)]. Although various studies have revealed that this abnormally elevated p-α-syn acts as a pathological biomarker and is involved in the pathogenic process of PD, the exact pathophysiological mechanisms of p-α-syn are still not fully understood. Therefore, the development of specific and reliable tools for p-α-syn detection is important. In this study, we generated a novel p-α-syn mouse monoclonal antibody (C140S) using hybridoma technology. To further identify the characteristics of C140S, we performed several in vitro assays using recombinant proteins, along with ex vivo assays utilizing the brains of Thy1-SNCA transgenic (Tg) mice, the preformed fibril (PFF)-treated neurons, and the brain sections of patients with PD. Our C140S specifically recognized human and mouse p-α-syn proteins both in vitro and ex vivo, and similar to commercial p-α-syn antibodies, the C140S detected higher levels of p-α-syn in the midbrain of the Tg mice. Using immunogold electron microscopy, these p-α-syn particles were partly deposited in the cytoplasm and colocalized with the outer mitochondrial membrane. In addition, the C140S recognized p-α-syn pathologies in the PFF-treated neurons and the amygdala of patients with PD. Overall, the C140S antibody was a specific and potential research tool in the detection and mechanistic studies of pathogenic p-α-syn in PD and related synucleinopathies.
Collapse
Affiliation(s)
- Weijin Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing, China
| | - Qidi Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing, China
| | - Hao Xing
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing, China
| | - Ge Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing, China
| | - Jia Liu
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yue Huang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Hui Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing, China
- *Correspondence: Hui Yang
| |
Collapse
|
7
|
Qu G, Xu Z, Tuo W, Li C, Lillehoj H, Wan G, Gong H, Huang J, Tian G, Li S, Liu Y, Liu L. Immunoproteomic analysis of the sporozoite antigens of Eimeria necatrix. Vet Parasitol 2021; 301:109642. [PMID: 34971828 DOI: 10.1016/j.vetpar.2021.109642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/19/2022]
Abstract
Eimeria necatrix, an apicomplexan protozoa of the genus Eimeria, causes intestinal coccidiosis that can reduce growth performance of poultry and result in high mortality in older chickens. In this report, the whole sporozoite proteins of E.necatrix were studied by two-dimensional electrophoresis (2-DE) and Western blotting using hyper-immune chicken serum containing E.necatrix-specific antibodies. Approximately 680 protein spots for E.necatrix sporozoite were detected by 2-DE with silver staining, where 98 spots were cross-reacted with the E. necatrix-specific immune sera. Out of the 56 spots that were selected for MALDI-TOF-MS/MS analysis, 50 unique proteins were identified using the MASCOT software, 8 proteins were identified as known E.necatrix proteins and the rest were all putative proteins. These proteins have a wide range of known or predicted structures, cellular locations and functions, including proteins in category nuclear location & function, multifunctional- or multifunctional motifs-containing proteins, cellular transport and structure-related proteins, proteins of enzymatic activities, motor proteins-related, cell surface and organelle-related proteins. These new findings will enhance our understandings of parasite immunogenicity and immune evasion mechanisms of E. necatrix and facilitate the discovery phase of highly effective vaccine candidates.
Collapse
Affiliation(s)
- Guanggang Qu
- Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, 256600, Shandong, PR China
| | - Zhiyang Xu
- The Analysis Center, Nanjing Medical University, Nanjing, 211166, Jiangsu, PR China
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Charles Li
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, 20705, United States
| | - Hyun Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, 20705, United States
| | - Gen Wan
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, PR China
| | - Haiwei Gong
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, PR China
| | - Jinxin Huang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, PR China
| | - Guichuan Tian
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, PR China
| | - Shanxin Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, PR China
| | - Yuxin Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, PR China
| | - Liheng Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, PR China.
| |
Collapse
|
8
|
Li R, Lu Y, Zhang Q, Liu W, Yang R, Jiao J, Liu J, Gao G, Yang H. Piperine promotes autophagy flux by P2RX4 activation in SNCA/α-synuclein-induced Parkinson disease model. Autophagy 2021; 18:559-575. [PMID: 34092198 PMCID: PMC9037522 DOI: 10.1080/15548627.2021.1937897] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Olfactory dysfunction, one of the earliest non-motor symptoms of Parkinson disease (PD), is accompanied by abnormal deposition of SNCA/α-synuclein in the olfactory bulb (OB). The macroautophagy/autophagy-lysosome pathway (ALP) plays an important role in degrading pathological SNCA and modulating this pathway may be a promising treatment strategy. P2RX4 (purinergic receptor P2X, ligand-gated ion channel 4), a member of the purinergic receptor X family, is a key molecule regulating ALP. Piperine (PIP) is a Chinese medicine with anti-inflammatory and anti-oxidant effects. The present study investigated the neuroprotective effects of PIP on SNCA overexpression-induced PD cell and mouse models. We found that PIP oral administration (25, 50 and 100 mg/kg) for 6 weeks attenuated olfactory deficits and delayed motor deficits in Thy 1-SNCA transgenic mice overexpressing human SNCA. This was accompanied by a degradation of pathological SNCA in OB. In addition, PIP improved cell viability and promoted degradation of human SNCA in SK-N-SH cells. These protective effects were exerted via autophagy flux promotion by enhancing autophagosome-lysosome membrane fusion. Furthermore, tandem mass tag proteomics analyses showed that P2RX4 plays an important role in PIP treatment-induced activation of autophagy flux. These findings demonstrate that PIP exerts neuroprotective effects in PD models via promotion of autophagy flux and may be an effective agent for PD treatment. Abbreviations: 6-OHDA, 6-hydroxydopamine; ALP, autophagy-lysosome pathway; BafA1, bafilomycin A1; CoQ10, coenzyme Q10; DMSO: dimethyl sulfoxide; HPLC, high-performance liquid chromatography; IVE, ivermectin; LDH, lactate dehydrogenase; MAP1LC3/LC3-II, lipid-conjugated microtubule-associated protein 1 light chain 3; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; mRFP-GFP, tandem monomeric red fluorescent protein-green fluorescent protein; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; OB, olfactory bulb; P2RX4, purinergic receptor P2X, ligand-gated ion channel 4; PD, Parkinson disease; PBS: phosphate-buffered saline; PI: propidium iodide; PIP, piperine; PLG, piperlongumine; p-SNCA, SNCA phosphorylated at Ser129; Rap, rapamycin; RT-PCR: quantitative real-time PCR; SNARE, soluble N-ethylmaleimide-sensitive factor-attachment protein receptor; SNCA/α-synuclein, synuclein, alpha; STX17, syntaxin17; TG, transgenic; TH, tyrosine hydroxylase; UPS, ubiquitin-proteasome system; WT, wild-type
Collapse
Affiliation(s)
- Ruolin Li
- Department of Neurobiology School of Basic Medical Sciences, Capital Medical University, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing, China.,Department of Neurology, Affiliated Hospital of Jining Medical College, Jining, China
| | - Yongquan Lu
- Department of Neurobiology School of Basic Medical Sciences, Capital Medical University, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing, China
| | - Qidi Zhang
- Department of Neurobiology School of Basic Medical Sciences, Capital Medical University, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing, China
| | - Weijin Liu
- Department of Neurobiology School of Basic Medical Sciences, Capital Medical University, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing, China
| | - Runing Yang
- Department of Neurobiology School of Basic Medical Sciences, Capital Medical University, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing, China
| | - Jie Jiao
- Department of Neurobiology School of Basic Medical Sciences, Capital Medical University, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing, China
| | - Jia Liu
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Ge Gao
- Department of Neurobiology School of Basic Medical Sciences, Capital Medical University, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing, China
| | - Hui Yang
- Department of Neurobiology School of Basic Medical Sciences, Capital Medical University, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing, China
| |
Collapse
|
9
|
Vecchio LM, Sullivan P, Dunn AR, Bermejo MK, Fu R, Masoud ST, Gregersen E, Urs NM, Nazari R, Jensen PH, Ramsey A, Goldstein DS, Miller GW, Salahpour A. Enhanced tyrosine hydroxylase activity induces oxidative stress, causes accumulation of autotoxic catecholamine metabolites, and augments amphetamine effects in vivo. J Neurochem 2021; 158:960-979. [PMID: 33991113 PMCID: PMC8376767 DOI: 10.1111/jnc.15432] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
In Parkinson's disease, dopamine‐containing nigrostriatal neurons undergo profound degeneration. Tyrosine hydroxylase (TH) is the rate‐limiting enzyme in dopamine biosynthesis. TH increases in vitro formation of reactive oxygen species, and previous animal studies have reported links between cytosolic dopamine build‐up and oxidative stress. To examine effects of increased TH activity in catecholaminergic neurons in vivo, we generated TH‐over‐expressing mice (TH‐HI) using a BAC‐transgenic approach that results in over‐expression of TH with endogenous patterns of expression. The transgenic mice were characterized by western blot, qPCR, and immunohistochemistry. Tissue contents of dopamine, its metabolites, and markers of oxidative stress were evaluated. TH‐HI mice had a 3‐fold increase in total and phosphorylated TH levels and an increased rate of dopamine synthesis. Coincident with elevated dopamine turnover, TH‐HI mice showed increased striatal production of H2O2 and reduced glutathione levels. In addition, TH‐HI mice had elevated striatal levels of the neurotoxic dopamine metabolites 3,4‐dihydroxyphenylacetaldehyde and 5‐S‐cysteinyl‐dopamine and were more susceptible than wild‐type mice to the effects of amphetamine and methamphetamine. These results demonstrate that increased TH alone is sufficient to produce oxidative stress in vivo, build up autotoxic dopamine metabolites, and augment toxicity.
Collapse
Affiliation(s)
- Laura M Vecchio
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Patricia Sullivan
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological, Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Amy R Dunn
- The Jackson Laboratory. Bar Harbor, Maine, USA
| | - Marie Kristel Bermejo
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Rong Fu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Shababa T Masoud
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Emil Gregersen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus C., Denmark
| | - Nikhil M Urs
- Department of Pharmacology and Therapeutics, University of Florida, Gainsville, FL, USA
| | - Reza Nazari
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus C., Denmark
| | - Amy Ramsey
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - David S Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological, Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Centre, New York, NY, USA
| | - Ali Salahpour
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Shen Y, Zhang ZC, Cheng S, Liu A, Zuo J, Xia S, Liu X, Liu W, Jia Z, Xie W, Han J. PQBP1 promotes translational elongation and regulates hippocampal mGluR-LTD by suppressing eEF2 phosphorylation. Mol Cell 2021; 81:1425-1438.e10. [PMID: 33662272 DOI: 10.1016/j.molcel.2021.01.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/07/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
Eukaryotic elongation factor 2 (eEF2) mediates translocation of peptidyl-tRNA from the ribosomal A site to the P site to promote translational elongation. Its phosphorylation on Thr56 by its single known kinase eEF2K inactivates it and inhibits translational elongation. Extensive studies have revealed that different signal cascades modulate eEF2K activity, but whether additional factors regulate phosphorylation of eEF2 remains unclear. Here, we find that the X chromosome-linked intellectual disability protein polyglutamine-binding protein 1 (PQBP1) specifically binds to non-phosphorylated eEF2 and suppresses eEF2K-mediated phosphorylation at Thr56. Loss of PQBP1 significantly reduces general protein synthesis by suppressing translational elongation. Moreover, we show that PQBP1 regulates hippocampal metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) and mGluR-LTD-associated behaviors by suppressing eEF2K-mediated phosphorylation. Our results identify PQBP1 as a novel regulator in translational elongation and mGluR-LTD, and this newly revealed regulator in the eEF2K/eEF2 pathway is also an excellent therapeutic target for various disease conditions, such as neural diseases, virus infection, and cancer.
Collapse
Affiliation(s)
- Yuqian Shen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Zi Chao Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China.
| | - Shanshan Cheng
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - An Liu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Jian Zuo
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Shuting Xia
- Institute of Neuroscience, Soochow University, Suzhou 215000, China
| | - Xian Liu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Wenhua Liu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Zhengping Jia
- Neurosciences and Mental Health Program, Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Wei Xie
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Junhai Han
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China; Department of Neurology, Affiliated ZhongDa Hospital, Institute of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
11
|
Gao X, Huang Z, Feng C, Guan C, Li R, Xie H, Chen J, Li M, Que R, Deng B, Cao P, Li M, Lu J, Huang Y, Li M, Yang W, Yang X, Wen C, Liang X, Yang Q, Chao YX, Chan LL, Yenari MA, Jin K, Chaudhuri KR, Zhang J, Tan EK, Wang Q. Multimodal analysis of gene expression from postmortem brains and blood identifies synaptic vesicle trafficking genes to be associated with Parkinson's disease. Brief Bioinform 2020; 22:5932213. [PMID: 33079984 DOI: 10.1093/bib/bbaa244] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/23/2020] [Accepted: 09/01/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE We aimed to identify key susceptibility gene targets in multiple datasets generated from postmortem brains and blood of Parkinson's disease (PD) patients and healthy controls (HC). METHODS We performed a multitiered analysis to integrate the gene expression data using multiple-gene chips from 244 human postmortem tissues. We identified hub node genes in the highly PD-related consensus module by constructing protein-protein interaction (PPI) networks. Next, we validated the top four interacting genes in 238 subjects (90 sporadic PD, 125 HC and 23 Parkinson's Plus Syndrome (PPS)). Utilizing multinomial logistic regression analysis (MLRA) and receiver operating characteristic (ROC), we analyzed the risk factors and diagnostic power for discriminating PD from HC and PPS. RESULTS We identified 1333 genes that were significantly different between PD and HCs based on seven microarray datasets. The identified MEturquoise module is related to synaptic vesicle trafficking (SVT) dysfunction in PD (P < 0.05), and PPI analysis revealed that SVT genes PPP2CA, SYNJ1, NSF and PPP3CB were the top four hub node genes in MEturquoise (P < 0.001). The levels of these four genes in PD postmortem brains were lower than those in HC brains. We found lower blood levels of PPP2CA, SYNJ1 and NSF in PD compared with HC, and lower SYNJ1 in PD compared with PPS (P < 0.05). SYNJ1, negatively correlated to PD severity, displayed an excellent power to discriminating PD from HC and PPS. CONCLUSIONS This study highlights that SVT genes, especially SYNJ1, may be promising markers in discriminating PD from HCs and PPS.
Collapse
Affiliation(s)
- Xiaoya Gao
- Department of Neurology, Zhujiang Hospital, Southern Medical University, China
| | - Zifeng Huang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, China
| | - Cailing Feng
- Department of Neurology, Zhujiang Hospital of Southern Medical University, China
| | - Chaohao Guan
- Department of Neurology, Zhujiang Hospital of Southern Medical University, China
| | - Ruidong Li
- Genetics, Genomics, and Bioinformatics Program, Department of Botany and Plant Sciences of University of California, USA
| | - Haiting Xie
- Department of Neurology of Zhujiang Hospital of Southern Medical University, China
| | - Jian Chen
- Department of Neurology of Zhujiang Hospital of Southern Medical University, China
| | - Mingchun Li
- Department of Neurology of Zhujiang Hospital of Southern Medical University, China
| | - Rongfang Que
- Department of Neurology, Zhujiang Hospital of Southern Medical University, China
| | - Bin Deng
- Department of Neurology of Zhujiang Hospital of Southern Medical University, China
| | - Peihua Cao
- Clinical Research Centre of Zhujiang Hospital of Southern Medical University, China
| | - Mengyan Li
- Department of Neurology of First Municipal Hospital of Guangzhou, China
| | - Jianjun Lu
- Laboratory for Neuromodulation of Guangdong Second Provincial General Hospital, China
| | - Yihong Huang
- Department of Neurology of Fifth Affiliated Hospital of Southern Medical University, China
| | - Minzi Li
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guanghzou, China
| | - Weihong Yang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, China
| | - Xiaohua Yang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, China
| | - Chunyan Wen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, China
| | - Xiaomei Liang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, China
| | - Qin Yang
- Department of Neurology of Zhujiang Hospital of Southern Medical University, China
| | - Yin-Xia Chao
- Department of Neurology of National Neuroscience Institute, Singapore General Hospital, Duke-NUS Medical School
| | - Ling-Ling Chan
- Department of Neurology of National Neuroscience Institute, Singapore General Hospital, Duke-NUS Medical School
| | | | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - K Ray Chaudhuri
- International Parkinson Foundation Centre of Excellence at Kings College Hospital and research director at Kings College Hospital, and Kings College, Denmark Hill, London, SE5 9RS UK
| | - Jing Zhang
- Department of Pathology, University of Washington School of Medicine (USA)
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, and a professor in the Duke-NUS Medical School, Singapore
| | - Qing Wang
- Head of Department of Neurology, Zhujiang Hospital, Southern Medical University, China
| |
Collapse
|
12
|
Wu B, Cai H, Tang S, Xu Y, Shi Q, Wei L, Meng L, Zhang N, Wang X, Xiao D, Zou Y, Yang X, Li X, Lu C. Methionine-Mediated Protein Phosphatase 2A Catalytic Subunit (PP2Ac) Methylation Ameliorates the Tauopathy Induced by Manganese in Cell and Animal Models. Neurotherapeutics 2020; 17:1878-1896. [PMID: 32959271 PMCID: PMC7851222 DOI: 10.1007/s13311-020-00930-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 01/10/2023] Open
Abstract
The molecular mechanism of Alzheimer-like cognitive impairment induced by manganese (Mn) exposure has not yet been fully clarified, and there are currently no effective interventions to treat neurodegenerative lesions related to manganism. Protein phosphatase 2 A (PP2A) is a major tau phosphatase and was recently identified as a potential therapeutic target molecule for neurodegenerative diseases; its activity is directed by the methylation status of the catalytic C subunit. Methionine is an essential amino acid, and its downstream metabolite S-adenosylmethionine (SAM) participates in transmethylation pathways as a methyl donor. In this study, the neurotoxic mechanism of Mn and the protective effect of methionine were evaluated in Mn-exposed cell and rat models. We show that Mn-induced neurotoxicity is characterized by PP2Ac demethylation accompanied by abnormally decreased LCMT-1 and increased PME-1, which are associated with tau hyperphosphorylation and spatial learning and memory deficits, and that the poor availability of SAM in the hippocampus is likely to determine the loss of PP2Ac methylation. Importantly, maintenance of local SAM levels through continuous supplementation with exogenous methionine, or through specific inhibition of PP2Ac demethylation by ABL127 administration in vitro, can effectively prevent tau hyperphosphorylation to reduce cellular oxidative stress, apoptosis, damage to cell viability, and rat memory deficits in cell or animal Mn exposure models. In conclusion, our data suggest that SAM and PP2Ac methylation may be novel targets for the treatment of Mn poisoning and neurotoxic mechanism-related tauopathies.
Collapse
Affiliation(s)
- Bin Wu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Haiqing Cai
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Shen Tang
- School of Basic Medical Sciences, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Yilu Xu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Qianqian Shi
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Lancheng Wei
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Ling Meng
- School of Basic Medical Sciences, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Ning Zhang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Xinhang Wang
- School of Basic Medical Sciences, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Deqiang Xiao
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Yunfeng Zou
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Xiaobo Yang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Xiyi Li
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| | - Cailing Lu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
13
|
Xue J, Zhang L, Xie X, Gao Y, Jiang L, Wang J, Wang Y, Gao R, Yu J, Xiao H. Prenatal bisphenol A exposure contributes to Tau pathology: Potential roles of CDK5/GSK3β/PP2A axis in BPA-induced neurotoxicity. Toxicology 2020; 438:152442. [PMID: 32278051 DOI: 10.1016/j.tox.2020.152442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/08/2020] [Accepted: 03/22/2020] [Indexed: 01/20/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine disruptor used to manufacture polycarbonate plastics and epoxy resins. BPA exposure especially occupational perinatal exposure to has been linked to numerous adverse effects for the offspring. Available data have shown that perinatal exposure to BPA contributes to neurodegenerative pathological changes; however, the potential mechanisms remain unclear. This study attempted to investigate the long-term consequences of perinatal exposure to BPA on the offspring mouse brain. The pregnant mice were given either a vehicle control or BPA (2, 10, 100 μg/kg/d) from day 6 of gestation until weaning (P6-PND21, foetal and neonatal exposure). At 3, 6 and 9 months of age, the neurotoxic effects in the offspring in each group were investigated. We found that the spine density but not the dendritic branches in the hippocampus were noticeably reduced at 6 and 9 months of age. Meanwhile, p-Tau, the characteristic protein for tauopathy, was dramatically increased in both the hippocampus and cortex at 3-9 months of age. Mechanically, the balance of kinase and protein phosphatase, which plays critical roles in p-Tau regulation, was disturbed. It indicated that GSK3β and CDK5, two critical kinases, were activated in most of the BPA perinatal exposure group, while protein phosphatase 2A (PP2A), one of the important phosphatases, regulated p-Tau expression through its demethylation, methylation and phosphorylation. Taken together, the present study may be translatable to the human occupational BPA exposure due to a similar exposure level. BPA perinatal exposure causes long-term adverse effects on the mouse brain and may be a risk factor for tauopathies, and the CDK5/GSK3β/PP2A axis might be a promising therapeutic target for BPA-induced neurodegenerative pathological changes.
Collapse
Affiliation(s)
- Jing Xue
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Li Zhang
- Department of Anesthesiology, Children's Hospital of Nanjing Medical University, China
| | - Xuexue Xie
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Yue Gao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Lei Jiang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Jun Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China; China International Cooperation Center for Environment and Human Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Yu Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jing Yu
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
14
|
Javadpour P, Dargahi L, Ahmadiani A, Ghasemi R. To be or not to be: PP2A as a dual player in CNS functions, its role in neurodegeneration, and its interaction with brain insulin signaling. Cell Mol Life Sci 2019; 76:2277-2297. [PMID: 30874837 PMCID: PMC11105459 DOI: 10.1007/s00018-019-03063-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/16/2019] [Accepted: 03/07/2019] [Indexed: 12/26/2022]
Abstract
Accumulating evidence has reached the consensus that the balance of phosphorylation state of signaling molecules is a pivotal point in the regulation of cell signaling. Therefore, characterizing elements (kinases-phosphatases) in the phosphorylation balance are at great importance. However, the role of phosphatase enzymes is less investigated than kinase enzymes. PP2A is a member of serine/threonine protein phosphatase that its imbalance has been reported in neurodegenerative diseases. Therefore, we reviewed the superfamily of phosphatases and more specifically PP2A, its regulation, and physiological functions participate in CNS. Thereafter, we discussed the latest findings about PP2A dysregulation in Alzheimer and Parkinson diseases and possible interplay between this phosphatase and insulin signaling pathways. Finally, activating/inhibitory modulators for PP2A activity as well as experimental methods for PP2A study have been reviewed.
Collapse
Affiliation(s)
- Pegah Javadpour
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Wang Z, Gao G, Duan C, Yang H. Progress of immunotherapy of anti-α-synuclein in Parkinson's disease. Biomed Pharmacother 2019; 115:108843. [PMID: 31055236 DOI: 10.1016/j.biopha.2019.108843] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/14/2019] [Accepted: 03/31/2019] [Indexed: 12/12/2022] Open
Abstract
Many neurodegenerative diseases are characterized by progressive loss of neurons and abnormal protein accumulation, including amyloid (A)β and tau in Alzheimer's disease and Lewy bodies and α-synuclein (α-syn) in Parkinson's disease (PD). Recent evidence suggests that adaptive immunity plays an important role in PD, and that anti-α-syn antibodies can be used as therapy in neurodegenerative diseases; monoclonal antibodies were shown to inhibit α-syn propagation and aggregation in PD models and patients. In this review, we summarize the different pathological states of α-syn, including gene mutations, truncation, phosphorylation, and the high molecular weight form, and describe the specific antibodies that recognize the α-syn monomer or oligomer, some of which have been tested in clinic trials. We also discuss future research directions and potential targets in PD therapy.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Neurobiology School of Basic Medical Sciences, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory for Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Ge Gao
- Department of Neurobiology School of Basic Medical Sciences, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory for Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Chunli Duan
- Department of Neurobiology School of Basic Medical Sciences, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory for Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Hui Yang
- Department of Neurobiology School of Basic Medical Sciences, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory for Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|