1
|
da Silva Costa AA, Moraes R, den Otter R, Gennaro F, Bakker L, Rocha Dos Santos PC, Hortobágyi T. Corticomuscular and intermuscular coherence as a function of age and walking balance difficulty. Neurobiol Aging 2024; 141:85-101. [PMID: 38850592 DOI: 10.1016/j.neurobiolaging.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/12/2024] [Accepted: 05/08/2024] [Indexed: 06/10/2024]
Abstract
We determined beta-band intermuscular (IMC) and corticomuscular coherence (CMC) as a function of age and walking balance difficulty. Younger (n=14, 23y) and older individuals (n=19, 71y) walked 13 m overground, on a 6-cm-wide ribbon overground, and on a 6-cm-wide (5-cm-high) beam. Walking distance as a proxy for walking balance and speed were computed. CMC was estimated between electroencephalographic signal at Cz electrode and surface electromyographic signals of seven leg muscles, while IMC was calculated in four pairs of leg muscles, during stance and swing gait phases. With increasing difficulty, walking balance decreased in old individuals and speed decreased gradually independent of age. Beam walking increased IMC, while age increased IMC in proximal muscle pairs, and decreased IMC in distal muscle pairs. Age and difficulty increased CMC independent of gait phases. Concluding, CMC and IMC increased with walking balance difficulty and age, except for distal muscle pairs, which had lower IMC with age. These findings suggest an age-related increase in corticospinal involvement in the neural control of walking balance. DATA AVAILABILITY: The datasets used in this study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Andréia Abud da Silva Costa
- Ribeirão Preto Medical School, Graduate Program in Rehabilitation and Functional Performance, University of São Paulo, Brazil; Biomechanics and Motor Control Lab, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Brazil; Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands.
| | - Renato Moraes
- Ribeirão Preto Medical School, Graduate Program in Rehabilitation and Functional Performance, University of São Paulo, Brazil; Biomechanics and Motor Control Lab, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Brazil
| | - Rob den Otter
- Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands
| | - Federico Gennaro
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Lisanne Bakker
- Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands
| | - Paulo Cezar Rocha Dos Santos
- Department of Computer Science & Applied Mathematics, Weizmann Institute of Science, Israel; The Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Israel; IDOR/Pioneer Science Initiative, Rio de Janeiro, RJ, Brazil
| | - Tibor Hortobágyi
- Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands; Department of Kinesiology, Hungarian University of Sports Science, Budapest 1123, Hungary; Department of Sport Biology, Institute of Sport Sciences and Physical Education, University of Pécs, Pécs, Hungary
| |
Collapse
|
2
|
Fortunati M, Febbi M, Negro M, Gennaro F, D’Antona G, Crisafulli O. Lower-Limb Exoskeletons for Gait Training in Parkinson's Disease: The State of the Art and Future Perspectives. Healthcare (Basel) 2024; 12:1636. [PMID: 39201194 PMCID: PMC11353983 DOI: 10.3390/healthcare12161636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Gait dysfunction (GD) is a common impairment of Parkinson's disease (PD), which negatively impacts patients' quality of life. Among the most recent rehabilitation technologies, a lower-limb powered exoskeleton (LLEXO) arises as a useful instrument for gait training in several neurological conditions, including PD. However, some questions relating to methods of use, achievable results, and usefulness compared to traditional rehabilitation methodologies still require clear answers. Therefore, in this review, we aim to summarise and analyse all the studies that have applied an LLEXO to train gait in PD patients. Literature research on PubMed and Scopus retrieved five articles, comprising 46 PD participants stable on medications (age: 71.7 ± 3.7 years, 24 males, Hoehn and Yahr: 2.1 ± 0.6). Compared to traditional rehabilitation, low-profile lower-limb exoskeleton (lp-LLEXO) training brought major improvements towards walking capacity and gait speed, while there are no clear major benefits regarding the dual-task gait cost index and freezing of gait symptoms. Importantly, the results suggest that lp-LLEXO training is more beneficial for patients with an intermediate-to-severe level of disease severity (Hoehn and Yahr > 2.5). This review could provide a novel framework for implementing LLEXO in clinical practise, highlighting its benefits and limitations towards gait training.
Collapse
Affiliation(s)
- Matteo Fortunati
- Department of Industrial Engineering, University of Tor Vergata, 00133 Rome, Italy
- CRIAMS-Sport Medicine Centre Voghera, University of Pavia, 27058 Voghera, Italy
| | - Massimiliano Febbi
- Department of Industrial Engineering, University of Tor Vergata, 00133 Rome, Italy
- Laboratory for Rehabilitation, Medicine and Sport (LARM), 00133 Rome, Italy
| | - Massimo Negro
- CRIAMS-Sport Medicine Centre Voghera, University of Pavia, 27058 Voghera, Italy
| | - Federico Gennaro
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Giuseppe D’Antona
- CRIAMS-Sport Medicine Centre Voghera, University of Pavia, 27058 Voghera, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Oscar Crisafulli
- CRIAMS-Sport Medicine Centre Voghera, University of Pavia, 27058 Voghera, Italy
| |
Collapse
|
3
|
Lai J, Ye Y, Huang D, Zhang X. Age-related differences in the capacity and neuromuscular control of the foot core system during quiet standing. Scand J Med Sci Sports 2024; 34:e14522. [PMID: 37872662 DOI: 10.1111/sms.14522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
The foot core system is essential for upright stability. However, aging-induced changes in the foot core function remain poorly understood. The present study aimed to examine age-related differences in postural stability from the perspective of foot core capacity and neuromuscular control during quiet standing. Thirty-six older and 25 young adults completed foot core capacity tests including toe flexion strength, muscle ultrasonography, and plantar cutaneous sensitivity. The center of pressure (COP) and electromyography (EMG) of abductor hallucis (ABH), peroneus longus (PL), tibialis anterior (TA) and medial gastrocnemius (GM) were simultaneously recorded during double-leg and single-leg standing (SLS). EMG data were used to calculate muscle synergy and intermuscular coherence across three frequency bands. Compared to young adults, older adults exhibited thinner hallucis flexors, weaker toe strength, and lower plantar cutaneous sensitivity. The ABH thickness and plantar cutaneous sensitivity were negatively associated with the COP mean peak velocity in older adults, but not in young adults. Besides, older adults had higher cocontraction of muscles spanning the arch (ABH-PL) and ankle (TA-GM), and had lower beta- and gamma-band coherence of the ABH-PL and TA-PL during SLS. Foot core capacities became compromised with advancing age, and the balance control of older adults was susceptible to foot core than young adults in balance tasks. To compensate for the weakened foot core, older adults may adopt arch and ankle stiffening strategies via increasing muscle cocontraction. Furthermore, coherence analysis indicated that aging may increase the demand for cortical brain resources during SLS.
Collapse
Affiliation(s)
- Jiaqi Lai
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yinyan Ye
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Dongfeng Huang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, Guangdong, China
| | - Xianyi Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Cruz-Montecinos C, García-Massó X, Maas H, Cerda M, Ruiz-Del-Solar J, Tapia C. Detection of intermuscular coordination based on the causality of empirical mode decomposition. Med Biol Eng Comput 2023; 61:497-509. [PMID: 36527531 DOI: 10.1007/s11517-022-02736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Considering the stochastic nature of electromyographic (EMG) signals, nonlinear methods may be a more accurate approach to study intermuscular coordination than the linear approach. The aims of this study were to assess the coordination between two ankle plantar flexors using EMG by applying the causal decomposition approach and assessing whether the intermuscular coordination is affected by the slope of the treadmill. The medial gastrocnemius (MG) and soleus muscles (SOL) were analyzed during the treadmill walking at inclinations of 0°, 5°, and 10°. The coordination was evaluated using ensemble empirical mode decomposition, and the causal interaction was encoded by the instantaneous phase dependence of time series bi-directional causality. To estimate the mutual predictability between MG and SOL, the cross-approximate entropy (XApEn) was assessed. The maximal causal interaction was observed between 40 and 75 Hz independent of inclination. XApEn showed a significant decrease between 0° and 5° (p = 0.028), between 5° and 10° (p = 0.038), and between 0° and 10° (p = 0.014), indicating an increase in coordination. Thus, causal decomposition is an appropriate methodology to study intermuscular coordination. These results indicate that the variation of loading through the change in treadmill inclination increases the interaction of the shared input between MG and SOL, suggesting increased intermuscular coordination.
Collapse
Affiliation(s)
- Carlos Cruz-Montecinos
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Laboratory of Clinical Biomechanics, Department of Kinesiology, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Santiago, Chile
| | - Xavier García-Massó
- Department of Teaching of Musical, Visual and Corporal Expression, University of Valencia, Valencia, Spain.,Human Movement Analysis Group, University of Valencia, Valencia, Spain
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Mauricio Cerda
- Integrative Biology Program, Institute of Biomedical Sciences (ICBM), Center for Medical Informatics and Telemedicine (CIMT), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute (BNI), Santiago, Chile
| | | | - Claudio Tapia
- Laboratory of Clinical Biomechanics, Department of Kinesiology, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Santiago, Chile. .,Departamento de Kinesiología, Facultad de Artes Y Educación Física, Universidad Metropolitana de Ciencias de La Educación, Santiago, Chile.
| |
Collapse
|
5
|
Gennaro F, de Bruin ED. A pilot study assessing reliability and age-related differences in corticomuscular and intramuscular coherence in ankle dorsiflexors during walking. Physiol Rep 2021; 8:e14378. [PMID: 32109345 PMCID: PMC7048377 DOI: 10.14814/phy2.14378] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/11/2022] Open
Abstract
Corticomuscular (CMC) and intramuscular (intraMC) coherence represent measures of corticospinal interaction. Both CMC and intraMC can be assessed during human locomotion tasks, for example, while walking. Corticospinal control of gait can deteriorate during the aging process and CMC and intraMC may represent an important monitoring means. However, it is unclear whether such assessments represent a reliable tool when performed during walking in an ecologically valid scenario and whether age‐related differences may occur. Wireless surface electroencephalography and electromyography were employed in a pilot study with young and old adults during overground walking in two separate sessions. CMC and intraMC analyses were performed in the gathered beta and lower gamma frequencies (i.e., 13–40 Hz). Significant log‐transformed coherence area was tested for intersessions test–retest reliability by determining intraclass correlation coefficient (ICC), yielding to low reliability in CMC in both younger and older adults. intraMC exclusively showed low reliability in the older adults, whereas intraMC in the younger adults revealed similar values as previously reported: test–retest reliability [ICC (95% CI): 0.44 (−0.23, 0.87); SEM: 0.46; MDC: 1.28; MDC%: 103; Hedge's g (95% CI): 0.54 (−0.13, 1.57)]. Significant differences between the age groups were observed in intraMC by either comparing the two groups with the first test [Hedge's g (95% CI): 1.55 (0.85, 2.15); p‐value: .006] or with the retest data [Hedge's g (95% CI): 2.24 (0.73, 3.70); p‐value: .005]. Notwithstanding the small sample size investigated, intraMC seems a moderately reliable assessment in younger adults. The further development and use of this measure in practical settings to infer corticospinal interaction in human locomotion in clinical practice is warranted and should help to refine the analysis. This necessitates involving larger sample sizes as well as including a wider number of lower limb muscles. Moreover, further research seems warranted by the observed differences in modulation mechanisms of corticospinal control of gait as ascertained by intraMC between the age groups.
Collapse
Affiliation(s)
- Federico Gennaro
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Eling D de Bruin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland.,Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Nojima I, Suwa Y, Sugiura H, Noguchi T, Tanabe S, Mima T, Watanabe T. Smaller muscle mass is associated with increase in EMG-EMG coherence of the leg muscle during unipedal stance in elderly adults. Hum Mov Sci 2020; 71:102614. [PMID: 32452431 DOI: 10.1016/j.humov.2020.102614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 11/29/2022]
Abstract
Age-induced decline in the ability to perform daily activities is associated with a deterioration of physical parameters. Changes occur in neuromuscular system with age; however, the relationship between these changes and physical parameters has not been fully elucidated. Therefore, in this study, we aimed to determine the relationship between neuromuscular system evaluated using a coherence analysis of the leg muscles and physical parameters in community-dwelling healthy elderly adults. The participants were required to stand still in bipedal and unipedal stances on a force plate. Then, electromyography (EMG) was recorded from the tibialis anterior (TA) and medial and lateral gastrocnemius (MG/LG) muscles, and intermuscular coherence was calculated between the following pairs: TA and MG (TA-MG), TA and LG (TA-LG), and MG and LG (MG-LG). Furthermore, gait speed, unipedal stance time, and muscle mass were measured. EMG-EMG coherence for the MG-LG pair was significantly greater in the unipedal stance task than in the bipedal one (p = .001). Multiple linear regression analysis revealed that the muscle mass of the leg was negatively correlated with the change in the β-band coherence for the MG-LG pair from bipedal to unipedal stance (R2 = 0.067, standard β = -0.345, p = .044). As the β-band coherence could reflect the corticospinal activity, the increased β-band coherence may be a compensation for the smaller muscle mass, or alternatively may be a sign of changes in the nervous system resulting in the loss of muscle mass.
Collapse
Affiliation(s)
- Ippei Nojima
- Department of Physical Therapy, School of Health Sciences, Shinshu University, Matsumoto, Nagano, Japan.
| | - Yuki Suwa
- Department of Physical Therapy, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Hideshi Sugiura
- Department of Physical Therapy, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Taiji Noguchi
- National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Tatsuya Mima
- Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto, Japan
| | - Tatsunori Watanabe
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
7
|
Gennaro F, Maino P, Kaelin-Lang A, De Bock K, de Bruin ED. Corticospinal Control of Human Locomotion as a New Determinant of Age-Related Sarcopenia: An Exploratory Study. J Clin Med 2020; 9:E720. [PMID: 32155951 PMCID: PMC7141202 DOI: 10.3390/jcm9030720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is a muscle disease listed within the ICD-10 classification. Several operational definitions have been created for sarcopenia screening; however, an international consensus is lacking. The Centers for Disease Control and Prevention have recently recognized that sarcopenia detection requires improved diagnosis and screening measures. Mounting evidence hints towards changes in the corticospinal communication system where corticomuscular coherence (CMC) reflects an effective mechanism of corticospinal interaction. CMC can be assessed during locomotion by means of simultaneously measuring Electroencephalography (EEG) and Electromyography (EMG). The aim of this study was to perform sarcopenia screening in community-dwelling older adults and explore the possibility of using CMC assessed during gait to discriminate between sarcopenic and non-sarcopenic older adults. Receiver Operating Characteristic (ROC) curves showed high sensitivity, precision and accuracy of CMC assessed from EEG Cz sensor and EMG sensors located over Musculus Vastus Medialis [Cz-VM; AUC (95.0%CI): 0.98 (0.92-1.04), sensitivity: 1.00, 1-specificity: 0.89, p < 0.001] and with Musculus Biceps Femoris [Cz-BF; AUC (95.0%CI): 0.86 (0.68-1.03), sensitivity: 1.00, 1-specificity: 0.70, p < 0.001]. These muscles showed significant differences with large magnitude of effect between sarcopenic and non-sarcopenic older adults [Hedge's g (95.0%CI): 2.2 (1.3-3.1), p = 0.005 and Hedge's g (95.0%CI): 1.5 (0.7-2.2), p = 0.010; respectively]. The novelty of this exploratory investigation is the hint toward a novel possible determinant of age-related sarcopenia, derived from corticospinal control of locomotion and shown by the observed large differences in CMC when sarcopenic and non-sarcopenic older adults are compared. This, in turn, might represent in future a potential treatment target to counteract sarcopenia as well as a parameter to monitor the progression of the disease and/or the potential recovery following other treatment interventions.
Collapse
Affiliation(s)
- Federico Gennaro
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, 8093 Zurich, Switzerland; (K.D.B.); (E.D.d.B.)
| | - Paolo Maino
- Pain Management Center, Neurocenter of Southern Switzerland, Regional Hospital of Lugano, 6962 Lugano, Switzerland;
| | - Alain Kaelin-Lang
- Neurocenter of Southern Switzerland, Regional Hospital of Lugano, 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Medical faculty, University of Bern, 3008 Bern, Switzerland
| | - Katrien De Bock
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, 8093 Zurich, Switzerland; (K.D.B.); (E.D.d.B.)
| | - Eling D. de Bruin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, 8093 Zurich, Switzerland; (K.D.B.); (E.D.d.B.)
- Department of Neurobiology, Division of Physiotherapy, Care Sciences and Society, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|