1
|
Siragy T, Russo Y, Horsak B. Mediolateral Margin of Stability highlights motor strategies for maintaining dynamic balance in older adults. PLoS One 2024; 19:e0313034. [PMID: 39480769 PMCID: PMC11527164 DOI: 10.1371/journal.pone.0313034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
The dynamical nature of gait increases fall risk for older adults as the Center of Mass (COM) is constantly displaced inside and outside the Base of Support (BOS). Foot placement and leg joint moments are the primary mechanisms controlling dynamic balance. The Margin of Stability (MOS) quantifies the distance between the COM dynamical state and the BOS. While research examined how aging affects the relationship between foot placement and MOS, the relationship to leg moments is unexamined. Examining this relationship would elucidate whether aging increases fall risk from changes in the joint moments controlling the COM. Fourteen older (66.9 ± 4.3 years) and sixteen young (26.3 ± 3.6 years) adults walked along a 12m path for three trials. The MOS, hip and ankle moments in sagittal and frontal planes were analyzed. For the knee, only the sagittal plane was analyzed. MOS was calculated as the distance between the extrapolated-COM and the Center of Pressure per step. Statistical Parametric Mapping independent t-tests assessed group differences. Cross-correlation quantified MOS and joint moment relationships per plane during single-stance. No group differences in walking speed were observed. A larger frontal plane MOS, hip abduction and ankle eversion moment occurred for older adults. Cross-correlation demonstrated moderate and strong relationships for the hip-MOS for both groups in the sagittal plane. Older adults had a larger sagittal plane hip-MOS correlation than young adults. The larger mediolateral MOS in older adults may indicate attempts to avoid lateral balance loss by shifting their COM away from their BOS lateral boundaries during single-stance. However, this strategy moves the COM toward the BOS medial borders potentially pre-maturely terminating the contralateral swing phase during medial destabilization. The stronger sagittal plane hip-MOS relationship in older adults may reflect increased coupling between hip moments and the COM to control dynamic balance.
Collapse
Affiliation(s)
- Tarique Siragy
- Center for Digital Health & Social Innovation, St. Poelten University of Applied Sciences, St. Pölten, Austria
| | - Yuri Russo
- Public Health & Sport Sciences, University of Exeter, Exeter, United Kingdom
| | - Brian Horsak
- Center for Digital Health & Social Innovation, St. Poelten University of Applied Sciences, St. Pölten, Austria
- Institute of Health Sciences, St. Poelten University of Applied Sciences, St. Pölten, Austria
| |
Collapse
|
2
|
Kimura D, Oku K, Ogasawara I, Ito T, Nakata K. Process of dynamic balance recovery after voluntary perturbation: a time-series data analysis of young and older adults. J Phys Ther Sci 2024; 36:481-487. [PMID: 39239407 PMCID: PMC11374177 DOI: 10.1589/jpts.36.481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/27/2024] [Indexed: 09/07/2024] Open
Abstract
[Purpose] This study investigated differences in the convergence mode of post-step sway between young and older adults using a step-down task to identify fall causes in older adults and assess consecutive postural adjustments. [Participants and Methods] This study included 15 young and 15 older adults (nine females and six males in each group). The participants stepped down from a standing position to a force platform 10 cm lower and maintained a one-leg standing position. The center-of-pressure total trajectory length was assessed using a force plate and regression equations for time and sway were derived from the associated time-series data for both groups. [Results] An inversely proportional aspect was observed for both groups, with significantly different coefficients and constants. The center-of-pressure total trajectory length per second from foot contact was significantly different between 2-3 s and 4-5 s in the older group but not in the younger group. [Conclusion] The results suggest a difference in the convergence mode of dynamic balance between the two groups, with young adults exhibiting a more rapid balance-sway reduction than older adults. The novel computational approach used in this study may be useful for dynamic balance measurements.
Collapse
Affiliation(s)
- Daisuke Kimura
- Department of Physical Therapy, Faculty of Rehabilitation, Kawasaki University of Medical Welfare: 288 Matsushima, Kurashiki-shi, Okayama 701-0193, Japan
| | - Kosuke Oku
- Department of Physical Therapy, Faculty of Rehabilitation, Kawasaki University of Medical Welfare: 288 Matsushima, Kurashiki-shi, Okayama 701-0193, Japan
| | - Issei Ogasawara
- Department of Health and Sport Sciences, Graduate School of Medicine, Osaka University, Japan
| | - Tomotaka Ito
- Department of Physical Therapy, Faculty of Rehabilitation, Kawasaki University of Medical Welfare: 288 Matsushima, Kurashiki-shi, Okayama 701-0193, Japan
| | - Ken Nakata
- Department of Health and Sport Sciences, Graduate School of Medicine, Osaka University, Japan
| |
Collapse
|
3
|
Nishimoto R, Inokuchi H, Fujiwara S, Ogata T. Implicit learning provides advantage over explicit learning for gait-cognitive dual-task interference. Sci Rep 2024; 14:18336. [PMID: 39112521 PMCID: PMC11306735 DOI: 10.1038/s41598-024-68284-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Dual-task performance holds significant relevance in real-world scenarios. Implicit learning is a possible approach for improving dual-task performance. Analogy learning, utilizing a single metaphor to convey essential information about motor skills, has emerged as a practical method for fostering implicit learning. However, evidence supporting the effect of implicit learning on gait-cognitive dual-task performance is insufficient. This exploratory study aimed to examine the effects of implicit and explicit learning on dual-task performance in both gait and cognitive tasks. Tandem gait was employed on a treadmill to assess motor function, whereas serial seven subtraction tasks were used to gauge cognitive performance. Thirty healthy community-dwelling older individuals were randomly assigned to implicit or explicit learning groups. Each group learned the tandem gait task according to their individual learning styles. The implicit learning group showed a significant improvement in gait performance under the dual-task condition compared with the explicit learning group. Furthermore, the implicit learning group exhibited improved dual-task interference for both tasks. Our findings suggest that implicit learning may offer greater advantages than explicit learning in acquiring autonomous motor skills. Future research is needed to uncover the mechanisms underlying implicit learning and to harness its potential for gait-cognitive dual-task performance in clinical settings.
Collapse
Affiliation(s)
- Ryoki Nishimoto
- Department of Rehabilitation Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Department of Rehabilitation Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Haruhi Inokuchi
- Department of Rehabilitation Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Sayaka Fujiwara
- Department of Rehabilitation Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Toru Ogata
- Department of Rehabilitation Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
- Department of Rehabilitation Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| |
Collapse
|
4
|
Jiang L, Kasahara S, Ishida T, Koshino Y, Chiba A, Wei Y, Samukawa M, Tohyama H. Effect of suspensory strategy on balance recovery after lateral perturbation. Hum Mov Sci 2024; 94:103184. [PMID: 38330628 DOI: 10.1016/j.humov.2024.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Postural stability is essential for performing daily activities and preventing falls, whereby suspensory strategy with knee flexion may play a role in postural control. However, the contribution of the suspensory strategy for postural control during sudden lateral perturbation remains unclear. We aimed to determine how suspensory strategy contributed to postural adjustment during sudden perturbation in the lateral direction and what knee flexion setting maximized its effect. Eighteen healthy young adults (10 male and 8 female) participated in this study. Kinematic data during lateral perturbation at three velocities (7, 15, and 20 cm/s) were collected under three knee flexion angle conditions (0°, 15°, and 65°) using motion capture technology. Postural adjustments to the external perturbation were assessed by four parameters related to the temporal aspects of the center of mass (COM): reaction time, peak displacement/time and reversal time, and minimum value of the margin of stability (minimum-MOS). Our results showed that the COM height before the perturbation significantly lowered with increasing knee flexion angle. The COM reaction times for low and mid perturbation velocities were delayed at 65° of knee flexion compared to 0° and 15°, and the COM reversal times were significantly shorter at 65° of knee flexion than at 0° and 15° across all perturbation velocities. The minimum-MOS at the high-velocity of perturbation was significantly smaller at 65° of knee flexion than at 0° and 15°. In conclusion, the adoption of a suspensory strategy with slight knee flexion induced enhanced stability during sudden external and lateral perturbations. However, excessive knee flexion induced instability.
Collapse
Affiliation(s)
- Linjing Jiang
- Department of Rehabilitation Science, Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Satoshi Kasahara
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan.
| | - Tomoya Ishida
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yuta Koshino
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Ami Chiba
- Department of Rehabilitation, Hirosaki University Hospital, Hirosaki, Japan
| | - Yuting Wei
- Department of Rehabilitation, Sichuan Taikang Hospital, Chengdu, Sichuan, China
| | - Mina Samukawa
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Harukazu Tohyama
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Horsak B, Prock K, Krondorfer P, Siragy T, Simonlehner M, Dumphart B. Inter-trial variability is higher in 3D markerless compared to marker-based motion capture: Implications for data post-processing and analysis. J Biomech 2024; 166:112049. [PMID: 38493576 DOI: 10.1016/j.jbiomech.2024.112049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Markerless motion capture has recently attracted significant interest in clinical gait analysis and human movement science. Its ease of use and potential to streamline motion capture recordings bear great potential for out-of-the-laboratory measurements in large cohorts. While previous studies have shown that markerless systems can achieve acceptable accuracy and reliability for kinematic parameters of gait, they also noted higher inter-trial variability of markerless data. Since increased inter-trial variability can have important implications for data post-processing and analysis, this study compared the inter-trial variability of simultaneously recorded markerless and marker-based data. For this purpose, the data of 18 healthy volunteers were used who were instructed to simulate four different gait patterns: physiological, crouch, circumduction, and equinus gait. Gait analysis was performed using the smartphone-based markerless system OpenCap and a marker-based motion capture system. We compared the inter-trial variability of both systems and also evaluated if changes in inter-trial variability may depend on the analyzed gait pattern. Compared to the marker-based data, we observed an increase of inter-trial variability for the markerless system ranging from 6.6% to 22.0% for the different gait patterns. Our findings demonstrate that the markerless pose estimation pipelines can introduce additionally variability in the kinematic data across different gait patterns and levels of natural variability. We recommend using averaged waveforms rather than single ones to mitigate this problem. Further, caution is advised when using variability-based metrics in gait and human movement analysis based on markerless data as increased inter-trial variability can lead to misleading results.
Collapse
Affiliation(s)
- Brian Horsak
- Center for Digital Health and Social Innovation, St. Pölten University of Applied Sciences, Campus-Platz 1, St. Pölten, 3100, Austria; Institute of Health Sciences, St. Pölten University of Applied Sciences, Campus-Platz 1, St. Pölten, 3100, Austria.
| | - Kerstin Prock
- Center for Digital Health and Social Innovation, St. Pölten University of Applied Sciences, Campus-Platz 1, St. Pölten, 3100, Austria
| | - Philipp Krondorfer
- Center for Digital Health and Social Innovation, St. Pölten University of Applied Sciences, Campus-Platz 1, St. Pölten, 3100, Austria
| | - Tarique Siragy
- Center for Digital Health and Social Innovation, St. Pölten University of Applied Sciences, Campus-Platz 1, St. Pölten, 3100, Austria
| | - Mark Simonlehner
- Center for Digital Health and Social Innovation, St. Pölten University of Applied Sciences, Campus-Platz 1, St. Pölten, 3100, Austria; Institute of Health Sciences, St. Pölten University of Applied Sciences, Campus-Platz 1, St. Pölten, 3100, Austria
| | - Bernhard Dumphart
- Center for Digital Health and Social Innovation, St. Pölten University of Applied Sciences, Campus-Platz 1, St. Pölten, 3100, Austria; Institute of Health Sciences, St. Pölten University of Applied Sciences, Campus-Platz 1, St. Pölten, 3100, Austria
| |
Collapse
|
6
|
Mangalam M, Kelty-Stephen DG, Seleznov I, Popov A, Likens AD, Kiyono K, Stergiou N. Older adults and individuals with Parkinson's disease control posture along suborthogonal directions that deviate from the traditional anteroposterior and mediolateral directions. Sci Rep 2024; 14:4117. [PMID: 38374371 PMCID: PMC10876602 DOI: 10.1038/s41598-024-54583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/14/2024] [Indexed: 02/21/2024] Open
Abstract
A rich and complex temporal structure of variability in postural sway characterizes healthy and adaptable postural control. However, neurodegenerative disorders such as Parkinson's disease, which often manifest as tremors, rigidity, and bradykinesia, disrupt this healthy variability. This study examined postural sway in young and older adults, including individuals with Parkinson's disease, under different upright standing conditions to investigate the potential connection between the temporal structure of variability in postural sway and Parkinsonism. A novel and innovative method called oriented fractal scaling component analysis was employed. This method involves decomposing the two-dimensional center of pressure (CoP) planar trajectories to pinpoint the directions associated with minimal and maximal temporal correlations in postural sway. As a result, it facilitates a comprehensive assessment of the directional characteristics within the temporal structure of sway variability. The results demonstrated that healthy young adults control posture along two orthogonal directions closely aligned with the traditional anatomical anteroposterior (AP) and mediolateral (ML) axes. In contrast, older adults and individuals with Parkinson's disease controlled posture along suborthogonal directions that significantly deviate from the AP and ML axes. These findings suggest that the altered temporal structure of sway variability is evident in individuals with Parkinson's disease and underlies postural deficits, surpassing what can be explained solely by the natural aging process.
Collapse
Affiliation(s)
- Madhur Mangalam
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA.
| | - Damian G Kelty-Stephen
- Department of Psychology, State University of New York at New Paltz, New Paltz, NY, 12561, USA
| | - Ivan Seleznov
- Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Anton Popov
- Department of Electronic Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, 03056, Ukraine
- Faculty of Applied Sciences, Ukrainian Catholic University, Lviv, 79011, Ukraine
| | - Aaron D Likens
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Ken Kiyono
- Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Nick Stergiou
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
- Department of Department of Physical Education, and Sport Science, Aristotle University, 570 01, Thessaloniki, Greece
| |
Collapse
|
7
|
Naseri A, Lee IC, Huang H, Liu M. Investigating the Association of Quantitative Gait Stability Metrics With User Perception of Gait Interruption Due to Control Faults During Human-Prosthesis Interaction. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4693-4702. [PMID: 37906490 DOI: 10.1109/tnsre.2023.3328877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
This study aims to compare the association of different gait stability metrics with the prosthesis users' perception of their own gait stability. Lack of perceived confidence on the device functionality can influence the gait pattern, level of daily activities, and overall quality of life for individuals with lower limb motor deficits. However, the perception of gait stability is subjective and difficult to acquire online. The quantitative gait stability metrics can be objectively measured and monitored using wearable sensors; however, objective measurements of gait stability associated with human's perception of their own gait stability has rarely been reported. By identifying quantitative measurements that associate with users' perceptions, we can gain a more accurate and comprehensive understanding of an individual's perceived functional outcomes of assistive devices such as prostheses. To achieve our research goal, experiments were conducted to artificially apply internal disturbances in the powered prosthesis while the prosthetic users performed level ground walking. We monitored and compared multiple gait stability metrics and a local measurement to the users' reported perception of their own gait stability. The results showed that the center of pressure progression in the sagittal plane and knee momentum (i.e., residual thigh and prosthesis shank angular momentum about prosthetic knee joint) can potentially estimate the users' perceptions of gait stability when experiencing disturbances. The findings of this study can help improve the development and evaluation of gait stability control algorithms in robotic prosthetic devices.
Collapse
|
8
|
Fang Y, Lerner ZF. How Adaptive Ankle Exoskeleton Assistance Affects Stability During Perturbed and Unperturbed Walking in the Elderly. Ann Biomed Eng 2023; 51:2606-2616. [PMID: 37452214 DOI: 10.1007/s10439-023-03310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Slowing the decline in walking mobility in the elderly is critical for maintaining the quality of life. Wearable assistive devices may 1 day facilitate mobility in older adults; however, we need to ensure that such devices do not impair stability in this population that is predisposed to fall-related injuries. This study sought to quantify the effects of untethered ankle exoskeleton assistance on measures of stability, whole-body dynamics, and strategies to maintain balance during normal and perturbed walking in older adults. Eight healthy participants (69-84 years) completed a treadmill-based walking protocol that included perturbations from unexpected belt accelerations while participants walked with and without ankle exoskeleton assistance. Exoskeleton assistance increased frontal plane range of angular momentum (8-14%, p ≤ 0.007), step width (18-34%, p ≤ 0.006), and ankle co-contraction (21-29%, p ≤ 0.039), and decreased biological ankle moment (16-27%, p ≤ 0.001) during unperturbed and perturbed walking; it did not affect the anteroposterior margin-of-stability, step length, trunk variability, or soleus activity during unperturbed and perturbed walking. Our finding that ankle exoskeleton assistance did not affect the anteroposterior margin-of-stability supports additional investigation of assistive exoskeletons for walking assistance in the elderly.
Collapse
Affiliation(s)
- Ying Fang
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Physical Therapy, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Zachary F Lerner
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, 86011, USA.
- Department of Orthopedics, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA.
| |
Collapse
|
9
|
Paramento M, Rubega M, Di Marco R, Contessa P, Agostini M, Cantele F, Masiero S, Formaggio E. Experimental protocol to investigate cortical, muscular and body representation alterations in adolescents with idiopathic scoliosis. PLoS One 2023; 18:e0292864. [PMID: 37824513 PMCID: PMC10569634 DOI: 10.1371/journal.pone.0292864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Adolescent idiopathic scoliosis (AIS) is the most common form of scoliosis. AIS is a three-dimensional morphological spinal deformity that affects approximately 1-3% of adolescents. Not all factors related to the etiology of AIS have yet been identified. OBJECTIVE The primary aim of this experimental protocol is to quantitatively investigate alterations in body representation in AIS, and to quantitatively and objectively track the changes in body sensorimotor representation due to treatment. METHODS Adolescent girls with a confirmed diagnosis of mild (Cobb angle: 10°-20°) or moderate (21°-35°) scoliosis as well as age and sex-matched controls will be recruited. Participants will be asked to perform a 6-min upright standing and two tasks-named target reaching and forearm bisection task. Eventually, subjects will fill in a self-report questionnaire and a computer-based test to assess body image. This evaluation will be repeated after 6 and 12 months of treatment (i.e., partial or full-time brace and physiotherapy corrective postural exercises). RESULTS We expect that theta brain rhythm in the central brain areas, alpha brain rhythm lateralization and body representation will change over time depending on treatment and scoliosis progression as a compensatory strategy to overcome a sensorimotor dysfunction. We also expect asymmetric activation of the trunk muscle during reaching tasks and decreased postural stability in AIS. CONCLUSIONS Quantitatively assess the body representation at different time points during AIS treatment may provide new insights on the pathophysiology and etiology of scoliosis.
Collapse
Affiliation(s)
- Matilde Paramento
- Department of Neurosciences, Section of Rehabilitation, University of Padova, Padova, Italy
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Maria Rubega
- Department of Neurosciences, Section of Rehabilitation, University of Padova, Padova, Italy
| | - Roberto Di Marco
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Paola Contessa
- Orthopedic Rehabilitation Unit, Padova University Hospital, Padova, Italy
| | - Michela Agostini
- Department of Neurosciences, Section of Rehabilitation, University of Padova, Padova, Italy
| | - Francesca Cantele
- Department of Neurosciences, Section of Rehabilitation, University of Padova, Padova, Italy
| | - Stefano Masiero
- Department of Neurosciences, Section of Rehabilitation, University of Padova, Padova, Italy
- Orthopedic Rehabilitation Unit, Padova University Hospital, Padova, Italy
- Ospedale Riabilitativo di Alta Specializzazione di Motta di Livenza, Motta di Livenza, Treviso, Italy
| | - Emanuela Formaggio
- Department of Neurosciences, Section of Rehabilitation, University of Padova, Padova, Italy
| |
Collapse
|
10
|
Rahmati Z, Behzadipour S, Taghizadeh G. Margins of postural stability in Parkinson's disease: an application of control theory. Front Bioeng Biotechnol 2023; 11:1226876. [PMID: 37781528 PMCID: PMC10539597 DOI: 10.3389/fbioe.2023.1226876] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction: Postural instability is a restrictive feature in Parkinson's disease (PD), usually assessed by clinical or laboratory tests. However, the exact quantification of postural stability, using stability theorems that take into account human dynamics, is still lacking. We investigated the feasibility of control theory and the Nyquist stability criterion-gain margin (GM) and phase margin (PM)-in discriminating postural instability in PD, as well as the effects of a balance-training program. Methods: Center-of-pressure (COP) data of 40 PD patients before and after a 4-week balance-training program, and 20 healthy control subjects (HCs) (Study1) as well as COP data of 20 other PD patients at four time points during a 6-week balance-training program (Study2), collected in two earlier studies, were used. COP was recorded in four tasks, two on a rigid surface and two on foam, both with eyes open and eyes closed. A postural control model (an inverted pendulum with a Proportional-integral-derivative (PID) controller and time delay) was fitted to the COP data to subject-specifically identify the model parameters thereby calculating |GM| and PM for each subject in each task. Results: PD patients had a smaller margin of stability (|GM| and PM) compared with HCs. Particularly, patients, unlike HCs, showed a drastic drop in PM on foam. Clinical outcomes and margins of stability improved in patients after balance training. |GM| improved early in week 4, followed by a plateau during the rest of the training. In contrast, PM improved late (week 6) in a relatively continuous-progression form. Conclusion: Using fundamental stability theorems is a promising technique for the standardized quantification of postural stability in various tasks.
Collapse
Affiliation(s)
- Zahra Rahmati
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Saeed Behzadipour
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
- Djawad Movafaghian Research Center in Neurorehab Technologies, Sharif University of Technology, Tehran, Iran
| | - Ghorban Taghizadeh
- Rehabilitation Research Center, Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Heß T, Oehlwein C, Milani TL. Anticipatory Postural Adjustments and Compensatory Postural Responses to Multidirectional Perturbations-Effects of Medication and Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease. Brain Sci 2023; 13:brainsci13030454. [PMID: 36979264 PMCID: PMC10046463 DOI: 10.3390/brainsci13030454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Postural instability is one of the most restricting motor symptoms for patients with Parkinson's disease (PD). While medication therapy only shows minor effects, it is still unclear whether medication in conjunction with deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves postural stability. Hence, the aim of this study was to investigate whether PD patients treated with medication in conjunction with STN-DBS have superior postural control compared to patients treated with medication alone. METHODS Three study groups were tested: PD patients on medication (PD-MED), PD patients on medication and on STN-DBS (PD-MED-DBS), and healthy elderly subjects (HS) as a reference. Postural performance, including anticipatory postural adjustments (APA) prior to perturbation onset and compensatory postural responses (CPR) following multidirectional horizontal perturbations, was analyzed using force plate and electromyography data. RESULTS Regardless of the treatment condition, both patient groups showed inadequate APA and CPR with early and pronounced antagonistic muscle co-contractions compared to healthy elderly subjects. Comparing the treatment conditions, study group PD-MED-DBS only showed minor advantages over group PD-MED. In particular, group PD-MED-DBS showed faster postural reflexes and tended to have more physiological co-contraction ratios. CONCLUSION medication in conjunction with STN-DBS may have positive effects on the timing and amplitude of postural control.
Collapse
Affiliation(s)
- Tobias Heß
- Department of Human Locomotion, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Christian Oehlwein
- Neurological Outpatient Clinic for Parkinson Disease and Deep Brain Stimulation, 07551 Gera, Germany
| | - Thomas L Milani
- Department of Human Locomotion, Chemnitz University of Technology, 09126 Chemnitz, Germany
| |
Collapse
|
12
|
Gan J, Wu X, Wan Y, Zhao J, Song L, Wu N, Wang H, Yin Y, Liu Z. Evolution characteristics of dynamic balance disorder over the course of PD and relationship with dopamine depletion. Front Aging Neurosci 2023; 14:1075572. [PMID: 36816750 PMCID: PMC9932274 DOI: 10.3389/fnagi.2022.1075572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/29/2022] [Indexed: 02/05/2023] Open
Abstract
Objective This study aimed to assess the evolution of dynamic balance impairment during the course of Parkinson's disease (PD) and to clarify the contribution of striatal dopaminergic innervation to poor dynamic balance. Methods In our study, 89 patients with PD (divided into 2 groups according to the H-Y stage) and 39 controls were included. Kinematic data were recorded by a portable inertial measurement unit system. Dopaminergic loss in the striatal subregion was verified through the 11C-CFT PET examination. The severity of white matter hyperintensities (WMHs) was assessed by the Scheltens scale. The correlation between dynamic kinematic parameters and dopamine transporter availability was analyzed by multivariate regression analysis. Results Patients with early PD presented with imbalance featured by smaller three-dimensional trunk ROM with reduced trunk coronal angular velocity during walking and with reduced trunk sagittal angular velocity during the stand-to-sit task (all p < 0.05). These abnormalities were not more severe at a later stage. The ROM in the coronal and transverse planes during walking correlated with caudate DAT uptake (β = 0.832, p = 0.006, Q = 0.030, and β = 0.890, p = 0.003, Q = 0.030) after controlling for age, gender, and WMHs. As the disease progressed, the trunk sagittal and transverse angular velocities during walking and trunk sagittal angular velocity when turning and sitting-to-standing were slower, which was accompanied by reduced gait velocity gradually (all p < 0.05). These parameters related to disease progression have no association with striatal DAT uptake (all p > 0.05). Conclusion The dynamic balance in PD was impaired from the early stages, and the characteristics of the impairment changed differently as the disease progressed. Dopaminergic denervation has a lower contribution to dynamic balance disorders throughout PD.
Collapse
Affiliation(s)
- Jing Gan
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiaodong Wu
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wan
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jiahao Zhao
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lu Song
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Na Wu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafu Yin
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Yafu Yin ✉
| | - Zhenguo Liu
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Zhenguo Liu ✉
| |
Collapse
|
13
|
Siragy T, Russo Y, Young W, Lamb SE. Comparison of over-ground and treadmill perturbations for simulation of real-world slips and trips: A systematic review. Gait Posture 2023; 100:201-209. [PMID: 36603326 DOI: 10.1016/j.gaitpost.2022.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Trips and slips increase fall risk for young and older adults. To examine recovery responses, studies utilized treadmill and/or over-ground methods to simulate real-world perturbations. However, differences in the recovery response between treadmill and over-ground perturbations remain unexamined. RESEARCH QUESTION To assess the current literature on the reactive recovery responses between over-ground- and split-belt treadmill trips and slips as well as the effect of aging on these responses. METHODS PubMed, Medline, Web of Science, SCOPUS, and Cochrane databases were searched for publications examining trips and slips in healthy young, healthy older adults, and older adults who fall. Included articles were in English, full-text accessible, and biomechanically quantified the reactive recovery responses for slips and trips during either over-ground or split-belt treadmill protocols. The initial database search yielded 1075 articles and 31 articles were included after title, abstract, and full-text screening. RESULTS For slips, 7 articles utilized lubricated surfaces while 5 articles used treadmills. Further, 3 studies examined differences between older and younger adults. For trips, 9 articles utilized obstacles and 7 used treadmills. Further, 4 articles examined differences between older and young adults and 1 article only examined older adults during over-ground trips. For both perturbations, treadmill and over-ground protocols demonstrated similar anteroposterior destabilization on the center of mass. In the mediolateral direction, over-ground slips consistently found a lateral destabilization while treadmill articles did not examine this direction. Foot placement recovery responses varied less for both perturbation directions on a treadmill compared to over-ground. SIGNIFICANCE Although treadmill and over-ground perturbations destabilize the center of mass similarly, the recovery response to these perturbations were different on treadmills. Specifically, recovery responses were more consistent for both slips and trips on treadmills. As older adults have difficulty in perturbation recovery scaling, treadmills may be limited in their ability to investigate the variety of aging impairments on perturbation recovery responses.
Collapse
Affiliation(s)
- Tarique Siragy
- University of Exeter, Department of Public Health & Sport Sciences, Exeter, UK; St. Pölten University of Applied Sciences Center of Digital Health and Social Innovation, St. Pölten, Austria.
| | - Yuri Russo
- University of Exeter, Department of Public Health & Sport Sciences, Exeter, UK.
| | - Will Young
- University of Exeter, Department of Public Health & Sport Sciences, Exeter, UK.
| | - Sallie E Lamb
- University of Exeter, Department of Public Health & Sport Sciences, Exeter, UK.
| |
Collapse
|
14
|
Liu M, Naseri A, Lee IC, Hu X, Lewek MD, Huang H. A simplified model for whole-body angular momentum calculation. Med Eng Phys 2023; 111:103944. [PMID: 36792238 PMCID: PMC9970829 DOI: 10.1016/j.medengphy.2022.103944] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The capability to monitor gait stability during everyday life could provide key information to guide clinical intervention to patients with lower limb disabilities. Whole body angular momentum (Lbody) is a convenient stability indicator for wearable motion capture systems. However, Lbody is costly to estimate, because it requires monitoring all major body segment using expensive sensor elements. In this study, we developed a simplified rigid body model by merging connected body segments to reduce the number of body segments, which need to be monitored. We demonstrated that the Lbody could be estimated by a seven-segment model accurately for both people with and without lower extremity amputation.
Collapse
Affiliation(s)
- Ming Liu
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina, United States.
| | - Amirreza Naseri
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina, United States
| | - I-Chieh Lee
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina, United States
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina, United States
| | - Michael D Lewek
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina, United States
| | - He Huang
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina, United States
| |
Collapse
|
15
|
Rathore R, Tucker CA, Jeka JJ, Wright WG, Hurt CP. Effect of Increasing Obstacle Distances Task on Postural Stability Variables During Gait Initiation in Older Nonfallers and Fallers. Arch Phys Med Rehabil 2022; 103:2303-2310. [PMID: 35550139 DOI: 10.1016/j.apmr.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To compare the scaling of the postural stability variables between older nonfallers and fallers during gait initiation (GI) while stepping over increasing obstacle distances. DESIGN Cross-sectional study. SETTING University research laboratory. PARTICIPANTS A sample of participants (N=24) divided into 2 groups: older nonfallers (n=12) and older fallers (n=12). Participants had no known neurologic, musculoskeletal, or cardiovascular conditions that could have affected their walking, and all were independent walkers. All the participants had an adequate cognitive function to participate as indicated by a score of more than 24 on the Mini-Mental State Examination. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES The primary dependent variables were peak anterior-posterior (AP) center of mass (CoM)-center of pressure (CoP) separation during anticipatory postural adjustments (APAs), AP CoM-CoP separation at the toe-off, and peak AP CoM-CoP separation during the swing. Secondary dependent variables were AP trunk angle during GI. Within- and between-repeated measures analysis of variance was used to compare means between groups across different task conditions for all the dependent variables. RESULTS There was a main effect of group for peak AP CoM-CoP separation during APA (P=.018), an interaction effect between group and condition for AP CoM-CoP separation at toe-off (P=.009), and a main effect of condition for peak AP CoM-CoP separation during the swing (P<.001). We also found a main effect of group for peak AP trunk angle during the swing (P=.028). CONCLUSIONS For GI while stepping over increasing obstacle distances, older fallers adopt a more conservative strategy of AP CoM-CoP separation than nonfallers prior to toe-off and demonstrate increased peak AP trunk lean during the swing. AP CoM-CoP separation prior to toe-off during the GI task may be a critical marker to identify fallers and warrants additional investigation.
Collapse
Affiliation(s)
- Roshita Rathore
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, Alabama; Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, Alabama; Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, Pennsylvania.
| | - Carole A Tucker
- School of Health Professions, University of Texas Medical Branch, Galveston, Texas
| | - John J Jeka
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - W Geoffrey Wright
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, Pennsylvania
| | - Christopher P Hurt
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
16
|
Troisi Lopez E, Sorrentino P, Liparoti M, Minino R, Polverino A, Romano A, Carotenuto A, Amico E, Sorrentino G. The kinectome: A comprehensive kinematic map of human motion in health and disease. Ann N Y Acad Sci 2022; 1516:247-261. [PMID: 35838306 PMCID: PMC9796708 DOI: 10.1111/nyas.14860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human voluntary movement stems from the coordinated activations in space and time of many musculoskeletal segments. However, the current methodological approaches to study human movement are still limited to the evaluation of the synergies among a few body elements. Network science can be a useful approach to describe movement as a whole and to extract features that are relevant to understanding both its complex physiology and the pathophysiology of movement disorders. Here, we propose to represent human movement as a network (that we named the kinectome), where nodes represent body points, and edges are defined as the correlations of the accelerations between each pair of them. We applied this framework to healthy individuals and patients with Parkinson's disease, observing that the patients' kinectomes display less symmetrical patterns as compared to healthy controls. Furthermore, we used the kinectomes to successfully identify both healthy and diseased subjects using short gait recordings. Finally, we highlighted topological features that predict the individual clinical impairment in patients. Our results define a novel approach to study human movement. While deceptively simple, this approach is well-grounded, and represents a powerful tool that may be applied to a wide spectrum of frameworks.
Collapse
Affiliation(s)
- Emahnuel Troisi Lopez
- Department of Motor Sciences and WellnessUniversity of Naples “Parthenope”NaplesItaly
| | | | - Marianna Liparoti
- Department of Developmental and Social PsychologyUniversity “La Sapienza” of RomeRomeItaly
| | - Roberta Minino
- Department of Motor Sciences and WellnessUniversity of Naples “Parthenope”NaplesItaly
| | - Arianna Polverino
- Institute for Diagnosis and TreatmentHermitage CapodimonteNaplesItaly
| | - Antonella Romano
- Department of Motor Sciences and WellnessUniversity of Naples “Parthenope”NaplesItaly
| | - Anna Carotenuto
- Alzheimer Unit and Movement Disorders ClinicDepartment of NeurologyCardarelli HospitalNaplesItaly
| | - Enrico Amico
- Institute of Bioengineering, Center for NeuroprostheticsEPFLGenevaSwitzerland
- Department of Radiology and Medical InformaticsUniversity of Geneva (UNIGE)GenevaSwitzerland
| | - Giuseppe Sorrentino
- Department of Motor Sciences and WellnessUniversity of Naples “Parthenope”NaplesItaly
- Institute for Diagnosis and TreatmentHermitage CapodimonteNaplesItaly
- Institute of Applied Sciences and Intelligent SystemsCNRPozzuoliItaly
| |
Collapse
|
17
|
Castiglia SF, Trabassi D, De Icco R, Tatarelli A, Avenali M, Corrado M, Grillo V, Coppola G, Denaro A, Tassorelli C, Serrao M. Harmonic ratio is the most responsive trunk-acceleration derived gait index to rehabilitation in people with Parkinson's disease at moderate disease stages. Gait Posture 2022; 97:152-158. [PMID: 35961132 DOI: 10.1016/j.gaitpost.2022.07.235] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Harmonic ratios (HRs), recurrence quantification analysis in the antero-posterior direction (RQAdetAP), and stride length coefficient of variation (CV) have recently been shown to characterize gait abnormalities and fall risk in people with Parkinson's disease (pwPD) at moderate disease stages. RESEARCH QUESTION This study aimed to i) assess the internal and external responsiveness to rehabilitation of HR, RQAdetAP, and CV, ii) identify the baseline predictors of normalization of the gait stability indexes, and iii) investigate the correlations between the gait indexes modifications (∆) and clinical and kinematic ∆s in pwPD at Hoehn and Yahr disease staging classification 3. METHODS The trunk acceleration patterns of 21 pwPD and 21 age- and speed-matched healthy subjects (HSmatched) were acquired during gait using an inertial measurement unit at baseline (T0). pwPD were also assessed after a 4-week rehabilitation period (T1). Each participant's HR in the antero-posterior (HRAP), medio-lateral (HRML), and vertical directions, RQAdetAP, CV, spatio-temporal, and kinematic variables were calculated. RESULTS At T1, HRAP and HRML improved to normative values and showed high internal and external responsiveness. Lower HRs and higher pelvic rotation values at baseline were predictors of ∆HRs. A minimal clinically important difference (MCID) ≥ 21.5 % is required to normalize HRAP with 95 % probability. MCID ≥ 36.9 % is required to normalize HRML with 92 % probability. ∆HRAP correlated with ∆HRML and both correlated with ∆stride length and ∆pelvic rotation, regardless of ∆gait speed. RQAdetAP and step length CV were not responsive to rehabilitation. SIGNIFICANCE When using inertial measurement units, HRAP and HRML can be considered as responsive outcome measures for assessing the effectiveness of rehabilitation on trunk smoothness during walking in pwPD at moderate disease stages.
Collapse
Affiliation(s)
- Stefano Filippo Castiglia
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Polo Pontino, Corso della Repubblica 70, 04100 Latina, Italy; Department of Brain and Behavioral Sciences, University of Pavia, via Bassi, 21, 27100 Pavia, Italy.
| | - Dante Trabassi
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Polo Pontino, Corso della Repubblica 70, 04100 Latina, Italy
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi, 21, 27100 Pavia, Italy; Movement Analysis Research Unit, IRCCS Mondino Foundation, via Mondino, 2, 27100 Pavia, Italy
| | - Antonella Tatarelli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, via Fontana Candida, 1, Monte Porzio Catone, 00078 Rome, Italy; Department of Human Neurosciences, "Sapienza" University of Rome, viale dell'Università, 30, 00185 Rome, Italy
| | - Micol Avenali
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi, 21, 27100 Pavia, Italy; Movement Analysis Research Unit, IRCCS Mondino Foundation, via Mondino, 2, 27100 Pavia, Italy
| | - Michele Corrado
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi, 21, 27100 Pavia, Italy; Movement Analysis Research Unit, IRCCS Mondino Foundation, via Mondino, 2, 27100 Pavia, Italy
| | - Valentina Grillo
- Movement Analysis Research Unit, IRCCS Mondino Foundation, via Mondino, 2, 27100 Pavia, Italy
| | - Gianluca Coppola
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Polo Pontino, Corso della Repubblica 70, 04100 Latina, Italy
| | - Alessandro Denaro
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Polo Pontino, Corso della Repubblica 70, 04100 Latina, Italy
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi, 21, 27100 Pavia, Italy; Movement Analysis Research Unit, IRCCS Mondino Foundation, via Mondino, 2, 27100 Pavia, Italy
| | - Mariano Serrao
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Polo Pontino, Corso della Repubblica 70, 04100 Latina, Italy; Movement Analysis Laboratory, Policlinico Italia, piazza del campidano, 6, 00162 Rome, Italy
| |
Collapse
|
18
|
Machine Learning Approach to Support the Detection of Parkinson's Disease in IMU-Based Gait Analysis. SENSORS 2022; 22:s22103700. [PMID: 35632109 PMCID: PMC9148133 DOI: 10.3390/s22103700] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023]
Abstract
The aim of this study was to determine which supervised machine learning (ML) algorithm can most accurately classify people with Parkinson’s disease (pwPD) from speed-matched healthy subjects (HS) based on a selected minimum set of IMU-derived gait features. Twenty-two gait features were extrapolated from the trunk acceleration patterns of 81 pwPD and 80 HS, including spatiotemporal, pelvic kinematics, and acceleration-derived gait stability indexes. After a three-level feature selection procedure, seven gait features were considered for implementing five ML algorithms: support vector machine (SVM), artificial neural network, decision trees (DT), random forest (RF), and K-nearest neighbors. Accuracy, precision, recall, and F1 score were calculated. SVM, DT, and RF showed the best classification performances, with prediction accuracy higher than 80% on the test set. The conceptual model of approaching ML that we proposed could reduce the risk of overrepresenting multicollinear gait features in the model, reducing the risk of overfitting in the test performances while fostering the explainability of the results.
Collapse
|
19
|
Troisi Lopez E, Minino R, Sorrentino P, Manzo V, Tafuri D, Sorrentino G, Liparoti M. Sensitivity to gait improvement after levodopa intake in Parkinson's disease: A comparison study among synthetic kinematic indices. PLoS One 2022; 17:e0268392. [PMID: 35551300 PMCID: PMC9098031 DOI: 10.1371/journal.pone.0268392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 04/28/2022] [Indexed: 02/07/2023] Open
Abstract
The synthetic indices are widely used to describe balance and stability during gait. Some of these are employed to describe the gait features in Parkinson's disease (PD). However, the results are sometimes inconsistent, and the same indices are rarely used to compare the individuals affected by PD before and after levodopa intake (OFF and ON condition, respectively). Our aim was to investigate which synthetic measure among Harmonic Ratio, Jerk Ratio, Golden Ratio and Trunk Displacement Index is representative of gait stability and harmony, and which of these are more sensitive to the variations between OFF and ON condition. We found that all indices, except the Jerk Ratio, significantly improve after levodopa. Only the improvement of the Trunk Displacement Index showed a direct correlation with the motor improvement measured through the clinical scale UPDRS-III (Unified Parkinson's Disease Rating Scale-part III). In conclusion, we suggest that the synthetic indices can be useful to detect motor changes induced by, but not all of them clearly correlate with the clinical changes achieved with the levodopa administration. In our analysis, only the Trunk Displacement Index was able to show a clear relationship with the PD clinical motor improvement.
Collapse
Affiliation(s)
- Emahnuel Troisi Lopez
- Department of Motor Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| | - Roberta Minino
- Department of Motor Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| | - Pierpaolo Sorrentino
- Institut de Neuroscience des Systemès, Aix-Marseille University, Marseille, France
- Institute of Applied Sciences and Intelligent Systems, CNR, Pozzuoli (NA), Italy
| | - Valentino Manzo
- Alzheimer Unit and Movement Disorders Clinic, Department of Neurology, Cardarelli Hospital, Naples, Italy
| | - Domenico Tafuri
- Department of Motor Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| | - Giuseppe Sorrentino
- Department of Motor Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
- Institute of Applied Sciences and Intelligent Systems, CNR, Pozzuoli (NA), Italy
- Institute for Diagnosis and Care, Hermitage Capodimonte, Naples, Italy
| | - Marianna Liparoti
- Department of Motor Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| |
Collapse
|
20
|
Di Marco R, Pistonesi F, Cianci V, Biundo R, Weis L, Tognolo L, Baba A, Rubega M, Gentile G, Tedesco C, Carecchio M, Antonini A, Masiero S. Effect of Intensive Rehabilitation Program in Thermal Water on a Group of People with Parkinson's Disease: A Retrospective Longitudinal Study. Healthcare (Basel) 2022; 10:368. [PMID: 35206982 PMCID: PMC8871929 DOI: 10.3390/healthcare10020368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
The main objective of this study is to test the effect of thermal aquatic exercise on motor symptoms and quality of life in people with Parkinson's Disease (PD). Fourteen participants with diagnosis of idiopathic PD completed the whole rehabilitation session and evaluation protocol (Hoehn and Yahr in OFF state: 2-3; Mini Mental State Examination >24; stable pharmacological treatment in the 3 months prior participating in the study). Cognitive and motor status, functional abilities and quality of life were assessed at baseline and after an intensive rehabilitation program in thermal water (12 sessions of 45 min in a 1.4 m depth pool at 32-36 ∘C). The Mini Balance Evaluation System Test (Mini-BESTest) and the PD Quality of Life Questionnaire (PDQ-39) were considered as main outcomes. Secondary assessment measures evaluated motor symptoms and quality of life and psychological well-being. Participants kept good cognitive and functional status after treatment. Balance of all the participants significantly improved (Mini-BESTest: p<0.01). The PDQ-39 significantly improved after rehabilitation (p=0.038), with significance being driven by dimensions strongly related to motor status. Thermal aquatic exercise may represent a promising rehabilitation tool to prevent the impact of motor symptoms on daily-life activities of people with PD. PDQ-39 improvement foreshows good effects of the intervention on quality of life and psychological well-being.
Collapse
Affiliation(s)
- Roberto Di Marco
- Parkinson and Movement Disorders Unit, Study Centre on Neurodegeneration (CESNE), Department of Neuroscience, University of Padova, Via Giustiniani 5, 35128 Padova, Italy; (F.P.); (V.C.); (L.W.); (G.G.); (C.T.); (M.C.); (A.A.)
- Department of Neuroscience, School of Physical Medicine and Rehabilitation, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.T.); (M.R.); (S.M.)
- Physical Medicine and Rehabilitation Unit, University Hospital of Padova, Via Giustiniani 2, 35128 Padova, Italy;
| | - Francesca Pistonesi
- Parkinson and Movement Disorders Unit, Study Centre on Neurodegeneration (CESNE), Department of Neuroscience, University of Padova, Via Giustiniani 5, 35128 Padova, Italy; (F.P.); (V.C.); (L.W.); (G.G.); (C.T.); (M.C.); (A.A.)
| | - Valeria Cianci
- Parkinson and Movement Disorders Unit, Study Centre on Neurodegeneration (CESNE), Department of Neuroscience, University of Padova, Via Giustiniani 5, 35128 Padova, Italy; (F.P.); (V.C.); (L.W.); (G.G.); (C.T.); (M.C.); (A.A.)
| | - Roberta Biundo
- Parkinson and Movement Disorders Unit, Study Centre on Neurodegeneration (CESNE), Department of Neuroscience, University of Padova, Via Giustiniani 5, 35128 Padova, Italy; (F.P.); (V.C.); (L.W.); (G.G.); (C.T.); (M.C.); (A.A.)
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy;
| | - Luca Weis
- Parkinson and Movement Disorders Unit, Study Centre on Neurodegeneration (CESNE), Department of Neuroscience, University of Padova, Via Giustiniani 5, 35128 Padova, Italy; (F.P.); (V.C.); (L.W.); (G.G.); (C.T.); (M.C.); (A.A.)
| | - Lucrezia Tognolo
- Department of Neuroscience, School of Physical Medicine and Rehabilitation, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.T.); (M.R.); (S.M.)
- Physical Medicine and Rehabilitation Unit, University Hospital of Padova, Via Giustiniani 2, 35128 Padova, Italy;
| | - Alfonc Baba
- Physical Medicine and Rehabilitation Unit, University Hospital of Padova, Via Giustiniani 2, 35128 Padova, Italy;
| | - Maria Rubega
- Department of Neuroscience, School of Physical Medicine and Rehabilitation, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.T.); (M.R.); (S.M.)
| | - Giovanni Gentile
- Parkinson and Movement Disorders Unit, Study Centre on Neurodegeneration (CESNE), Department of Neuroscience, University of Padova, Via Giustiniani 5, 35128 Padova, Italy; (F.P.); (V.C.); (L.W.); (G.G.); (C.T.); (M.C.); (A.A.)
| | - Chiara Tedesco
- Parkinson and Movement Disorders Unit, Study Centre on Neurodegeneration (CESNE), Department of Neuroscience, University of Padova, Via Giustiniani 5, 35128 Padova, Italy; (F.P.); (V.C.); (L.W.); (G.G.); (C.T.); (M.C.); (A.A.)
| | - Miryam Carecchio
- Parkinson and Movement Disorders Unit, Study Centre on Neurodegeneration (CESNE), Department of Neuroscience, University of Padova, Via Giustiniani 5, 35128 Padova, Italy; (F.P.); (V.C.); (L.W.); (G.G.); (C.T.); (M.C.); (A.A.)
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Study Centre on Neurodegeneration (CESNE), Department of Neuroscience, University of Padova, Via Giustiniani 5, 35128 Padova, Italy; (F.P.); (V.C.); (L.W.); (G.G.); (C.T.); (M.C.); (A.A.)
| | - Stefano Masiero
- Department of Neuroscience, School of Physical Medicine and Rehabilitation, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.T.); (M.R.); (S.M.)
- Physical Medicine and Rehabilitation Unit, University Hospital of Padova, Via Giustiniani 2, 35128 Padova, Italy;
| |
Collapse
|
21
|
Salchow-Hömmen C, Skrobot M, Jochner MCE, Schauer T, Kühn AA, Wenger N. Review-Emerging Portable Technologies for Gait Analysis in Neurological Disorders. Front Hum Neurosci 2022; 16:768575. [PMID: 35185496 PMCID: PMC8850274 DOI: 10.3389/fnhum.2022.768575] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/07/2022] [Indexed: 01/29/2023] Open
Abstract
The understanding of locomotion in neurological disorders requires technologies for quantitative gait analysis. Numerous modalities are available today to objectively capture spatiotemporal gait and postural control features. Nevertheless, many obstacles prevent the application of these technologies to their full potential in neurological research and especially clinical practice. These include the required expert knowledge, time for data collection, and missing standards for data analysis and reporting. Here, we provide a technological review of wearable and vision-based portable motion analysis tools that emerged in the last decade with recent applications in neurological disorders such as Parkinson's disease and Multiple Sclerosis. The goal is to enable the reader to understand the available technologies with their individual strengths and limitations in order to make an informed decision for own investigations and clinical applications. We foresee that ongoing developments toward user-friendly automated devices will allow for closed-loop applications, long-term monitoring, and telemedical consulting in real-life environments.
Collapse
Affiliation(s)
- Christina Salchow-Hömmen
- Department of Neurology With Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matej Skrobot
- Department of Neurology With Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Magdalena C E Jochner
- Department of Neurology With Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Schauer
- Control Systems Group, Technische Universität Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology With Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases, DZNE, Berlin, Germany
| | - Nikolaus Wenger
- Department of Neurology With Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
22
|
MacDonald ME, Siragy T, Hill A, Nantel J. Walking on Mild Slopes and Altering Arm Swing Each Induce Specific Strategies in Healthy Young Adults. Front Sports Act Living 2022; 3:805147. [PMID: 35146424 PMCID: PMC8821106 DOI: 10.3389/fspor.2021.805147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
Slopes are present in everyday environments and require specific postural strategies for successful navigation; different arm strategies may be used to manage external perturbations while walking. It has yet to be determined what impact arm swing has on postural strategies and gait stability during sloped walking. We investigated the potentially interacting effects of surface slope and arm motion on gait stability and postural strategies in healthy young adults. We tested 15 healthy adults, using the CAREN-Extended system to simulate a rolling-hills environment which imparted both incline (uphill) and decline (downhill) slopes (± 3°). This protocol was completed under three imposed arm swing conditions: held, normal, active. Spatiotemporal gait parameters, mediolateral margin of stability, and postural kinematics in anteroposterior (AP), mediolateral (ML), and vertical (VT) directions were assessed. Main effects of conditions and interactions were evaluated by 2-way repeated measures analysis of variance. Our results showed no interactions between arm swing and slope; however, we found main effects of arm swing and main effects of slope. As expected, uphill and downhill sections of the rolling-hills yielded opposite stepping and postural strategies compared to level walking, and active and held arm swings led to opposite postural strategies compared to normal arm swing. Arm swing effects were consistent across slope conditions. Walking with arms held decreased gait speed, indicating a level of caution, but maintained stability comparable to that of walking with normal arm swing. Active arm swing increased both step width variability and ML-MoS during downhill sections. Alternately, ML-MoS was larger with increased step width and double support time during uphill sections compared to level, which demonstrates that distinct base of support strategies are used to manage arm swing compared to slope. The variability of the rolling-hills also required proactive base of support changes despite the mild slopes to maintain balance.
Collapse
|
23
|
Mezher C, Siragy T, Nantel J. Increased Arm Swing and Rocky Surfaces Reduces Postural Control in Healthy Young Adults. Front Bioeng Biotechnol 2021; 9:645581. [PMID: 34926413 PMCID: PMC8675128 DOI: 10.3389/fbioe.2021.645581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Fall-induced injuries can stem from a disruption in the postural control system and place a financial burden on the healthcare system. Most gait research focused on lower extremities and neglected the contribution of arm swing, which have been shown to affect the movement of the center of mass when walking. This study evaluated the effect of arm swing on postural control and stability during regular and rocky surface walking. Fifteen healthy young adults (age = 23.4 ± 2.8) walked on these two surfaces with three arm motions (normal, held, and active) using the CAREN Extended-System (Motek Medical, Amsterdam, NL). Mean, standard deviation and maximal values of trunk linear and angular velocity were calculated in all three axes. Moreover, step length, time and width mean and coefficient of variation as well as margin of stability mean and standard deviation were calculated. Active arm swing increased trunk linear and angular velocity variability and peak values compared to normal and held arm conditions. Active arm swing also increased participants’ step length and step time, as well as the variability of margin of stability. Similarly, rocky surface walking increased trunk kinematics variability and peak values compared to regular surface walking. Furthermore, rocky surface increased the average step width while reducing the average step time. Though this surface type increased the coefficient of variation of all spatiotemporal parameters, rocky surface also led to increased margin of stability mean and variation. The spatiotemporal adaptations showed the use of “cautious” gait to mitigate the destabilizing effects of both the active arm swing and rocky surface walking and, ultimately, maintain dynamic stability.
Collapse
Affiliation(s)
- Cezar Mezher
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Tarique Siragy
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Julie Nantel
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
24
|
Di Marco R, Rubega M, Antonini A, Formaggio E, Masiero S, Del Felice A. Fractal Analysis of Lower Back Acceleration Profiles in balance tasks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:7381-7384. [PMID: 34892803 DOI: 10.1109/embc46164.2021.9629870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The body sway during standing displays fractal properties that can possibly describe motion complexity. This study aimed to use the Higuchi's fractal dimension (HFD) and Tortuosity on lower back accelerations recorded on younger (< 35 y) and older adults (> 64 y). One wearable sensor was secured on participants lower back (i.e., fifth lumbar vertebra), which were asked to perform three different postural tasks while standing barefoot as still as possible with and without performing a visual oddball task. Results of HFD and Tortuosity, applied to global anterior-posterior and medial-lateral accelerations of the body, were not dependent from signal amplitude, nor from any parametrization and allowed distinguishing between different postural tasks (p < 0.001). The proposed fractal analysis is promising to describe the complexity of postural control in both younger and older adults, paving the way to a wider use in pathological populations.
Collapse
|
25
|
Tortora S, Rubega M, Formaggio E, Marco RD, Masiero S, Menegatti E, Tonin L, Felice AD. Age-related differences in visual P300 ERP during dual-task postural balance. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6511-6514. [PMID: 34892601 DOI: 10.1109/embc46164.2021.9630088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Standing and concurrently performing a cognitive task is a very common situation in everyday life. It is associated with a higher risk of falling in the elderly. Here, we aim at evaluating the differences of the P300 evoked potential elicited by a visual oddball paradigm between healthy younger (< 35 y) and older (> 64 y) adults during a simultaneous postural task. We found that P300 latency increases significantly (p < 0.001) when the elderly are engaged in more challenging postural tasks; younger adults show no effect of balance condition. Our results demonstrate that, even if the elderly have the same accuracy in odd stimuli detection as younger adults do, they require a longer processing time for stimulus discrimination. This finding suggests an increased attentional load which engages additional cerebral reserves.
Collapse
|
26
|
The effects of different frequencies of rhythmic acoustic stimulation on gait stability in healthy elderly individuals: a pilot study. Sci Rep 2021; 11:19530. [PMID: 34593924 PMCID: PMC8484542 DOI: 10.1038/s41598-021-98953-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/13/2021] [Indexed: 02/04/2023] Open
Abstract
The efficacy of rhythmic acoustic stimulation (RAS) to improve gait and balance in healthy elderly individuals is controversial. Our aim was to investigate, through 3D gait analysis, the effect of different types of RAS (fixed frequency and based on subject-specific cadence), using conventional gait parameters and the trunk displacement as readouts. Walking at a fixed frequency of 80 bpm, the subjects showed extended duration of gait cycle and increased gait variability while the same individuals, walking at a fixed frequency of 120 bpm, showed reduced trunk sway and gait cycle duration. With regard to the RAS at subject-specific frequencies, walking at 90% of the subject-specific average cadence did not significantly modify the gait parameters, except for the speed, which was reduced. In contrast, walking at 100% and 110% of the mean cadence caused increased stride length and a slight reduction of temporal parameters and trunk sway. In conclusion, this pilot study shows that using RAS at fixed frequencies might be an inappropriate strategy, as it is not adjusted to individual gait characteristics. On the other hand, RAS frequencies equal to or slightly higher than each subject's natural cadence seem to be beneficial for gait and stability.
Collapse
|
27
|
Sangarapillai K, Norman BM, Almeida QJ. Boxing vs Sensory Exercise for Parkinson's Disease: A Double-Blinded Randomized Controlled Trial. Neurorehabil Neural Repair 2021; 35:769-777. [PMID: 34121511 PMCID: PMC8414806 DOI: 10.1177/15459683211023197] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background. Exercise is increasingly becoming recognized as an important adjunct to medications in the clinical management of Parkinson's disease (PD). Boxing and sensory exercise have shown immediate benefits, but whether they continue beyond program completion is unknown. This study aimed to investigate the effects of boxing and sensory training on motor symptoms of PD, and whether these benefits remain upon completion of the intervention. Methods. In this 20-week double-blinded randomized controlled trial, 40 participants with idiopathic PD were randomized into 2 treatment groups, (n = 20) boxing or (n = 20) sensory exercise. Participants completed 10 weeks of intervention. Motor symptoms were assessed at (week 0, 10, and 20) using the Unified Parkinson's Disease Rating Scale (UPDRS-III). Data were analyzed using SPSS, and repeated-measures ANOVA was conducted. Results. A significant interaction effect between groups and time were observed F(1, 39) = 4.566, P = .036, where the sensory group improved in comparison to the boxing group. Post hoc analysis revealed that in comparison to boxing, the effects of exercise did not wear off at washout (week 20) P < .006. Conclusion. Future rehabilitation research should incorporate similar measures to explore whether effects of exercise wear off post intervention.
Collapse
Affiliation(s)
- Kishoree Sangarapillai
- Movement Disorders Research and
Rehabilitation Centre, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Benjamin M. Norman
- Movement Disorders Research and
Rehabilitation Centre, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Quincy J. Almeida
- Movement Disorders Research and
Rehabilitation Centre, Wilfrid Laurier University, Waterloo, ON, Canada
| |
Collapse
|
28
|
Di Marco R, Rubega M, Lennon O, Formaggio E, Sutaj N, Dazzi G, Venturin C, Bonini I, Ortner R, Cerrel Bazo HA, Tonin L, Tortora S, Masiero S, Del Felice A. Experimental Protocol to Assess Neuromuscular Plasticity Induced by an Exoskeleton Training Session. Methods Protoc 2021; 4:48. [PMID: 34287357 PMCID: PMC8293335 DOI: 10.3390/mps4030048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Exoskeleton gait rehabilitation is an emerging area of research, with potential applications in the elderly and in people with central nervous system lesions, e.g., stroke, traumatic brain/spinal cord injury. However, adaptability of such technologies to the user is still an unmet goal. Despite important technological advances, these robotic systems still lack the fine tuning necessary to adapt to the physiological modification of the user and are not yet capable of a proper human-machine interaction. Interfaces based on physiological signals, e.g., recorded by electroencephalography (EEG) and/or electromyography (EMG), could contribute to solving this technological challenge. This protocol aims to: (1) quantify neuro-muscular plasticity induced by a single training session with a robotic exoskeleton on post-stroke people and on a group of age and sex-matched controls; (2) test the feasibility of predicting lower limb motor trajectory from physiological signals for future use as control signal for the robot. An active exoskeleton that can be set in full mode (i.e., the robot fully replaces and drives the user motion), adaptive mode (i.e., assistance to the user can be tuned according to his/her needs), and free mode (i.e., the robot completely follows the user movements) will be used. Participants will undergo a preparation session, i.e., EMG sensors and EEG cap placement and inertial sensors attachment to measure, respectively, muscular and cortical activity, and motion. They will then be asked to walk in a 15 m corridor: (i) self-paced without the exoskeleton (pre-training session); (ii) wearing the exoskeleton and walking with the three modes of use; (iii) self-paced without the exoskeleton (post-training session). From this dataset, we will: (1) quantitatively estimate short-term neuroplasticity of brain connectivity in chronic stroke survivors after a single session of gait training; (2) compare muscle activation patterns during exoskeleton-gait between stroke survivors and age and sex-matched controls; and (3) perform a feasibility analysis on the use of physiological signals to decode gait intentions.
Collapse
Affiliation(s)
- Roberto Di Marco
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
| | - Maria Rubega
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
| | - Olive Lennon
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, 4 Dublin, Ireland;
| | - Emanuela Formaggio
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
| | - Ngadhnjim Sutaj
- g.tec Medical Engineering GmbH, 4521 Schiedlberg, Austria; (N.S.); (R.O.)
| | - Giacomo Dazzi
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
| | - Chiara Venturin
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
| | - Ilenia Bonini
- Ospedale Riabilitativo di Alta Specializzazione di Motta di Livenza, 31045 Treviso, Italy; (I.B.); (H.A.C.B.)
| | - Rupert Ortner
- g.tec Medical Engineering GmbH, 4521 Schiedlberg, Austria; (N.S.); (R.O.)
| | | | - Luca Tonin
- Department of Information Engineering, University of Padova, 35131 Padova, Italy; (L.T.); (S.T.)
| | - Stefano Tortora
- Department of Information Engineering, University of Padova, 35131 Padova, Italy; (L.T.); (S.T.)
| | - Stefano Masiero
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy
| | - Alessandra Del Felice
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy
| | | |
Collapse
|
29
|
Ability of a Set of Trunk Inertial Indexes of Gait to Identify Gait Instability and Recurrent Fallers in Parkinson's Disease. SENSORS 2021; 21:s21103449. [PMID: 34063468 PMCID: PMC8156709 DOI: 10.3390/s21103449] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022]
Abstract
The aims of this study were to assess the ability of 16 gait indices to identify gait instability and recurrent fallers in persons with Parkinson’s disease (pwPD), regardless of age and gait speed, and to investigate their correlation with clinical and kinematic variables. The trunk acceleration patterns were acquired during the gait of 55 pwPD and 55 age-and-speed matched healthy subjects using an inertial measurement unit. We calculated the harmonic ratios (HR), percent recurrence, and percent determinism (RQAdet), coefficient of variation, normalized jerk score, and the largest Lyapunov exponent for each participant. A value of ≤1.50 for the HR in the antero-posterior direction discriminated between pwPD at Hoehn and Yahr (HY) stage 3 and healthy subjects with a 67% probability, between pwPD at HY 3 and pwPD at lower HY stages with a 73% probability, and it characterized recurrent fallers with a 77% probability. Additionally, HR in the antero-posterior direction was correlated with pelvic obliquity and rotation. RQAdet in the antero-posterior direction discriminated between pwPD and healthy subjects with 67% probability, regardless of the HY stage, and was correlated with stride duration and cadence. Therefore, HR and RQAdet in the antero-posterior direction can both be used as age- and-speed-independent markers of gait instability.
Collapse
|
30
|
Malloggi C, Scarano S, Cerina V, Catino L, Rota V, Tesio L. The curvature peaks of the trajectory of the body centre of mass during walking: A new index of dynamic balance. J Biomech 2021; 123:110486. [PMID: 34004391 DOI: 10.1016/j.jbiomech.2021.110486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/26/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
During walking, falling is most likely to occur towards the side of the supporting lower limb during the single stance. Timely lateral redirection of the centre of mass (CoM) preceding the no-return position is necessary for balance. We analysed the curvature peaks (the inverse of the radius of curvature) of the three-dimensional path of the CoM during the entire stride. Twelve healthy adults walked on a force-sensorized treadmill at constant velocities from 0.4 to 1.2 m s-1, in 0.2 m s-1 increments. The three-dimensional displacements of the CoM, the muscular power sustaining the CoM motion with respect to the ground, and the efficiency of the pendulum-like transfer of the CoM were computed via the double integration of the ground reaction forces. The curvatures of the CoM trajectory were measured (Frenet-Serret formula). During the single stance, the curvature showed a bell-shaped increment, lasting a few tenths of a millisecond, and peaking at 365-683 m-1 (radius of 2.7-1.4 mm, respectively), the higher the walking velocity. The CoM was redirected towards the swinging lower limb. The curvature increment was sustained by muscle-driven braking of the CoM. Smoother increments of curvature (peaking at approximately 37-150 m-1), further orienting the CoM towards the leading lower limb, were observed during the double stance. The peaks of the curvatures were symmetric between the two sides. The high curvature peaks during the single stance may represent an index of dynamic balance during walking. This index might be useful for both rehabilitation and sports training purposes.
Collapse
Affiliation(s)
- Chiara Malloggi
- Istituto Auxologico Italiano, IRCCS, Department of Neurorehabilitation Sciences, Ospedale San Luca, Milano, Italy
| | - Stefano Scarano
- Istituto Auxologico Italiano, IRCCS, Department of Neurorehabilitation Sciences, Ospedale San Luca, Milano, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Valeria Cerina
- Istituto Auxologico Italiano, IRCCS, Department of Neurorehabilitation Sciences, Ospedale San Luca, Milano, Italy
| | - Luigi Catino
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Viviana Rota
- Istituto Auxologico Italiano, IRCCS, Department of Neurorehabilitation Sciences, Ospedale San Luca, Milano, Italy
| | - Luigi Tesio
- Istituto Auxologico Italiano, IRCCS, Department of Neurorehabilitation Sciences, Ospedale San Luca, Milano, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
31
|
Siragy T, Hill A, Nantel J. Recovery of dynamic stability during slips unaffected by arm swing in people with Parkinson's Disease. PLoS One 2021; 16:e0249303. [PMID: 33822806 PMCID: PMC8023478 DOI: 10.1371/journal.pone.0249303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/15/2021] [Indexed: 11/18/2022] Open
Abstract
The arm elevation strategy assists in recovering stability during slips in healthy young and elderly individuals. However, in people with Parkinson's Disease, one of the main motor symptoms affecting the upper limbs is reduced arm swing which intensifies throughout the course of the disease before becoming absent. This holds direct implications for these individuals when encountering slips as the arm elevation strategy is an integral component in the interlimb slip response to restore stability. Arm swing's effect in recovering from slips in people with Parkinson's Disease though remains unexamined. Twenty people with Parkinson's Disease (63.78 ± 8.97 years) walked with restricted and unrestricted arm swing conditions on a dual-belt treadmill where slips were induced on the least and most affected sides. Data were collected on the CAREN Extended System (Motek Medical, Amsterdam, NL). The Margin of Stability, linear and angular trunk velocities, as well as step length, time, and width were calculated. Data were examined during the slipped step and recovery step. The restricted arm swing condition, compared to unrestricted, caused a faster step time during the slipped step. Compared to the most affected leg, the least affected had a wider step width during the slipped step. During the recovery step, the least affected leg had a larger anteroposterior Margin of Stability and longer step time than the most affected. No differences between our arm swing conditions suggests that the normal arm swing in our participants was not more effective at restoring stability after an induced slip compared to when their arm motion was restricted. This may be due to the arm elevation strategy being ineffective in counteracting the slip's backward destabilization in these individuals. Differences between the legs revealed that our participants were asymmetrically impaired in their slip recovery response.
Collapse
Affiliation(s)
- Tarique Siragy
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Allen Hill
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Julie Nantel
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- * E-mail:
| |
Collapse
|
32
|
Ahmadi S, Siragy T, Nantel J. Regularity of kinematic data between single and dual-task treadmill walking in people with Parkinson's disease. J Neuroeng Rehabil 2021; 18:20. [PMID: 33526049 PMCID: PMC7852223 DOI: 10.1186/s12984-021-00807-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 01/11/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Regularity, quantified by sample entropy (SampEn), has been extensively used as a gait stability measure. Yet, there is no consensus on the calculation process and variant approaches, e.g. single-scale SampEn with and without incorporating a time delay greater than one, multiscale SampEn, and complexity index, have been used to calculate the regularity of kinematic or kinetic signals. The aim of the present study was to test the discriminatory performance of the abovementioned approaches during single and dual-task walking in people with Parkinson's disease (PD). METHODS Seventeen individuals with PD were included in this study. Participants completed two walking trials that included single and dual-task conditions. The secondary task was word searching with twelve words randomly appearing in the participants' visual field. Trunk linear acceleration at sternum level, linear acceleration of the center of gravity, and angular velocity of feet, shanks, and thighs, each in three planes of motion were collected. The regularity of signals was computed using approaches mentioned above for single and dual-task conditions. RESULTS Incorporating a time delay greater than one and considering multiple scales helped better distinguish between single and dual-task walking. For all signals, the complexity index, defined as the summary of multiscale SampEn analysis, was the most efficient discriminatory index between single-task walking and dual-tasking in people with Parkinson's disease. Specifically, the complexity index of the trunk linear acceleration of the center of gravity distinguished between the two walking conditions in all three planes of motion. CONCLUSIONS The significant results observed across the 24 signals studied in this study are illustrative examples of the complexity index's potential as a gait feature for classifying different walking conditions.
Collapse
Affiliation(s)
- Samira Ahmadi
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Tarique Siragy
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Julie Nantel
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
33
|
Analysis of Gait for Disease Stage in Patients with Parkinson's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020720. [PMID: 33467634 PMCID: PMC7830506 DOI: 10.3390/ijerph18020720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022]
Abstract
Understanding the motor patterns underlying the movement of individuals with Parkinson's disease (PD) is fundamental to the effective targeting of non-pharmacological therapies. This study aimed to analyze the gait pattern in relation to the evolutionary stages I-II and III-IV according to the Hoehn and Yahr (H&Y) scale in individuals affected by PD. The study was conducted with the participation of 37 PD patients with a mean age of 70.09 ± 9.53 years, and of whom 48.64% were women. The inclusion criteria were (1) to be diagnosed with PD; (2) to be in an evolutionary stage of the disease between I and IV: and (3) to be able to walk independently and without any assistance. Kinematic and spatial-temporal parameters of the gait were analyzed. The results showed differences in speed of movement, cadence, stride length, support duration, swing duration, step width, walking cycle duration, and double support time between the stages analyzed. These results confirmed the differences in PD gait pattern between stages I-II and III-IV. Different behaviors of the same variable were recorded depending on whether the right or left side was affected by PD.
Collapse
|
34
|
Rubega M, Di Marco R, Zampini M, Formaggio E, Menegatti E, Bonato P, Masiero S, Del Felice A. Muscular and cortical activation during dynamic and static balance in the elderly: A scoping review. AGING BRAIN 2021; 1:100013. [PMID: 36911521 PMCID: PMC9997172 DOI: 10.1016/j.nbas.2021.100013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/28/2022] Open
Abstract
Falls due to balance impairment are a major cause of injury and disability in the elderly. The study of neurophysiological correlates during static and dynamic balance tasks is an emerging area of research that could lead to novel rehabilitation strategies and reduce fall risk. This review aims to highlight key concepts and identify gaps in the current knowledge of balance control in the elderly that could be addressed by relying on surface electromyographic (EMG) and electroencephalographic (EEG) recordings. The neurophysiological hypotheses underlying balance studies in the elderly as well as the methodologies, findings, and limitations of prior work are herein addressed. The literature shows: 1) a wide heterogeneity in the experimental procedures, protocols, and analyses; 2) a paucity of studies involving the investigation of cortical activity; 3) aging-related alterations of cortical activation during balance tasks characterized by lower cortico-muscular coherence and increased allocation of attentional control to postural tasks in the elderly; and 4) EMG patterns characterized by delayed onset after perturbations, increased levels of activity, and greater levels of muscle co-activation in the elderly compared to younger adults. EMG and EEG recordings are valuable tools to monitor muscular and cortical activity during the performance of balance tasks. However, standardized protocols and analysis techniques should be agreed upon and shared by the scientific community to provide reliable and reproducible results. This will allow researchers to gain a comprehensive knowledge on the neurophysiological changes affecting static and dynamic balance in the elderly and will inform the design of rehabilitative and preventive interventions.
Collapse
Affiliation(s)
- Maria Rubega
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Giustiniani 5, 35128 Padova, IT, Italy
| | - Roberto Di Marco
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Giustiniani 5, 35128 Padova, IT, Italy
| | - Marianna Zampini
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Giustiniani 5, 35128 Padova, IT, Italy
| | - Emanuela Formaggio
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Giustiniani 5, 35128 Padova, IT, Italy
| | - Emanuele Menegatti
- Department of Information Engineering, University of Padova, Padova, IT, Italy
| | - Paolo Bonato
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, USA
| | - Stefano Masiero
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Giustiniani 5, 35128 Padova, IT, Italy.,Padova Neuroscience Center, University of Padova, Padova, IT, Italy
| | - Alessandra Del Felice
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Giustiniani 5, 35128 Padova, IT, Italy.,Padova Neuroscience Center, University of Padova, Padova, IT, Italy
| |
Collapse
|
35
|
Ma L, Mi TM, Jia Q, Han C, Chhetri JK, Chan P. Gait variability is sensitive to detect Parkinson's disease patients at high fall risk. Int J Neurosci 2020; 132:888-893. [PMID: 33256488 DOI: 10.1080/00207454.2020.1849189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Gait disturbance is an important risk factor for falls in Parkinson's disease (PD). Using wearable sensors, we can obtain the spatiotemporal parameters of gait and calculate the gait variability. This prospective study aims to objectively evaluate the gait characteristics of PD fallers, and further explore the relationship between spatiotemporal parameters of gait, gait variability and falls in PD patients followed for six months. METHODS Fifty-one PD patients were enrolled in this study. A seven-meter timed up and go test was performed. Gait characteristics were determined by a gait analysis system. Patients were followed monthly by telephone until the occurrence of falls or till the end of six months. The patients were categorized into fallers and non-fallers based on whether fell during the follow-up period. Gait parameters were compared between two groups, and binary logistic regression was used to establish the falls prediction model. In the receiver-operating characteristic curve, area under the curve (AUC) was utilized to evaluate the prediction accuracy of each indicator. RESULTS All subjects completed the follow-up, and 14 (27.5%) patients reported falls. PD fallers had greater gait variability. The range of motion of the trunk in sagittal plane variability was an independent risk factor for falls and achieved moderate prediction accuracy (AUC = 0.751), and the logistic regression model achieved a good accuracy of falls prediction (AUC = 0.838). CONCLUSIONS Increased gait variability is a significant feature of PD fallers and is more sensitive to detect PD patients at high risk of falls than spatiotemporal parameters.
Collapse
Affiliation(s)
- Lin Ma
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China
| | - Tao-Mian Mi
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Qian Jia
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China
| | - Chao Han
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Jagadish K Chhetri
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Piu Chan
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China.,Clinical Center for Parkinson's Disease, Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
36
|
Siragy T, MacDonald ME, Nantel J. Restricted Arm Swing in People With Parkinson's Disease Decreases Step Length and Time on Destabilizing Surfaces. Front Neurol 2020; 11:873. [PMID: 33101159 PMCID: PMC7545030 DOI: 10.3389/fneur.2020.00873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/09/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction: Fall rates in people with Parkinson's Disease range between 35 and 68% with the majority of falls occurring while walking. Initial evidence suggests that when walking without arm swing, people with Parkinson's Disease adapt their stepping foot placement as a means to preserve dynamic stability. However, it remains unexamined what arm swing's effect has on dynamic stability when walking on destabilizing surfaces. Methods: Twenty people with Parkinson's Disease (63.78 ± 8.97 years) walked with restricted and unrestricted arm swing on unperturbed, rocky, rolling-hills, and mediolateral translational surfaces. Data were collected on a split-belt treadmill CAREN Extended-System (Motek Medical, Amsterdam, NL). Bilateral averages and coefficient of variations for step time, length, and width; and mediolateral margin of stability were calculated. Results: Results were examined in three separate analyses that included arm conditions during each of the destabilizing surfaces compared to unperturbed walking (arm-rolling hills, arm-rocky, and arm-mediolateral). Compared to unrestricted arm swing, restricted arm swing reduced average step length (arm-rolling hills) and time (arm-rocky), and increased COV step time (arm-rolling hills). The arm-rolling hills analysis revealed that the most affected leg had a shorter step length than the least affected. The destabilizing surface effects revealed that during the arm-rolling hills and arm-rocky analyses, step time decreased, step width increased, and the COV for step time, length and width increased. No main effects occurred for the arm-mediolateral analysis. Conclusion: Results indicate that foot placement in response to restricted arm swing, in people with Parkinson's Disease, depends on the encountered destabilizing surface. The arm-rolling hills analysis revealed that participants appropriately reduced step length as compensation to their restricted arm swing. However, the arm-rocky analysis revealed that individuals prioritized forward progression over dynamic stability as they decreased average step time. Additionally, the increased spatiotemporal variability in response to the rocky and rolling hills conditions indicate partial foot placement adaptation to maintain an already existing level of global dynamic stability as no changes in the Margin of Stability occurred. Adaptation is further corroborated by the decreased step time and increased step width. These responses reflect attempts to pass the destabilizing terrains faster while increasing their base of support.
Collapse
Affiliation(s)
- Tarique Siragy
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | | | - Julie Nantel
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
37
|
Local Dynamic Stability of Gait in People With Early Multiple Sclerosis and No-to-Mild Neurological Impairment. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1389-1396. [DOI: 10.1109/tnsre.2020.2991636] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Siragy T, Nantel J. Absent Arm Swing and Dual Tasking Decreases Trunk Postural Control and Dynamic Balance in People With Parkinson's Disease. Front Neurol 2020; 11:213. [PMID: 32362863 PMCID: PMC7180219 DOI: 10.3389/fneur.2020.00213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/09/2020] [Indexed: 11/29/2022] Open
Abstract
Introduction: Falling during walking is a common occurrence in people with Parkinson's disease and is closely associated with severe social and medical consequences. Recent evidence demonstrates that arm swing affects dynamic balance in healthy young adults; however, it remains unexamined what its effect is in people with Parkinson's disease, particularly when combined with a secondary dual task. Methods: Twenty people with Parkinson's disease (63.78 ± 8.97) walked with two arm swing conditions (absent and normal) with and without a secondary dual task. Data were collected on a split-belt treadmill CAREN Extended-System (Motek Medical, Amsterdam, NL). Average and standard deviations for trunk linear and angular velocity were calculated along with their instantaneous values (during foot strikes) in all three axes. Averages and coefficient of variations for step length, time, and width; margin of stability; and harmonic ratios were also calculated. Results: Compared with normal arm swing, absent arm swing reduced the least affected leg's average step length and increased its step length coefficient of variation while increasing step time coefficient of variation in the most affected leg. Further, absent arm swing reduced trunk anteroposterior instantaneous angular velocity (least affected leg) and reduced anteroposterior instantaneous linear velocity (bilaterally). For the vertical axis, absent arm swing increased the trunk's average angular velocity but reduced its instantaneous linear velocity and angular velocity standard deviation (least affected leg). Additionally, the margin of stability increased when the arms were absent (least affected leg). Alternatively, dual tasking reduced average step time (most affected leg) and increased the step width coefficient of variation (bilaterally). Additionally, dual tasking increased the mediolateral average angular velocity, instantaneous linear velocity standard deviation (bilaterally), and instantaneous angular velocity standard deviation (least affected leg). For the vertical axis, dual tasking increased average linear and angular velocity standard deviation as well as instantaneous angular velocity standard deviation (bilaterally). Conclusion: Findings suggest that participants attempted to control extraneous trunk movement (due to absent arm swing) through compensatory responses in both lower and upper extremities. However, participants appeared to predominately compensate on their least affected side. Contrastingly, modifying mediolateral foot placement appeared to be the main means of maintaining walking stability while dual tasking.
Collapse
Affiliation(s)
- Tarique Siragy
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Julie Nantel
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
39
|
Viseux FJ. The sensory role of the sole of the foot: Review and update on clinical perspectives. Neurophysiol Clin 2020; 50:55-68. [DOI: 10.1016/j.neucli.2019.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 12/26/2022] Open
|
40
|
Hill A, Nantel J. The effects of arm swing amplitude and lower-limb asymmetry on gait stability. PLoS One 2019; 14:e0218644. [PMID: 31860669 PMCID: PMC6924645 DOI: 10.1371/journal.pone.0218644] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/29/2019] [Indexed: 11/18/2022] Open
Abstract
Changes to arm swing and gait symmetry are symptomatic of several pathological gaits associated with reduced stability. The purpose of this study was to examine the relative contributions of arm swing and gait symmetry towards gait stability. We theorized that actively increasing arm swing would increase gait stability, while asymmetric walking would decrease gait stability. Fifteen healthy, young adults (23.4 ± 2.8 yrs) walked on a split-belt treadmill under symmetric (1.2 m/s) and asymmetric walking (left/right, 5:4 speed ratio) with three different arm swings: held, normal, and active. Trunk local dynamic stability, inter-limb coordination, and spatiotemporal gait variability and symmetry were measured. Active arm swing resulted in improved local trunk stability, increased gait variability, and decreased inter-limb coordination (p < .013). The changes in local trunk stability and gait variability during active arm swing suggests that these metrics quantify fundamentally different aspects of stability and are not always comparable. Split-belt walking caused reduced local trunk stability, increased gait variability, and increased lower limb asymmetry (p < .003). However, the arm swing symmetry was unaffected by gait asymmetry, this suggests that the decreases in gait stability are linked to the increases in gait asymmetry rather than increases in arm swing asymmetry.
Collapse
Affiliation(s)
- Allen Hill
- University of Ottawa, School of Human Kinetics, Ottawa, Canada
| | - Julie Nantel
- University of Ottawa, School of Human Kinetics, Ottawa, Canada
- * E-mail:
| |
Collapse
|
41
|
Siragy T, Mezher C, Hill A, Nantel J. Active arm swing and asymmetric walking leads to increased variability in trunk kinematics in young adults. J Biomech 2019; 99:109529. [PMID: 31839359 DOI: 10.1016/j.jbiomech.2019.109529] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/17/2019] [Accepted: 11/17/2019] [Indexed: 11/25/2022]
Abstract
Fall induced injuries are a leading cause for occupational injuries with the majority originating from challenging same-level walking surfaces. Despite current perturbation and fall prevention paradigms, occupational fall prevalence remains stable. Typically, these paradigms do not account for arm swing which has been demonstrated to affect the center of mass' movement during walking. This study examined the effect of different arm swing on postural control during symmetric and asymmetric walking. Fifteen healthy young adults (age = 23.4 ± 2.8) walked symmetrically and asymmetrically with three arm motions (normal, held, and active) on a split-belt treadmill CAREN Extended-System (Motek Medical, Amsterdam, NL). Mean, standard deviation and maximal values of trunk linear and angular velocity, and whole-body angular momentum were calculated in all three axes; additionally, step length, time and width mean and Coefficient of Variation, Margin of Stability and Harmonic Ratios were calculated. Compared to normal and held conditions, active arm increased trunk linear and angular velocity standard deviation, max velocity values, mean step length and time, as well as the Coefficient of Variation for step length, time, and width. Furthermore, whole-body angular momentum increased as a function of arm swing amplitude. Active arm swing further reduced Harmonic Ratios in the mediolateral and anteroposterior directions. Asymmetric walking increased average step time, and width as well as increased the Coefficient of Variation for step length and time but reduced left average step length and step width Coefficient of Variation. Further, asymmetric walking increased mediolateral Margin of Stability and reduced anteroposterior and mediolateral Harmonic Ratios. Finally, results demonstrated that actively increasing arm swing increases trunk linear and angular velocity variability in healthy young adults during symmetric and asymmetric treadmill walking. Findings may be due to active arm swing and asymmetric walking causing a disproportional contribution to trunk and center of mass movement causing participants to modify their base of support to maintain stability.
Collapse
Affiliation(s)
- Tarique Siragy
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada.
| | - Cezar Mezher
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada.
| | - Allen Hill
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada.
| | - Julie Nantel
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
42
|
Cantú H, Nantel J, Millán M, Paquette C, Côté JN. Abnormal Muscle Activity and Variability Before, During, and After the Occurrence of Freezing in Parkinson's Disease. Front Neurol 2019; 10:951. [PMID: 31551912 PMCID: PMC6733893 DOI: 10.3389/fneur.2019.00951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/19/2019] [Indexed: 11/29/2022] Open
Abstract
Freezing of gait (FOG) is often experienced in advanced stages of Parkinson's disease (PD) and can lead to an increased risk of falls. Although spatiotemporal characteristics of FOG are well-described, their underlying neuromuscular mechanisms remain poorly understood. Several studies have demonstrated an abnormal activation of distal muscles of the lower limb and coordination impairments during gait in people with PD (pwPD). However, few have investigated how various characteristics of electromyograms (EMGs) change before, during and after a freezing episode (FE). Our objective was to quantify changes in proximal and distal leg muscle activity associated with FEs. In this study, 12 pwPD, confirmed as freezers, performed a repetitive stepping-in-place task used to elicit FE. Surface EMGs were collected from proximal [rectus femoris and biceps femoris (BF)] and distal [tibialis anterior (TA) and gastrocnemius medialis (GM)] muscles. Data epochs of 500 ms were extracted from EMG time series at four different periods: baseline, 2 s before a FE, during a FE, and 2 s after a FE. For each epoch, EMG amplitude [root-mean-square (RMS)], variability [coefficient of variation (CoV)], and inter-muscle functional connectivity (mutual information) were quantified. Results from the analysis of 21 FEs show a significant main effect of Period for EMG amplitude in bilateral TA and in the least affected GM (p < 0.01), with decreased activation before freezing that remained low during and after the FE. On the other hand, a main effect of Period was also found in bilateral BF muscles (p < 0.01) but with increased activation before freezing that was generally sustained during and after FE. Main effects of Period were also found for all measures of variability, except for the least affected GM, showing reduced variability during the FE that returned to baseline in all muscles except both TA. Moreover, an increase in functional connectivity between the least affected distal muscles was seen before the FE. Our findings confirm that many characteristics of EMG patterns of both distal and proximal leg muscles change throughout periods of a FE, suggesting both impairment and adaptive strategies from proximal muscles.
Collapse
Affiliation(s)
- Hiram Cantú
- Departamento de Ingeniería Biomédica, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza García, Mexico.,Occupational Biomechanics and Ergonomics Laboratory, Michael Feil and Ted Oberfeld/CRIR Research Centre, Jewish Rehabilitation Hospital, Laval, QC, Canada.,Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - Julie Nantel
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Michelle Millán
- Departamento de Ingeniería Biomédica, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza García, Mexico
| | - Caroline Paquette
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada.,Centre for Interdisciplinary Research in Rehabilitation, Montreal, QC, Canada
| | - Julie N Côté
- Occupational Biomechanics and Ergonomics Laboratory, Michael Feil and Ted Oberfeld/CRIR Research Centre, Jewish Rehabilitation Hospital, Laval, QC, Canada.,Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| |
Collapse
|
43
|
Chen Z, Han J, Waddington G, Adams R, Witchalls J. Somatosensory perception sensitivity in voluntary postural sway movements: Age, gender and sway effect magnitudes. Exp Gerontol 2019; 122:53-59. [PMID: 31029824 DOI: 10.1016/j.exger.2019.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/22/2019] [Accepted: 04/21/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVES 1) to develop a reliable device for assessing somatosensory perception sensitivity in voluntary postural sway movement, specifically a sway discrimination apparatus (SwayDA) for testing voluntary lateral sway discrimination sensitivity (VLSDS); 2) to explore the relationship between mobility performance and VLSDS in older adults, and 3) to determine the effects of age, gender and sway magnitude on VLSDS. METHODS First, eighteen healthy young adults (8 males, 10 females, age ranging from 22 to 70) were recruited for a test-retest reliability study. During the SwayDA test, the participants were asked to discriminate between four possible medial-lateral sway extents when moving away from neutral standing. For Objective 2, twenty-five older participants (9 males, 16 females, mean age 70.1) undertook both the SwayDA and the mobility tests. The mobility testing battery consisted of single task and cognitive dual task timed-up and-go tests, and the 5 times sit-to-stand test. Pearson's correlation was calculated between SwayDA scores and mobility performance. For Objective 3, 20 community-dwelling adults over 65 years old (10 males, 10 females, mean age 71.3) and 20 young volunteers (10 males, 10 females, mean age 23.6) were recruited to study the effects of age, gender and sway magnitude on VLSDS. To obtain a bias-free measure of VLSDS, the probability of correct response was considered as the true-positive judgment, while the probability of incorrect response was considered as false-positive judgment, and these were cumulated across the response values. A receiver operating characteristic (ROC) curve was then generated and the Area Under the ROC Curve (AUC) was used to measure VLSDS. RESULTS There was no significant difference in AUC scores between Day 1 and Day 8 (p > 0.05). ICC(3,1) reliability indices were 0.750 for sway to the left and 0.879 for sway to the right. Pearson's correlation revealed a significant correlation between the SwayDA sores and timed-up-and-go (TUG), cognitive dual task TUG, 5 times sit-to-stand test (r = -0.456, -0.522, and - 0.416 respectively, all p < 0.05). Factorial ANOVA showed age and gender main effects (F = 8.144, p < 0.01, and F = 8.806, p < 0.01, respectively), suggesting older adults and females had worse VLSDS. In addition, a significant difference was found between the young and older participants in the inner range of VLSDS (t = -2.875, p < 0.017), indicating that the decline of somatosensory perception of postural sway in older people may be magnitude-specific, and greatest for small deviations from upright stance. CONCLUSIONS The SwayDA has good to excellent test-retest reliability. The finding that VLSDS score was significantly correlated with mobility performance in older adults highlights the importance of somatosensory perception in postural control. More importantly, the significantly worse VLSDS in older people observed in the inner lateral movement range may represent a unique characteristic of neuromuscular degeneration associated with aging, which should be monitored and addressed in rehabilitation programs.
Collapse
Affiliation(s)
- Zhengquan Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jia Han
- School of Kinesiology, Shanghai University of Sport, Shanghai, China; Research Institute for Sport and Exercise, University of Canberra, ACT AUS 2601, Australia.
| | - Gordon Waddington
- Research Institute for Sport and Exercise, University of Canberra, ACT AUS 2601, Australia
| | - Roger Adams
- Research Institute for Sport and Exercise, University of Canberra, ACT AUS 2601, Australia
| | - Jeremy Witchalls
- Research Institute for Sport and Exercise, University of Canberra, ACT AUS 2601, Australia
| |
Collapse
|