1
|
Yanai R, Mitani TT, Susaki EA, Minamihisamatsu T, Shimojo M, Saito Y, Mizuma H, Nitta N, Kaneda D, Hashizume Y, Matsumoto G, Tanemura K, Zhang MR, Higuchi M, Ueda HR, Sahara N. A novel tauopathy model mimicking molecular and spatial aspects of human tau pathology. Brain Commun 2024; 6:fcae326. [PMID: 39420962 PMCID: PMC11483584 DOI: 10.1093/braincomms/fcae326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/02/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Creating a mouse model that recapitulates human tau pathology is essential for developing strategies to intervene in tau-induced neurodegeneration. However, mimicking the pathological features seen in human pathology often involves a trade-off with artificial effects such as unexpected gene insertion and neurotoxicity from the expression system. To overcome these issues, we developed the rTKhomo mouse model by combining a transgenic CaMKII-tTA system with a P301L mutated 1N4R human tau knock-in at the Rosa26 locus with a C57BL/6J background. This model closely mimics human tau pathology, particularly in the hippocampal CA1 region, showing age-dependent tau accumulation, neuronal loss and neuroinflammation. Notably, whole-brain 3D staining and light-sheet microscopy revealed a spatial gradient of tau deposition from the entorhinal cortex to the hippocampus, similar to the spatial distribution of Braak neurofibrillary tangle staging. Furthermore, [18F]PM-PBB3 positron emission tomography imaging enabled the quantification and live monitoring of tau deposition. The rTKhomo mouse model shows potential as a promising next-generation preclinical tool for exploring the mechanisms of tauopathy and for developing interventions targeting the spatial progression of tau pathology.
Collapse
Affiliation(s)
- Rin Yanai
- Advanced Neuroimaging Center, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Tomoki T Mitani
- Laboratory for Synthetic Biology, RIKEN BDR, Suita, Osaka, 565-0871, Japan
- Department of Systems Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Etsuo A Susaki
- Laboratory for Synthetic Biology, RIKEN BDR, Suita, Osaka, 565-0871, Japan
- Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
- Nakatani Biomedical Spatialomics Hub, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Takeharu Minamihisamatsu
- Advanced Neuroimaging Center, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Masafumi Shimojo
- Advanced Neuroimaging Center, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Yuri Saito
- Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Hiroshi Mizuma
- Advanced Neuroimaging Center, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Nobuhiro Nitta
- Advanced Neuroimaging Center, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Daita Kaneda
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Aichi, 441-8124, Japan
| | - Yoshio Hashizume
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Aichi, 441-8124, Japan
| | - Gen Matsumoto
- Department of Neurological Disease Control, Osaka Metropolitan University, School of Medicine, Osaka, 545-8585, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Science, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Makoto Higuchi
- Advanced Neuroimaging Center, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Hiroki R Ueda
- Laboratory for Synthetic Biology, RIKEN BDR, Suita, Osaka, 565-0871, Japan
- Department of Systems Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Naruhiko Sahara
- Advanced Neuroimaging Center, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| |
Collapse
|
2
|
Damuka N, Irmen RE, Krizan I, Miller M, Gollapelli KK, Bhoopal B, Deep O, Bansode A, Lockhart SN, Orr ME, Jadiya P, Bashetti N, Kumar JVS, Mintz A, Whitlow CT, Craft S, Macauley SL, Solingapuram Sai KK. Exploring microtubule dynamics in Alzheimer's disease: Longitudinal assessment using [ 11C]MPC-6827 PET imaging in rodent models of Alzheimer's-related pathology. Alzheimers Dement 2024; 20:6082-6093. [PMID: 38967283 PMCID: PMC11497705 DOI: 10.1002/alz.14083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024]
Abstract
INTRODUCTION Microtubule (MT) stability is crucial for proper neuronal function. Understanding MT dysregulation is critical for connecting amyloid beta (Aβ) and tau-based degenerative events and early changes in presymptomatic Alzheimer's disease (AD). Herein we present positron emission tomography (PET) imaging properties of our MT-PET radiotracer, [11C]MPC-6827, in multiple established AD mouse models. METHODS Longitudinal PET, biodistribution, autoradiography, immunohistochemistry, and behavioral studies were conducted at multiple time points in APPswe/PSEN1dE9 (APP/PS1), P301S-PS19 (P301S), 5xFAD, and age-matched control mice. RESULTS Longitudinal [11C]MPC-6827 brain imaging showed significant increases in APP/PS1, P301S, and 5xFAD mice compared to controls. Longitudinal MT-PET correlated positively with biodistribution, autoradiography, and immunohistochemistry results and negatively with behavior data. DISCUSSION Our study demonstrated significant longitudinal [11C]MPC-6827 PET increases in multiple AD mouse models for the first time. Strong correlations between PET and biomarker data underscored the interplay of MT destabilization, amyloid, and tau pathology in AD. These results suggest [11C]MPC-6827 PET as a promising tool for monitoring MT dysregulation early in AD progression. HIGHLIGHTS Longitudinal positron emission tomography (PET) imaging studies using [11C]MPC-6827 in multiple established Alzheimer's disease (AD) mouse models revealed an early onset of microtubule dysregulation, with significant changes in brain radiotracer uptake evident from 2 to 4 months of age. Intra-group analysis showed a progressive increase in microtubule dysregulation with increasing AD burden, supported by significant correlations between PET imaging data and biodistribution, autoradiography, and molecular pathological markers. [11C]MPC-6827 PET imaging demonstrated its efficacy in detecting early microtubule alterations preceding observable behavioral changes in AD mouse models, suggesting its potential for early AD imaging. The inclusion of the 5xFAD mouse model further elucidated the impact of amyloid beta (Aβ) toxicity on inducing tau hyperphosphorylation-mediated microtubule dysregulation, highlighting the versatility of [11C]MPC-6827 in delineating various aspects of AD pathology. Our study provides immediate clarity on high uptake of the microtubule-based radiotracer in AD brains in a longitudinal setting, which directly informs clinical utility in Aβ/tau-based studies.
Collapse
Affiliation(s)
- Naresh Damuka
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Riley E. Irmen
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Ivan Krizan
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Mack Miller
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | | | | | - Ojasvi Deep
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Avinash Bansode
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Samuel N. Lockhart
- Department of Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Miranda E. Orr
- Department of Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Pooja Jadiya
- Department of Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Nagaraju Bashetti
- Department of ChemistryKoneru Lakshmaiah Education FoundationVijayawadaAndhra PradeshIndia
| | - J. V. Shanmukha Kumar
- Department of ChemistryKoneru Lakshmaiah Education FoundationVijayawadaAndhra PradeshIndia
| | - Akiva Mintz
- Department of RadiologyColumbia University Medical CenterNew YorkNew YorkUSA
| | | | - Suzanne Craft
- Department of Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | | | | |
Collapse
|
3
|
Strobel J, Müller HP, Ludolph AC, Beer AJ, Sollmann N, Kassubek J. New Perspectives in Radiological and Radiopharmaceutical Hybrid Imaging in Progressive Supranuclear Palsy: A Systematic Review. Cells 2023; 12:2776. [PMID: 38132096 PMCID: PMC10742083 DOI: 10.3390/cells12242776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disease characterized by four-repeat tau deposition in various cell types and anatomical regions, and can manifest as several clinical phenotypes, including the most common phenotype, Richardson's syndrome. The limited availability of biomarkers for PSP relates to the overlap of clinical features with other neurodegenerative disorders, but identification of a growing number of biomarkers from imaging is underway. One way to increase the reliability of imaging biomarkers is to combine different modalities for multimodal imaging. This review aimed to provide an overview of the current state of PSP hybrid imaging by combinations of positron emission tomography (PET) and magnetic resonance imaging (MRI). Specifically, combined PET and MRI studies in PSP highlight the potential of [18F]AV-1451 to detect tau, but also the challenge in differentiating PSP from other neurodegenerative diseases. Studies over the last years showed a reduced synaptic density in [11C]UCB-J PET, linked [11C]PK11195 and [18F]AV-1451 markers to disease progression, and suggested the potential role of [18F]RO948 PET for identifying tau pathology in subcortical regions. The integration of quantitative global and regional gray matter analysis by MRI may further guide the assessment of reduced cortical thickness or volume alterations, and diffusion MRI could provide insight into microstructural changes and structural connectivity in PSP. Challenges in radiopharmaceutical biomarkers and hybrid imaging require further research targeting markers for comprehensive PSP diagnosis.
Collapse
Affiliation(s)
- Joachim Strobel
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany;
| | - Hans-Peter Müller
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (H.-P.M.); (A.C.L.); (J.K.)
| | - Albert C. Ludolph
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (H.-P.M.); (A.C.L.); (J.K.)
- German Center for Neurodegenerative Diseases (DZNE), Ulm University, 89081 Ulm, Germany
| | - Ambros J. Beer
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany;
| | - Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, 89081 Ulm, Germany;
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Jan Kassubek
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (H.-P.M.); (A.C.L.); (J.K.)
- German Center for Neurodegenerative Diseases (DZNE), Ulm University, 89081 Ulm, Germany
| |
Collapse
|
4
|
Vagenknecht P, Luzgin A, Ono M, Ji B, Higuchi M, Noain D, Maschio CA, Sobek J, Chen Z, Konietzko U, Gerez JA, Riek R, Razansky D, Klohs J, Nitsch RM, Dean-Ben XL, Ni R. Non-invasive imaging of tau-targeted probe uptake by whole brain multi-spectral optoacoustic tomography. Eur J Nucl Med Mol Imaging 2022; 49:2137-2152. [PMID: 35128565 PMCID: PMC9165274 DOI: 10.1007/s00259-022-05708-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Abnormal tau accumulation within the brain plays an important role in tauopathies such as Alzheimer's disease and frontotemporal dementia. High-resolution imaging of tau deposits at the whole-brain scale in animal disease models is highly desired. METHODS We approached this challenge by non-invasively imaging the brains of P301L mice of 4-repeat tau with concurrent volumetric multi-spectral optoacoustic tomography (vMSOT) at ~ 115 μm spatial resolution using the tau-targeted pyridinyl-butadienyl-benzothiazole derivative PBB5 (i.v.). In vitro probe characterization, concurrent vMSOT and epi-fluorescence imaging of in vivo PBB5 targeting (i.v.) was performed in P301L and wild-type mice, followed by ex vivo validation using AT-8 antibody for phosphorylated tau. RESULTS PBB5 showed specific binding to recombinant K18 tau fibrils by fluorescence assay, to post-mortem Alzheimer's disease brain tissue homogenate by competitive binding against [11C]PBB3 and to tau deposits (AT-8 positive) in post-mortem corticobasal degeneration and progressive supranuclear palsy brains. Dose-dependent optoacoustic and fluorescence signal intensities were observed in the mouse brains following i.v. administration of different concentrations of PBB5. In vivo vMSOT brain imaging of P301L mice showed higher retention of PBB5 in the tau-laden cortex and hippocampus compared to wild-type mice, as confirmed by ex vivo vMSOT, epi-fluorescence, multiphoton microscopy, and immunofluorescence staining. CONCLUSIONS We demonstrated non-invasive whole-brain imaging of tau in P301L mice with vMSOT system using PBB5 at a previously unachieved ~ 115 μm spatial resolution. This platform provides a new tool to study tau spreading and clearance in a tauopathy mouse model, foreseeable in monitoring tau targeting putative therapeutics.
Collapse
Affiliation(s)
- Patrick Vagenknecht
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Artur Luzgin
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Maiko Ono
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Bin Ji
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Makoto Higuchi
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Daniela Noain
- Neurology Department, University Hospital Zurich, Zurich, Switzerland
| | - Cinzia A Maschio
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
| | - Jens Sobek
- Functional Genomics Center, University of Zurich, Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Uwe Konietzko
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Juan A Gerez
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Jan Klohs
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland
| | - Xose Luis Dean-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland.
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.
- Zentrum für Neurowissenschaften Zürich (ZNZ), Zurich, Switzerland.
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, ETH Zurich & University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Chen B, Marquez-Nostra B, Belitzky E, Toyonaga T, Tong J, Huang Y, Cai Z. PET Imaging in Animal Models of Alzheimer’s Disease. Front Neurosci 2022; 16:872509. [PMID: 35685772 PMCID: PMC9171374 DOI: 10.3389/fnins.2022.872509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The successful development and translation of PET imaging agents targeting β-amyloid plaques and hyperphosphorylated tau tangles have allowed for in vivo detection of these hallmarks of Alzheimer’s disease (AD) antemortem. Amyloid and tau PET have been incorporated into the A/T/N scheme for AD characterization and have become an integral part of ongoing clinical trials to screen patients for enrollment, prove drug action mechanisms, and monitor therapeutic effects. Meanwhile, preclinical PET imaging in animal models of AD can provide supportive information for mechanistic studies. With the recent advancement of gene editing technologies and AD animal model development, preclinical PET imaging in AD models will further facilitate our understanding of AD pathogenesis/progression and the development of novel treatments. In this study, we review the current state-of-the-art in preclinical PET imaging using animal models of AD and suggest future research directions.
Collapse
|
6
|
Cao L, Kong Y, Ji B, Ren Y, Guan Y, Ni R. Positron Emission Tomography in Animal Models of Tauopathies. Front Aging Neurosci 2022; 13:761913. [PMID: 35082657 PMCID: PMC8784812 DOI: 10.3389/fnagi.2021.761913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
The microtubule-associated protein tau (MAPT) plays an important role in Alzheimer's disease and primary tauopathy diseases. The abnormal accumulation of tau contributes to the development of neurotoxicity, inflammation, neurodegeneration, and cognitive deficits in tauopathy diseases. Tau synergically interacts with amyloid-beta in Alzheimer's disease leading to detrimental consequence. Thus, tau has been an important target for therapeutics development for Alzheimer's disease and primary tauopathy diseases. Tauopathy animal models recapitulating the tauopathy such as transgenic, knock-in mouse and rat models have been developed and greatly facilitated the understanding of disease mechanisms. The advance in PET and imaging tracers have enabled non-invasive detection of the accumulation and spread of tau, the associated microglia activation, metabolic, and neurotransmitter receptor alterations in disease animal models. In vivo microPET studies on mouse or rat models of tauopathy have provided significant insights into the phenotypes and time course of pathophysiology of these models and allowed the monitoring of treatment targeting at tau. In this study, we discuss the utilities of PET and recently developed tracers for evaluating the pathophysiology in tauopathy animal models. We point out the outstanding challenges and propose future outlook in visualizing tau-related pathophysiological changes in brain of tauopathy disease animal models.
Collapse
Affiliation(s)
- Lei Cao
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Changes Technology Corporation Ltd., Shanghai, China
| | - Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yutong Ren
- Guangdong Robotics Association, Guangzhou, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Ni R, Nitsch RM. Recent Developments in Positron Emission Tomography Tracers for Proteinopathies Imaging in Dementia. Front Aging Neurosci 2022; 13:751897. [PMID: 35046791 PMCID: PMC8761855 DOI: 10.3389/fnagi.2021.751897] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
An early detection and intervention for dementia represent tremendous unmet clinical needs and priorities in society. A shared feature of neurodegenerative diseases causing dementia is the abnormal accumulation and spreading of pathological protein aggregates, which affect the selective vulnerable circuit in a disease-specific pattern. The advancement in positron emission tomography (PET) biomarkers has accelerated the understanding of the disease mechanism and development of therapeutics for Alzheimer's disease and Parkinson's disease. The clinical utility of amyloid-β PET and the clinical validity of tau PET as diagnostic biomarker for Alzheimer's disease continuum have been demonstrated. The inclusion of biomarkers in the diagnostic criteria has introduced a paradigm shift that facilitated the early and differential disease diagnosis and impacted on the clinical management. Application of disease-modifying therapy likely requires screening of patients with molecular evidence of pathological accumulation and monitoring of treatment effect assisted with biomarkers. There is currently still a gap in specific 4-repeat tau imaging probes for 4-repeat tauopathies and α-synuclein imaging probes for Parkinson's disease and dementia with Lewy body. In this review, we focused on recent development in molecular imaging biomarkers for assisting the early diagnosis of proteinopathies (i.e., amyloid-β, tau, and α-synuclein) in dementia and discussed future perspectives.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
| | - Roger M. Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Mena AM, Strafella AP. Imaging pathological tau in atypical parkinsonisms: A review. Clin Park Relat Disord 2022; 7:100155. [PMID: 35880206 PMCID: PMC9307942 DOI: 10.1016/j.prdoa.2022.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/06/2022] [Accepted: 07/07/2022] [Indexed: 11/27/2022] Open
Abstract
[18F]AV-1451 displays mixed results for specificity to 4R CBD- and PSP-tau. [18F]PI-2620 and [18F]PM-PBB3 are the most promising second-generation tau PET tracers. Research using second-generation tau PET tracers in CBD and PSP is still limited. Finding an imaging diagnostic biomarker requires further work with larger samples.
Atypical parkinsonisms (APs) are a group of diseases linked to tau pathology. These include progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). In the initial stages, these APs may have similar clinical manifestations to Parkinson’s disease (PD) and other parkinsonisms: bradykinesia, postural instability, tremor, and cognitive decline. Because of this, one major hurdle is the accurate early diagnosis of APs. Recent advances in positron emission tomography (PET) radiotracer development have allowed for targeting pathological tau in Alzheimer’s disease (AD). Currently, work is still in progress for identifying a first-in-class radiotracer for imaging tau in APs. In this review, we evaluate the literature on in vitro and in vivo testing of current tau PET radiotracers in APs. The tau PET tracers assessed include both first-generation tracers ([18F]AV-1451, [18F]FDDNP, [18F]THK derivatives, and [11C]PBB3) and second-generation tracers ([18F]PM-PBB3, [18F]PI-2620, [18F]RO-948, [18F]JNJ-067, [18F]MK-6240, and [18F]CBD-2115). Concerns regarding off-target binding to cerebral white matter and the basal ganglia are still prominent with first-generation tracers, but this seems to have been mediated in a handful of second-generation tracers, including [18F]PI-2620 and [18F]PM-PBB3. Additionally, these two tracers and [18F]MK-6240 show promising results for imaging PSP- and CBD-tau. Overall, [18F]AV-1451 is the most widely studied tracer but the mixed results regarding its efficacy for use in imaging AP-tau is a cause for concern moving forward. Instead, future work may benefit from focusing on the second-generation radiotracers which seem to have a higher specificity for AP-tau than those originally developed for imaging AD-tau.
Collapse
|
9
|
Murugan NA, Nordberg A, Ågren H. Cryptic Sites in Tau Fibrils Explain the Preferential Binding of the AV-1451 PET Tracer toward Alzheimer's Tauopathy. ACS Chem Neurosci 2021; 12:2437-2447. [PMID: 34152739 PMCID: PMC8291571 DOI: 10.1021/acschemneuro.0c00340] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
![]()
Tauopathies are a subclass of neurodegenerative diseases characterized
by an accumulation of microtubule binding tau fibrils in brain regions.
Diseases such as Alzheimer’s (AD), chronic traumatic encephalopathy
(CTE), Pick’s disease (PiD), and corticobasal degeneration
(CBD) belong to this subclass. Development of tracers which can visualize
and discriminate between different tauopathies is of clinical importance
in the diagnosis of various tauopathies. Currently, several tau tracers
are available for in vivo imaging using a positron emission tomography
(PET) technique. Among these tracers, PBB3 is reported to bind to
various types of tau fibrils with comparable binding affinities.
In contrast, tau tracer AV-1451 is reported to bind to specific types
of tau fibrils (in particular to AD-associated and CTE) with higher
binding affinity and only show nonspecific or weaker binding toward
tau fibrils dominant with 3R isoforms (associated with PiD). The tau
fibrils associated with different tauopathies can adopt different
microstructures with different binding site microenvironments. By
using detailed studies of the binding profiles of tau tracers for
different types of tau fibrils, it may be possible to design tracers
with high selectivity toward a specific tauopathy. The microstructures
for the tau fibrils from patients with AD, PiD, and CTE have recently
been demonstrated by cryogenic electron microscopy (cryo-EM) measurements
allowing structure-based in silico simulations. In the present study,
we have performed a multiscale computational study involving molecular
docking, molecular dynamics, free energy calculations, and QM fragmentation
calculations to understand the binding profiles of tau tracer AV-1451
and its potential use for diagnosis of AD, CTE, and PiD tauopathies.
Our computational study reveals that different affinity binding sites
exist for AV-1451 in the tau fibrils associated with different tauopathies.
The binding affinity of this tracer toward different tau fibrils goes
in this order: PiD > AD > CTE. The interaction energies for different
tau fibril–tracer complexes using the QM fragmentation scheme
also showed the same trend. However, by carrying out molecular dynamics
simulations for the AD-derived tau fibrils in organic solvents, we
found additional high affinity binding sites for AV-1451. The AV-1451
binding profile in these cryptic sites correctly explains the preferential
binding of this tracer toward the AD fibrils when compared with the
PiD fibrils. This study clearly demonstrates having a cryo-EM structure
is still not sufficient for the structure-based tracer discovery for
certain targets, as they may have “potential but hidden”
high affinity binding sites, and we need additional strategies to
identify them.
Collapse
Affiliation(s)
- N. Arul Murugan
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, S-141 86 Stockholm, Sweden
- Theme Aging, The Aging Brain, Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Uppsala SE-75120, Sweden
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
10
|
(S)-[ 18F]THK5117 brain uptake is associated with Aβ plaques and MAO-B enzyme in a mouse model of Alzheimer's disease. Neuropharmacology 2021; 196:108676. [PMID: 34216585 DOI: 10.1016/j.neuropharm.2021.108676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
The mouse model of beta-amyloid (Aβ) deposition, APP/PS1-21, exhibits high brain uptake of the tau-tracer (S)-[18F]THK5117, although no neurofibrillary tangles are present in this mouse model. For this reason we investigated (S)-[18F]THK5117 off-target binding to Aβ plaques and MAO-B enzyme in APP/PS1-21 transgenic (TG) mouse model of Aβ deposition. APP/PS1-21 TG and wild-type (WT) control mice in four different age groups (2-26 months) were imaged antemortem by positron emission tomography with (S)-[18F]THK5117, and then brain autoradiography. Additional animals were used for immunohistochemical staining and MAO-B enzyme blocking study with deprenyl pre-treatment. Regional standardized uptake value ratios for the cerebellum revealed a significant temporal increase in (S)-[18F]THK5117 uptake in aged TG, but not WT, brain. Immunohistochemical staining revealed a similar increase in Aβ plaques but not endogenous hyper-phosphorylated tau or MAO-B enzyme, and ex vivo autography showed that uptake of (S)-[18F]THK5117 co-localized with the amyloid pathology. Deprenyl hydrochloride pre-treatment reduced the binding of (S)-[18F]THK5117 in the neocortex, hippocampus, and thalamus. This study's findings suggest that increased (S)-[18F]THK5117 binding in aging APP/PS1-21 TG mice is mainly due to increasing Aβ deposition, and to a lesser extent binding to MAO-B enzyme, but not hyper-phosphorylated tau.
Collapse
|
11
|
McMurray L, Macdonald JA, Ramakrishnan NK, Zhao Y, Williamson DW, Tietz O, Zhou X, Kealey S, Fagan SG, Smolek T, Cubinkova V, Žilka N, Spillantini MG, Tolkovsky AM, Goedert M, Aigbirhio FI. Synthesis and Assessment of Novel Probes for Imaging Tau Pathology in Transgenic Mouse and Rat Models. ACS Chem Neurosci 2021; 12:1885-1893. [PMID: 33689290 PMCID: PMC8176454 DOI: 10.1021/acschemneuro.0c00790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aggregated tau protein is a core pathology present in several neurodegenerative diseases. Therefore, the development and application of positron emission tomography (PET) imaging radiotracers that selectively bind to aggregated tau in fibril form is of importance in furthering the understanding of these disorders. While radiotracers used in human PET studies offer invaluable insight, radiotracers that are also capable of visualizing tau fibrils in animal models are important tools for translational research into these diseases. Herein, we report the synthesis and characterization of a novel library of compounds based on the phenyl/pyridinylbutadienylbenzothiazoles/benzothiazolium (PBB3) backbone developed for this application. From this library, we selected the compound LM229, which binds to recombinant tau fibrils with high affinity (Kd = 3.6 nM) and detects with high specificity (a) pathological 4R tau aggregates in living cultured neurons and mouse brain sections from transgenic human P301S tau mice, (b) truncated human 151-351 3R (SHR24) and 4R (SHR72) tau aggregates in transgenic rat brain sections, and (c) tau neurofibrillary tangles in brain sections from Alzheimer's disease (3R/4R tau) and progressive supranuclear palsy (4R tau). With LM229 also shown to cross the blood-brain barrier in vivo and its effective radiolabeling with the radioisotope carbon-11, we have established a novel platform for PET translational studies using rodent transgenic tau models.
Collapse
Affiliation(s)
- Lindsay McMurray
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | | | - Nisha Kuzhuppilly Ramakrishnan
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Yanyan Zhao
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - David W. Williamson
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Ole Tietz
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Xiaoyun Zhou
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Steven Kealey
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Steven G. Fagan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Tomáš Smolek
- Axon Neuroscience R&D Services SE, Bratislava, Slovak Republic 811 02
| | | | - Norbert Žilka
- Axon Neuroscience R&D Services SE, Bratislava, Slovak Republic 811 02
| | - Maria Grazia Spillantini
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Aviva M. Tolkovsky
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Michel Goedert
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Franklin I. Aigbirhio
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
12
|
Respondek G, Höglinger GU. DescribePS P and ProPSP: German Multicenter Networks for Standardized Prospective Collection of Clinical Data, Imaging Data, and Biomaterials of Patients With Progressive Supranuclear Palsy. Front Neurol 2021; 12:644064. [PMID: 34113306 PMCID: PMC8186498 DOI: 10.3389/fneur.2021.644064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The German research networks DescribePSP and ProPSP prospectively collect comprehensive clinical data, imaging data and biomaterials of patients with a clinical diagnosis of progressive supranuclear palsy. Progressive supranuclear palsy is a rare, adult-onset, neurodegenerative disease with striking clinical heterogeneity. Since now, prospective natural history data are largely lacking. Clinical research into treatment strategies has been limited due to delay in clinical diagnosis and lack of natural history data on distinct clinical phenotypes. Methods: The DescribePSP network is organized by the German Center for Neurodegenerative Diseases. DescribePSP is embedded in a larger network with parallel cohorts of other neurodegenerative diseases and healthy controls. The DescribePSP network is directly linked to other Describe cohorts with other primary diagnoses of the neurodegenerative and vascular disease spectrums and also to an autopsy program for clinico-pathological correlation. The ProPSP network is organized by the German Parkinson and Movement Disorders Society. Both networks follow the same core protocol for patient recruitment and collection of data, imaging and biomaterials. Both networks host a web-based data registry and a central biorepository. Inclusion/exclusion criteria follow the 2017 Movement Disorder Society criteria for the clinical diagnosis of progressive supranuclear palsy. Results: Both networks started recruitment of patients by the end of 2015. As of November 2020, N = 354 and 269 patients were recruited into the DescribePSP and the ProPSP studies, respectively, and N = 131 and 87 patients received at least one follow-up visit. Conclusions: The DescribePSP and ProPSP networks are ideal resources for comprehensive natural history data of PSP, including imaging data and biological samples. In contrast to previous natural history studies, DescribePSP and ProPSP include not only patients with Richardson's syndrome, but also variant PSP phenotypes as well as patients at very early disease stages, before a diagnosis of possible or probable PSP can be made. This will allow for identification and evaluation of early biomarkers for diagnosis, prognosis, and progression.
Collapse
Affiliation(s)
- Gesine Respondek
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | - Günter U. Höglinger
- Department of Neurology, Hannover Medical School, Hanover, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
- Department of Neurology, Technical University of Munich, Munich, Germany
| |
Collapse
|
13
|
Uzuegbunam BC, Librizzi D, Hooshyar Yousefi B. PET Radiopharmaceuticals for Alzheimer's Disease and Parkinson's Disease Diagnosis, the Current and Future Landscape. Molecules 2020; 25:E977. [PMID: 32098280 PMCID: PMC7070523 DOI: 10.3390/molecules25040977] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Ironically, population aging which is considered a public health success has been accompanied by a myriad of new health challenges, which include neurodegenerative disorders (NDDs), the incidence of which increases proportionally to age. Among them, Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common, with the misfolding and the aggregation of proteins being common and causal in the pathogenesis of both diseases. AD is characterized by the presence of hyperphosphorylated τ protein (tau), which is the main component of neurofibrillary tangles (NFTs), and senile plaques the main component of which is β-amyloid peptide aggregates (Aβ). The neuropathological hallmark of PD is α-synuclein aggregates (α-syn), which are present as insoluble fibrils, the primary structural component of Lewy body (LB) and neurites (LN). An increasing number of non-invasive PET examinations have been used for AD, to monitor the pathological progress (hallmarks) of disease. Notwithstanding, still the need for the development of novel detection tools for other proteinopathies still remains. This review, although not exhaustively, looks at the timeline of the development of existing tracers used in the imaging of Aβ and important moments that led to the development of these tracers.
Collapse
Affiliation(s)
| | - Damiano Librizzi
- Department of Nuclear Medicine, Philipps-University of Marburg, 35043 Marburg, Germany;
| | - Behrooz Hooshyar Yousefi
- Nuclear Medicine Department, and Neuroimaging Center, Technical University of Munich, 81675 Munich, Germany;
- Department of Nuclear Medicine, Philipps-University of Marburg, 35043 Marburg, Germany;
| |
Collapse
|
14
|
Sun X, Liang S, Fu L, Zhang X, Feng T, Li P, Zhang T, Wang L, Yin X, Zhang W, Hu Y, Liu H, Zhao S, Nie B, Xu B, Shan B. A human brain tau PET template in MNI space for the voxel-wise analysis of Alzheimer's disease. J Neurosci Methods 2019; 328:108438. [PMID: 31542346 DOI: 10.1016/j.jneumeth.2019.108438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Positron emission tomography (PET) imaging techniques of tau retention in the human brain are important for mechanistic studies of Alzheimer's disease (AD). However, the method for effectively conducting voxel-wise analysis on tau PET images still needs to be improved. In the present study, we introduced a tau PET template for the human brain in Montreal Neurological Institute (MNI) space for the convenient and reliable voxel-wise analysis of tau PET images in AD studies. NEW METHOD Twenty-four AD patients and 22 controls were used to construct the tau PET template, and an additional 22 subjects (11 AD patients and 11 controls) were enrolled to evaluate the performance of the template. Thirty regions (28 cortical and 2 subcortical regions) throughout the brain were used to evaluate the accuracy of the tau PET template. RESULTS A significant relationship (R2 = 0.848, P < 0.001) was found between the standardized uptake value ratios (SUVRs) obtained by the tau PET template and magnetic resonance imaging (MRI)-aided approach, and the paired-sample t-test showed no significant difference (P = 0.62) between the values. These two approaches revealed consistent brain regions with high tau retention. COMPARISON WITH EXISTING METHODS The tau PET template was comparable with the traditional MRI-aided strategy. Furthermore, compared to the MRI-aided approach, the tau PET template was more convenient and easier to use. More importantly, in most clinical settings, AD patients who underwent PET/computed tomography (CT) typically do not have MR images, in which case the traditional MRI-aided approach would not be applicable. Our tau PET template overcame this deficiency and may serve as a useful tool in AD research. CONCLUSIONS This tau PET template performed well and may serve as a useful tool in future AD studies.
Collapse
Affiliation(s)
- Xi Sun
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shengxiang Liang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350122, China
| | - Liping Fu
- Department of Nuclear Medicine, General Hospital of the Chinese People's Liberation Army, Beijing 100049, China
| | - Xiaojun Zhang
- Department of Nuclear Medicine, General Hospital of the Chinese People's Liberation Army, Beijing 100049, China
| | - Ting Feng
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Panlong Li
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhao Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luying Wang
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Yin
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yichao Hu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; College of Information Engineering, Xiangtan University, Hunan 411105, China
| | - Hua Liu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shujun Zhao
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China.
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Baixuan Xu
- Department of Nuclear Medicine, General Hospital of the Chinese People's Liberation Army, Beijing 100049, China.
| | - Baoci Shan
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
15
|
Abstract
Frontotemporal dementia (FTD) is a common young-onset dementia presenting with heterogeneous and distinct syndromes. It is characterized by progressive deficits in behavior, language, and executive function. The disease may exhibit similar characteristics to many psychiatric disorders owing to its prominent behavioral features. The concept of precision medicine has recently emerged, and it involves neurodegenerative disease treatment that is personalized to match an individual's specific pattern of neuroimaging, neuropathology, and genetic variability. In this paper, the pathophysiology underlying FTD, which is characterized by the selective degeneration of the frontal and temporal cortices, is reviewed. We also discuss recent advancements in FTD research from the perspectives of clinical, imaging, molecular characterizations, and treatment. This review focuses on the approach of precision medicine to manage the clinical and biological complexities of FTD.
Collapse
Affiliation(s)
- Mu-N Liu
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, Memory and Aging Centre, University of California, San Francisco, San Francisco, CA, United States
| | - Chi-Ieong Lau
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Applied Cognitive Neuroscience Group, Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Aging and Health Research Center, National Yang Ming University, Taipei, Taiwan
| |
Collapse
|
16
|
Suh M, Lee DS. Brain Theranostics and Radiotheranostics: Exosomes and Graphenes In Vivo as Novel Brain Theranostics. Nucl Med Mol Imaging 2018; 52:407-419. [PMID: 30538772 PMCID: PMC6261865 DOI: 10.1007/s13139-018-0550-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/10/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022] Open
Abstract
Brain disease is one of the greatest threats to public health. Brain theranostics is recently taking shape, indicating the treatments of stroke, inflammatory brain disorders, psychiatric diseases, neurodevelopmental disease, and neurodegenerative disease. However, several factors, such as lack of endophenotype classification, blood-brain barrier (BBB), target determination, ignorance of biodistribution after administration, and complex intercellular communication between brain cells, make brain theranostics application difficult, especially when it comes to clinical application. So, a more thorough understanding of each aspect is needed. In this review, we focus on recent studies regarding the role of exosomes in intercellular communication of brain cells, therapeutic effect of graphene quantum dots, transcriptomics/epitranscriptomics approach for target selection, and in vitro/in vivo considerations.
Collapse
Affiliation(s)
- Minseok Suh
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080 Republic of Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080 Republic of Korea
| |
Collapse
|