1
|
Papakonstantinou I, Tsioufis K, Katsi V. Spotlight on the Mechanism of Action of Semaglutide. Curr Issues Mol Biol 2024; 46:14514-14541. [PMID: 39728000 DOI: 10.3390/cimb46120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024] Open
Abstract
Initially intended to control blood glucose levels in patients with type 2 diabetes, semaglutide, a potent glucagon-like peptide 1 analogue, has been established as an effective weight loss treatment by controlling appetite. Integrating the latest clinical trials, semaglutide in patients with or without diabetes presents significant therapeutic efficacy in ameliorating cardiometabolic risk factors and physical functioning, independent of body weight reduction. Semaglutide may modulate adipose tissue browning, which enhances human metabolism and exhibits possible benefits in skeletal muscle degeneration, accelerated by obesity and ageing. This may be attributed to anti-inflammatory, mitochondrial biogenesis, antioxidant and autophagy-regulating effects. However, most of the supporting evidence on the mechanistic actions of semaglutide is preclinical, demonstrated in rodents and not actually confirmed in humans, therefore warranting caution in the interpretation. This article aims to explore potential innovative molecular mechanisms of semaglutide action in restoring the balance of several interlinking aspects of metabolism, pointing to distinct functions in inflammation and oxidative stress in insulin-sensitive musculoskeletal and adipose tissues. Moreover, possible applications in protection from infections and anti-aging properties are discussed. Semaglutide enhancement of the core molecular mechanisms involved in the progress of obesity and diabetes, although mostly preclinical, may provide a framework for future research applications in human diseases overall.
Collapse
Affiliation(s)
- Ilias Papakonstantinou
- 4th Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Vasiliki Katsi
- 1st Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| |
Collapse
|
2
|
Liu M, Guo S, Li X, Tian Y, Yu Y, Tang L, Sun Q, Zhang T, Fan M, Zhang L, Xu Y, An J, Gao X, Han L, Zhang L. Semaglutide Alleviates Ovary Inflammation via the AMPK/SIRT1/NF‑κB Signaling Pathway in Polycystic Ovary Syndrome Mice. Drug Des Devel Ther 2024; 18:3925-3938. [PMID: 39247793 PMCID: PMC11380913 DOI: 10.2147/dddt.s484531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
Background GLP-1 receptor agonists (GLP-1 RA) have been proven to treat several metabolic diseases; however, the effects of GLP-1 RA on polycystic ovary syndrome (PCOS) remain unclear. Here, we aimed to investigate whether semaglutide, a novel GLP-1 RA, could alleviate ovarian inflammation in PCOS mice. Methods Female C57BL/6J mice were subcutaneously injected with dehydroepiandrosterone for 21 days to establish the PCOS model. Then the mice were randomly divided into three groups: PCOS group (n = 6), S-0.42 group (semaglutide 0.42 mg/kg/w, n = 6), and S-0.84 group (semaglutide 0.84 mg/kg/w, n = 6). The remaining six mice were used as controls (NC). After 28 days of intervention, serum sex hormones and inflammatory cytokine levels were measured. Hematoxylin and eosin staining was used to observe the ovarian morphology. Immunohistochemical staining was used to detect the relative expression of CYP19A1, TNF-α, IL-6, IL-1β, and NF-κB in ovaries. CYP17A1 and StAR were detected using immunofluorescence staining. Finally, the relative expressions of AMPK, pAMPK, SIRT1, NF-κB, IκBα, pIκBα, TNF-α, IL-6, and IL-1β were measured using Western blotting. Results First, after intervention with semaglutide, the weight of the mice decreased, insulin resistance improved, and the estrous cycle returned to normal. Serum testosterone and IL-1β levels decreased significantly, whereas estradiol and progestin levels increased significantly. Follicular cystic dilation significantly improved. The expression of TNF-α, IL-6, IL-1β, NF-κB, CYP17A1, and StAR in the ovary was significantly downregulated, whereas CYP19A1 expression was upregulated after the intervention. Finally, we confirmed that semaglutide alleviates ovarian tissue inflammation and improves PCOS through the AMPK/SIRT1/NF-κB signaling pathway. Conclusion Semaglutide alleviates ovarian inflammation via the AMPK/SIRT1/NF‑κB signaling pathway in PCOS mice.
Collapse
Affiliation(s)
- Mei Liu
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Sili Guo
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Xiaohan Li
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Yang Tian
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Yanjie Yu
- Department of Ultrasound Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Lili Tang
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Qimei Sun
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Ting Zhang
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Mingwei Fan
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Lili Zhang
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Yingjiang Xu
- Department of Interventional Vascular Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Jiajia An
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Xiangqian Gao
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Lei Han
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Lei Zhang
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| |
Collapse
|
3
|
Zou H, Bao S, Chen X, Zhou X, Zhang S. High-frequency repetitive transcranial magnetic stimulation ameliorates memory impairment by inhibiting neuroinflammation in the chronic cerebral hypoperfusion mice. Brain Behav 2024; 14:e3618. [PMID: 39010692 PMCID: PMC11250728 DOI: 10.1002/brb3.3618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) has been found to ameliorate cognitive impairment. However, the effects of HF-rTMS remain unknown in chronic cerebral hypoperfusion (CCH). AIM To investigate the effects of HF-rTMS on cognitive improvement and its potential mechanisms in CCH mice. MATERIALS AND METHODS Daily HF-rTMS therapy was delivered after bilateral carotid stenosis (BCAS) and continued for 14 days. The mice were randomly assigned to three groups: the sham group, the model group, and the HF-rTMS group. The Y maze and the new object recognition test were used to assess cognitive function. The expressions of MAP-2, synapsis, Myelin basic protein(MBP), and brain-derived growth factors (BDNF) were analyzed by immunofluorescence staining and western blot to evaluate neuronal plasticity and white matter myelin regeneration. Nissl staining and the expression of caspase-3, Bax, and Bcl-2 were used to observe neuronal apoptosis. In addition, the activation of microglia and astrocytes were evaluated by fluorescence staining. The inflammation levels of IL-1β, IL-6, and Tumor Necrosis Factor(TNF)-α were detected by qPCR in the hippocampus of mice in each group. RESULTS Via behavioral tests, the BCAS mice showed reduced a rate of new object preference and decreased a rate of spontaneous alternations, while HF-rTMS significantly improved hippocampal learning and memory deficits. In addition, the mice in the model group showed decreased levels of MAP-2, synapsis, MBP, and BDNF, while HF-rTMS treatment reversed these effects. As expected, activated microglia and astrocytes increased in the model group, but HF-rTMS treatment suppressed these changes. HF-rTMS decreased BCAS-induced neuronal apoptosis and the expression of pro-apoptotic protein (Caspase-3 and Bax) and increased the expression of anti-apoptotic protein (Bcl-2). In addition, HF-rTMS inhibited the expression of inflammatory cytokines (IL-1β, IL-6, and TNF-α). CONCLUSIONS HF-rTMS alleviates cognitive impairment in CCH mice by enhancing neuronal plasticity and inhibiting inflammation, thus serving as a potential method for vascular cognitive impairment.
Collapse
Affiliation(s)
- Huihui Zou
- Department of Neurology, Neuroscience CenterSouthern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical UniversityNo. 13 Shi Liu Gang Road, Haizhu DistrictGuangzhou510315China
| | - Shilin Bao
- Department of Neurology, Neuroscience CenterSourthern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical UniversityNo. 13 Shi Liu Gang Road, Haizhu DistrictGuangzhou510315China
| | - Xinrun Chen
- Department of NeurologyGeneral Hospital of Southern Theater Command, Chinese People's Liberation ArmyGuangzhouChina
| | - Xianju Zhou
- Department of Neurology, Neuroscience CenterSouthern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical UniversityNo. 13 Shi Liu Gang Road, Haizhu DistrictGuangzhou510315China
| | - Shaotian Zhang
- Department of Neurology, Neuroscience CenterSourthern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical UniversityNo. 13 Shi Liu Gang Road, Haizhu DistrictGuangzhou510315China
| |
Collapse
|
4
|
Wang L, Li M, Liu B, Zheng R, Zhang X, Yu S. miR-30a-5p mediates ferroptosis of hippocampal neurons in chronic cerebral hypoperfusion-induced cognitive dysfunction by modulating the SIRT1/NRF2 pathway. Brain Res Bull 2024; 212:110953. [PMID: 38636610 DOI: 10.1016/j.brainresbull.2024.110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVE Chronic cerebral hypoperfusion (CCH) is a common cause of brain dysfunction. As a microRNA (also known as miRNAs or miRs), miR-30a-5p participates in neuronal damage and relates to ferroptosis. We explored the in vivo and in vitro effects and functional mechanism of miR-30a-5p in CCH-triggered cognitive impairment through the silent information regulator 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway. METHODS After 1 month of CCH modeling through bilateral common carotid artery stenosis, mice were injected with 2 μL antagomir (also known as anti-miRNAs) miR-30a-5p, with cognitive function evaluated by Morris water maze and novel object recognition tests. In vitro HT-22 cell oxygen glucose deprivation (OGD) model was established, followed by miR-30a-5p inhibitor and/or si-SIRT1 transfections, with Fe2+ concentration, malonaldehyde (MDA) and glutathione (GSH) contents, reactive oxygen species (ROS), miR-30a-5p and SIRT1 and glutathione peroxidase 4 (GPX4) protein levels, NRF2 nuclear translocation, and miR-30a-5p-SIRT1 targeting relationship assessed. RESULTS CCH-induced mice showed obvious cognitive impairment, up-regulated miR-30a-5p, and down-regulated SIRT1. Ferroptosis occurred in hippocampal neurons, manifested by elevated Fe2+ concentration and ROS and MDA levels, mitochondrial atrophy, and diminished GSH content. Antagomir miR-30a-5p or miR-30a-5p inhibitor promoted SIRT1 expression and NRF2 nuclear translocation, increased GPX4, cell viability and GSH content, and reduced Fe2+ concentration and ROS and MDA levels. miR-30a-5p negatively regulated SIRT1. In vitro, miR-30a-5p knockout increased NRF2 nuclear translocation by up-regulating SIRT1, inhibiting OGD-induced ferroptosis in HT-22 cells. CONCLUSION miR-30a-5p induces hippocampal neuronal ferroptosis and exacerbates post-CCH cognitive dysfunction by targeting SIRT1 and reducing NRF2 nuclear translocation.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China.
| | - Mingjie Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China
| | - Bing Liu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China
| | - Ruihan Zheng
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China
| | - Xinyi Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China
| | - Shuoyi Yu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China
| |
Collapse
|
5
|
Liu Y, Ren F, Li S, Li X, Shi D, Zhang Z. N-Butylphthalide Potentiates the Effect of Fluconazole Against Drug-Resistant Candida glabrata and Candida tropicalis. Evidence for Its Mechanism of Action. Infect Drug Resist 2024; 17:2017-2029. [PMID: 38800581 PMCID: PMC11127662 DOI: 10.2147/idr.s459378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Objective To define the antifungal activity of n-butylphthalide alone or in combination with fluconazole in Candida glabrata and Candida tropicalis. Methods The antifungal activity of n-butylphthalide alone and in combination with fluconazole was investigated by the classical broth microdilution method and the time-killing curve method. The QRT-PCR method was used to determine gene expressions changes of mitochondrial respiratory chain enzymes, drug efflux pumps and drug target enzymes in Candida glabrata and Candida tropicalis after n-butylphthalide treatment. Results The MIC values of n-butylphthalide against Candida glabrata and Candida tropicalis ranged from 16 to 64 μg·mL-1. The FICI value of the combination of n-butylphthalide and fluconazole against drug-resistant Candida glabrata and Candida tropicalis ranged from 0.5001 to 0.5315 with partial synergism. Time-killing curves showed that 256 μg·mL-1 n-butylphthalide significantly inhibited the growth of drug-resistant colonies of Candida glabrata and Candida tropicalis, and 128 μg·mL-1 n-butylphthalide combined with 1 μg·mL-1 fluconazole had an additive effect. N-butylphthalide could alter the expression of mitochondrial respiratory chain enzymes COX1, COX2, COX3, and CYTB genes in Candida glabrata and Candida tropicalis (P< 0.05) and downregulate the expression of the drug efflux pump genes CDR1 and CDR2 in drug-resistant Candida glabrata to 3.36% and 3.65%, respectively (P<0.001), but did not affect the drug target enzyme ERG11 in drug-resistant Candida tropicalis. Conclusion N-butylphthalide had antifungal activity against Candida glabrata and Candida tropicalis. N-butylphthalide improved the activity of fluconazole against drug-resistant Candida glabrata by affecting the expression of mitochondrial respiratory chain enzyme genes and reversing the high expression of drug efflux pump genes CDR1 and CDR2.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Feifei Ren
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Shan Li
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Xiangchen Li
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Dongyan Shi
- Department of Clinical Laboratory, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Zhiqing Zhang
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
6
|
Zeng Q, Qi Z, He X, Luo C, Wen J, Wei J, Yue F, Zhao X, Wei H, Chen T. Bifidobacterium pseudocatenulatum NCU-08 ameliorated senescence via modulation of the AMPK/Sirt1 signaling pathway and gut microbiota in mice. Food Funct 2024; 15:4095-4108. [PMID: 38563760 DOI: 10.1039/d3fo04575g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Aging is a degenerative disease in which organisms and neurological functions decline. Emerging research has underscored the vital role of the gut microbiota in age-related processes. However, the identification of aging-associated core microbiota remains limited. In this investigation, we isolated a strain of B. pseudocatenulatum NCU-08 from the feces of centenarians and assessed its impact on aging using a mouse model induced by D-gal. Our study revealed the exceptional probiotic attributes of B. pseudocatenulatum NCU-08. Administration of B. pseudocatenulatum NCU-08 significantly ameliorated age-related memory impairment, motor dysfunction, and anxiety-like behaviors in aging mice (p < 0.01). Moreover, tissue staining analysis demonstrated that B. pseudocatenulatum NCU-08 reduced the intensity of SA-β-gal-positive in the hippocampus of aging mice. It also reversed pathological damage and structural abnormalities in brain and intestinal tissue. B. pseudocatenulatum NCU-08 inhibited neuroinflammation induced by TLR4/NF-κB (p < 0.01) and preserved the blood-brain barrier integrity by activating the AMPK/Sirt1 pathway (p < 0.05). Furthermore, it mitigated neuronal apoptosis and oxidative stress by upregulating the PI3K/AKT signaling pathway (p < 0.01) and enhancing the activities of antioxidant enzymes, including GSH-Px (p < 0.01), SOD (p < 0.01), and CAT (p < 0.01). Besides, analysis of 16S rRNA sequencing data demonstrated that treatment with B. pseudocatenulatum NCU-08 restored intestinal microbiota homeostasis after senescence. It enhanced the abundance of beneficial bacteria while suppressing the growth of pathogenic microorganisms. In summary, our study unveiled that this novel strain of B. pseudocatenulatum NCU-08 exerts anti-aging effects through regulating the AMPK/Sirt1 pathway and intestinal microbiota. It holds promise as a functional food for promoting anti-aging effects and offers a novel approach to address aging and associated metabolic disorders.
Collapse
Affiliation(s)
- Qingwei Zeng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, P. R. China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, P. R. China
| | - Zhanghua Qi
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, P. R. China.
| | - Xia He
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, P. R. China.
| | - Chuanlin Luo
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, P. R. China.
| | - Jianing Wen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, P. R. China.
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, P. R. China.
| | - Fenfang Yue
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Xuanqi Zhao
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Hong Wei
- The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, P. R. China.
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, P. R. China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, P. R. China
| |
Collapse
|
7
|
Jearjaroen P, Thangwong P, Tocharus C, Chaichompoo W, Suksamrarn A, Tocharus J. Hexahydrocurcumin attenuated demyelination and improved cognitive impairment in chronic cerebral hypoperfusion rats. Inflammopharmacology 2024; 32:1531-1544. [PMID: 38153537 DOI: 10.1007/s10787-023-01406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
Age-related white matter lesions (WML) frequently present vascular problems by decreasing cerebral blood supply, resulting in the condition known as chronic cerebral hypoperfusion (CCH). This study aimed to investigate the effect of hexahydrocurcumin (HHC) on the processes of demyelination and remyelination induced by the model of the Bilateral Common Carotid Artery Occlusion (BCCAO) for 29 days to mimic the CCH condition. The pathological appearance of myelin integrity was significantly altered by CCH, as evidenced by Transmission Electron Microscopy (TEM) and Luxol Fast Blue (LFB) staining. In addition, CCH activated A1-astrocytes and reactive-microglia by increasing the expression of Glial fibrillary acidic protein (GFAP), complement 3 (C3d) and pro-inflammatory cytokines. However, S100a10 expression, a marker of neuroprotective astrocytes, was suppressed, as were regenerative factors including (IGF-1) and Transglutaminase 2 (TGM2). Therefore, the maturation step was obstructed as shown by decreases in the levels of myelin basic protein (MBP) and the proteins related with lipid synthesis. Cognitive function was therefore impaired in the CCH model, as evidenced by the Morris water maze test. By contrast, HHC treatment significantly improved myelin integrity, and inhibited A1-astrocytes and reactive-microglial activity. Consequently, pro-inflammatory cytokines and A1-astrocytes were attenuated, and regenerative factors increased assisting myelin maturation and hence improving cognitive performance. In conclusion, HHC improves cognitive function and also the integrity of white matter in CCH rats by reducing demyelination, and pro-inflammatory cytokine production and promoting the process of remyelination.
Collapse
Affiliation(s)
- Pranglada Jearjaroen
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Phakkawat Thangwong
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chianqg Mai, Thailand
| | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Functional Food Research Center for Well-Being, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
8
|
Zhang H, Yang Y, Zhang J, Huang L, Niu Y, Chen H, Liu Q, Wang R. Oligodendrocytes Play a Critical Role in White Matter Damage of Vascular Dementia. Neuroscience 2024; 538:1-10. [PMID: 37913862 DOI: 10.1016/j.neuroscience.2023.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
With the deepening of population aging, the treatment of cognitive impairment and dementia is facing increasing challenges. Vascular dementia (VaD) is a cognitive dysfunction caused by brain blood flow damage and one of the most common causes of dementia after Alzheimer's disease. White matter damage in patients with chronic ischemic dementia often occurs before cognitive impairment, and its pathological changes include leukoaraiosis, myelin destruction and oligodendrocyte death. The pathophysiology of vascular dementia is complex, involving a variety of neuronal and vascular lesions. The current proposed mechanisms include calcium overload, oxidative stress, nitrative stress and inflammatory damage, which can lead to hypoxia-ischemia and demyelination. Oligodendrocytes are the only myelinating cells in the central nervous system and closely associated with VaD. In this review article, we intend to further discuss the role of oligodendrocytes in white matter and myelin injury in VaD and the development of anti-myelin injury target drugs.
Collapse
Affiliation(s)
- Hexin Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yanrong Yang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Jingjing Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Li Huang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yang Niu
- Key Laboratory of Modernization of Minority Medicine, Ministry of Education, Ningxia medical University, Yinchuan 750004, Ningxia, China
| | - Hua Chen
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Qibing Liu
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou 570100, China
| | - Rui Wang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
9
|
Lu Z, Wang H, Ishfaq M, Han Y, Zhang X, Li X, Wang B, Lu X, Gao B. Quercetin and AMPK: A Dynamic Duo in Alleviating MG-Induced Inflammation via the AMPK/SIRT1/NF-κB Pathway. Molecules 2023; 28:7388. [PMID: 37959807 PMCID: PMC10650132 DOI: 10.3390/molecules28217388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
Mycoplasma gallisepticum (MG) is recognized as a principal causative agent of avian chronic respiratory disease, inflicting substantial economic losses upon the poultry industry. However, the extensive use of conventional antibiotics has resulted in the emergence of drug resistance and various challenges in their clinical application. Consequently, there is an urgent need to identify effective therapeutic agents for the prevention and treatment of mycoplasma-induced respiratory disease in avian species. AMP-activated protein kinase (AMPK) holds significant importance as a regulator of cellular energy metabolism and possesses the capacity to exert an anti-inflammatory effect by virtue of its downstream protein, SIRT1. This pathway has shown promise in counteracting the inflammatory responses triggered by pathogenic infections, thus providing a novel target for studying infectious inflammation. Quercetin possesses anti-inflammatory activity and has garnered attention as a potential alternative to antibiotics. However, there exists a gap in knowledge concerning the impact of this activation on MG-induced inflammatory damage. To address this knowledge gap, we employed AlphaFold2 prediction, molecular docking, and kinetic simulation methods to perform a systematic analysis. As expected, we found that both quercetin and the AMPK activator AICAR activate the chicken AMPKγ1 subunit in a similar manner, which was further validated at the cellular level. Our project aims to unravel the underlying mechanisms of quercetin's action as an agonist of AMPK against the inflammatory damage induced by MG infection. Accordingly, we evaluated the effects of quercetin on the prevention and treatment of air sac injury, lung morphology, immunohistochemistry, AMPK/SIRT1/NF-κB pathway activity, and inflammatory factors in MG-infected chickens. The results confirmed that quercetin effectively inhibits the secretion of pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-6, leading to improved respiratory inflammation injury. Furthermore, quercetin was shown to enhance the levels of phosphorylated AMPK and SIRT1 while reducing the levels of phosphorylated P65 and pro-inflammatory factors. In conclusion, our study identifies the AMPK cascade signaling pathway as a novel cellular mediator responsible for quercetin's ability to counter MG-induced inflammatory damage. This finding highlights the potential significance of this pathway as an important target for anti-inflammatory drug research in the context of avian respiratory diseases.
Collapse
Affiliation(s)
- Ziyin Lu
- School of Life Science, Liaoning University, Chongshanzhong-Lu No. 66, Shenyang 110036, China; (Z.L.); (H.W.); (Y.H.); (X.Z.); (X.L.); (B.W.)
| | - Haozhen Wang
- School of Life Science, Liaoning University, Chongshanzhong-Lu No. 66, Shenyang 110036, China; (Z.L.); (H.W.); (Y.H.); (X.Z.); (X.L.); (B.W.)
| | - Muhammad Ishfaq
- College of Computer Science, Huanggang Normal University, Huanggang 438000, China;
| | - Yufang Han
- School of Life Science, Liaoning University, Chongshanzhong-Lu No. 66, Shenyang 110036, China; (Z.L.); (H.W.); (Y.H.); (X.Z.); (X.L.); (B.W.)
| | - Xiujin Zhang
- School of Life Science, Liaoning University, Chongshanzhong-Lu No. 66, Shenyang 110036, China; (Z.L.); (H.W.); (Y.H.); (X.Z.); (X.L.); (B.W.)
| | - Xiang Li
- School of Life Science, Liaoning University, Chongshanzhong-Lu No. 66, Shenyang 110036, China; (Z.L.); (H.W.); (Y.H.); (X.Z.); (X.L.); (B.W.)
| | - Baoqi Wang
- School of Life Science, Liaoning University, Chongshanzhong-Lu No. 66, Shenyang 110036, China; (Z.L.); (H.W.); (Y.H.); (X.Z.); (X.L.); (B.W.)
| | - Xiuli Lu
- School of Life Science, Liaoning University, Chongshanzhong-Lu No. 66, Shenyang 110036, China; (Z.L.); (H.W.); (Y.H.); (X.Z.); (X.L.); (B.W.)
| | - Bing Gao
- Department of Cell Biology and Genetics, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
10
|
Ma Y, Chen S, Li Y, Wang J, Yang J, Jing J, Liu X, Li Y, Wang J, Zhang P, Tang Z. Effects of Dl-3-n-butylphthalide on cognitive functions and blood-brain barrier in chronic cerebral hypoperfusion rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3207-3220. [PMID: 37243759 PMCID: PMC10567816 DOI: 10.1007/s00210-023-02530-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/14/2023] [Indexed: 05/29/2023]
Abstract
Vascular cognitive impairment (VCI) has been one of the major types of cognitive impairment. Blood-brain barrier damage plays an essential part in the pathogenesis of VCI. At present, the treatment of VCI is mainly focused on prevention, with no drug clinically approved for the treatment of VCI. This study aimed to investigate the effects of DL-3-n-butylphthalide (NBP) on VCI rats. A modified bilateral common carotid artery occlusion (mBCCAO) model was applied to mimic VCI. The feasibility of the mBCCAO model was verified by laser Doppler, 13N-Ammonia-Positron Emission Computed Tomography (PET), and Morris Water Maze. Subsequently, the Morris water maze experiment, Evans blue staining, and western blot of tight junction protein were performed to evaluate the effect of different doses of NBP (40 mg/kg, 80 mg/kg) on the improvement of cognitive impairment and BBB disruption induced by mBCCAO. Immunofluorescence was employed to examine the changes in pericyte coverage in the mBCCAO model and the effect of NBP on pericyte coverage was preliminarily explored. mBCCAO surgery led to obvious cognitive impairment and the decrease of whole cerebral blood flow, among which the blood flow in the cortex, hippocampus and thalamus brain regions decreased more significantly. High-dose NBP (80 mg/kg) improved long-term cognitive function in mBCCAO rats, alleviated Evans blue leakage and reduced the loss of tight junction proteins (ZO-1, Claudin-5) in the early course of the disease, thereby exerting a protective effect on the blood-brain barrier. No significant changes in pericyte coverage were observed after mBCCAO. High-dose NBP improved cognitive function in mBCCAO rats. High-dose NBP protected the integrity of BBB by upregulating TJ protein expression, rather than regulating pericyte coverage ratio. NBP could be a potential drug for the treatment of VCI.
Collapse
Affiliation(s)
- Yang Ma
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Neurology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingfei Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Jing
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunjie Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyi Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Matysek A, Sun L, Kimmantudawage SP, Feng L, Maier AB. Targeting impaired nutrient sensing via the sirtuin pathway with novel compounds to prevent or treat dementia: A systematic review. Ageing Res Rev 2023; 90:102029. [PMID: 37549873 DOI: 10.1016/j.arr.2023.102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Dementia is prevalent in aged populations and is associated with disability and distress for those affected. Therapeutic benefits of drugs targeting dementia are small. Impaired nutrient sensing pathways have been implicated in the pathogenesis of dementia and may offer a novel treatment target. AIMS This systematic review collated evidence for novel therapeutic compounds that modify nutrient sensing pathways, particularly the sirtuin pathway, in preventing cognitive decline or improving cognition in normal ageing, mild cognitive impairment (MCI), and dementia. METHODS PubMed, Embase and Web of Science databases were searched using key search terms. Articles were screened using Covidence systematic review software. The risk of bias was assessed using the Systematic Review Center for Laboratory animal Experimentation (SYRCLE)'s risk of bias tool for animal studies and Cochrane Risk of Bias tool v 2.0 for human studies. RESULTS Out of 3841 articles, 68 were included describing 38 different novel therapeutic compounds that modulate the nutrient sensing pathway via the sirtuin pathway. In animal models (58 studies), all investigated novel therapeutic compounds showed cognitive benefits. Ten studies were human intervention trials targeting normal ageing (1 study) and dementia populations (9 studies). Direct sirtuin (silent mating type information regulation 2 homolog) 1 (SIRT1) activators Resveratrol and Nicotinamide derivatives improved cognitive outcomes among human subjects with normal cognition and MCI. CONCLUSION Animal studies support that modulation of the sirtuin pathway has the potential to improve cognitive outcomes. Overall, there is a clear lack of translation from animal models to human populations.
Collapse
Affiliation(s)
- Adrian Matysek
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore
| | - Lina Sun
- School of Anesthesiology, Weifang Medical University, Weifang, China
| | | | - Lei Feng
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore; Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea B Maier
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore; Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Wang XX, Mao GH, Li QQ, Tang J, Zhang H, Wang KL, Wang L, Ni H, Sheng R, Qin ZH. Neuroprotection of NAD+ and NBP against ischemia/reperfusion brain injury is associated with restoration of sirtuin-regulated metabolic homeostasis. Front Pharmacol 2023; 14:1096533. [PMID: 37056986 PMCID: PMC10086243 DOI: 10.3389/fphar.2023.1096533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Background: Ischemic stroke seriously threatens human health because of high rates of morbidity, mortality and disability. This study compared the effects of nicotinamide adenine dinucleotide (NAD+) and butylphthalide (NBP) on in vitro and in vivo ischemic stroke models.Methods: Transient middle cerebral artery occlusion/reperfusion (t-MCAO/R) model was established in mice, and the cultured primary cortical neurons were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R). Cerebral infarct volume, neurobehavioral indices, antioxidant activity, ATP level and lactic acid content were determined. The neuroprotective effects of NAD+ or NBP were compared using sirtuin inhibitor niacinamide (NAM).Results: Intraperitoneal injection of NBP within 4 h or intravenous injection of NAD+ within 1 h after t-MCAO/R significantly reduced the volume of infarcts, cerebral edema, and neurological deficits. Administration of NAD+ and NBP immediately after t-MCAO/R in mice showed similar neuroprotection against acute and long-term ischemic injury. Both NAD+ and NBP significantly inhibited the accumulation of MDA and H2O2 and reduced oxidative stress. NAD+ was superior to NBP in inhibiting lipid oxidation and DNA damage. Furthermore, although both NAD+ and NBP improved the morphology of mitochondrial damage induced by ischemia/reperfusion, NAD+ more effectively reversed the decrease of ATP and increase of lactic acid after ischemia/reperfusion compared with NBP. NAD+ but not NBP treatment significantly upregulated SIRT3 in the brain, but the sirtuin inhibitor NAM could abolish the protective effect of NAD+ and NBP by inhibiting SIRT1 or SIRT3.Conclusions: These results confirmed the protective effects of NAD+ and NBP on cerebral ischemic injury. NBP and NAD+ showed similar antioxidant effects, while NAD+ had better ability in restoring energy metabolism, possibly through upregulating the activity of SIRT1 and SIRT3. The protection provided by NBP against cerebral ischemia/reperfusion may be achieved through SIRT1.
Collapse
Affiliation(s)
- Xin-Xin Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Guang-Hui Mao
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Qi-Qi Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Jie Tang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Hua Zhang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | | | - Lei Wang
- Hefei Knature Bio-pharm Co., Ltd., Hefei, China
| | - Hong Ni
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
- *Correspondence: Rui Sheng, ; Zheng-Hong Qin,
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
- *Correspondence: Rui Sheng, ; Zheng-Hong Qin,
| |
Collapse
|
13
|
Xiao Y, Guan T, Yang X, Xu J, Zhang J, Qi Q, Teng Z, Dong Y, Gao Y, Li M, Meng N, Lv P. Baicalin facilitates remyelination and suppresses neuroinflammation in rats with chronic cerebral hypoperfusion by activating Wnt/β-catenin and inhibiting NF-κB signaling. Behav Brain Res 2023; 442:114301. [PMID: 36707260 DOI: 10.1016/j.bbr.2023.114301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/27/2023]
Abstract
One main factor contributing to the cognitive loss in vascular dementia (VD) is white matter lesions (WMLs) carried on by chronic cerebral hypoperfusion (CCH). A secondary neuroinflammatory response to CCH accelerates the loss and limits the regeneration of oligodendrocytes, leading to progressive demyelination and insufficient remyelination in the white matter. Thus, promoting remyelination and inhibiting neuroinflammation may be an ideal therapeutic strategy. Baicalin (BAI) is known to exhibit protective effects against various inflammatory and demyelinating diseases. However, whether BAI has neuroprotective effects against CCH has not been investigated. To determine whether BAI inhibits CCH-induced demyelination and neuroinflammation, we established a model of CCH in rats by occluding the two common carotid arteries bilaterally. Our results revealed that BAI could remarkably ameliorate cognitive impairment and mitigate CA1 pyramidal neuron damage and myelin loss. BAI exhibited enhancement of remyelination by increasing the expression of myelin basic protein (MBP) and oligodendrocyte transcription factor 2 (Olig2), inhibiting the loss of oligodendrocytes and promoting oligodendrocyte regeneration in the corpus callosum of CCH rats. Furthermore, BAI modified microglia polarization to the anti-inflammatory phenotype and inhibited the release of pro-inflammatory cytokines. Mechanistically, BAI treatment significantly induced phosphorylation of glycogen synthase kinase 3β (GSK3β), enhanced the expression of β-catenin and its nuclear translocation. Simultaneously, BAI reduced the expression of nuclear NF-κB. Collectively, our results suggest that BAI ameliorates cognitive impairment in CCH-induced VD rats through its pro-remyelination and anti-inflammatory capacities, possibly by activating the Wnt/β-catenin and suppressing the NF-κB signaling.
Collapse
Affiliation(s)
- Yining Xiao
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China
| | - Tianyuan Guan
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Xiaofeng Yang
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jing Xu
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China
| | - Jiawei Zhang
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China
| | - Qianqian Qi
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Zhenjie Teng
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China
| | - Yanhong Dong
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China
| | - Yaran Gao
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Meixi Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Nan Meng
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Peiyuan Lv
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China.
| |
Collapse
|
14
|
Li K, Gao L, Zhou S, Ma YR, Xiao X, Jiang Q, Kang ZH, Liu ML, Liu TX. Erythropoietin promotes energy metabolism to improve LPS-induced injury in HK-2 cells via SIRT1/PGC1-α pathway. Mol Cell Biochem 2023; 478:651-663. [PMID: 36001204 DOI: 10.1007/s11010-022-04540-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
Acute kidney injury (AKI) is one of frequent complications of sepsis with high mortality. Mitochondria is the center of energy metabolism participating in the pathogenesis of sepsis-associated AKI, and SIRT1/PGC1-α signaling pathway plays a crucial role in the modulation of energy metabolism. Erythropoietin (EPO) exerts protective functions on chronic kidney disease. We aimed to assess the effects of EPO on cell damage and energy metabolism in a cell model of septic AKI. Renal tubular epithelial cells HK-2 were treated with LPS and human recombinant erythropoietin (rhEPO). Cell viability was detected by CCK-8 and mitochondrial membrane potential was determined using JC-1 fluorescent probe. Then the content of ATP, ADP and NADPH, as well as lactic acid, were measured for the assessment of energy metabolism. Oxidative stress was evaluated by detecting the levels of ROS, MDA, SOD and GSH. Pro-inflammatory cytokines, including TNF-α, IL-6, and IL-1β, were measured with ELISA. Moreover, qRT-PCR and western blot were performed to detect mRNA and protein expressions. shSIRT1 was used to knockdown SIRT1, while EX527 and SR-18292 were applied to inhibit SIRT1 and PGC1-α, respectively, to investigate the regulatory mechanism of rhEPO on inflammatory injury and energy metabolism. In LPS-exposed HK-2 cells, rhEPO attenuated cell damage, inflammation and abnormal energy metabolism, as indicated by the elevated cell viability, the inhibited oxidative stress, cell apoptosis and inflammation, as well as the increased mitochondrial membrane potential and energy metabolism. However, these protective effects induced by rhEPO were reversed after SIRT1 or PGC1-α inhibition. EPO activated SIRT1/PGC1-α pathway to alleviate LPS-induced abnormal energy metabolism and cell damage in HK-2 cells. Our study suggested that rhEPO played a renoprotective role through SIRT1/PGC1-α pathway, which supported its therapeutic potential in septic AKI.
Collapse
Affiliation(s)
- Kan Li
- Department of Nephrology, The First Hospital of Lanzhou University, No.1 Donggangxi Road, Chengguan District, Lanzhou, 730000, Gansu Province, China
| | - Li Gao
- Department of Gynaecology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Sen Zhou
- Department of Nephrology, The First Hospital of Lanzhou University, No.1 Donggangxi Road, Chengguan District, Lanzhou, 730000, Gansu Province, China
| | - Yan-Rong Ma
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Xiao Xiao
- The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Qian Jiang
- The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Zhi-Hong Kang
- The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Ming-Long Liu
- Department of Nephrology, The First Hospital of Lanzhou University, No.1 Donggangxi Road, Chengguan District, Lanzhou, 730000, Gansu Province, China
| | - Tian-Xi Liu
- Department of Nephrology, The First Hospital of Lanzhou University, No.1 Donggangxi Road, Chengguan District, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
15
|
Zhao E, Huang P, Zhao Z, Huang S, Hu S, Xie L, Lin J, Wang D. NBP Cytoprotective Effects Promoting Neuronal Differentiation in BMSCs by Inhibiting the p65/Hes1 Pathway. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e132496. [PMID: 38116559 PMCID: PMC10728845 DOI: 10.5812/ijpr-132496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/25/2023] [Accepted: 03/04/2023] [Indexed: 12/21/2023]
Abstract
Background Bone marrow-derived mesenchymal stem cell (BMSC) transplantation has become an effective method for treating neurodegenerative diseases. Objectives This study investigated the effect of 3-N-butylphthalide (NBP) on the neuronal differentiation of BMSCs and its potential mechanism. Methods In this study, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect cell proliferation and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining was conducted to detect the apoptosis of BMSCs. Quantitative real-time polymerase chain reaction (RT-qPCR) and Western blot analysis were performed to detect the messenger RNA (mRNA) and protein expression levels, respectively. An enzyme-linked immunosorbent serologic assay assessed the levels of interleukin-1β, tumor necrosis factor-α, and cyclic adenosine monophosphate (cAMP). Moreover, a flow cytometry assay was used to detect the proportion of active β-tubulin III (TUJ-1) cells, and TUJ-1 expression was observed by immunofluorescence assay. Results The results showed that a low concentration of NBP promoted the proliferation and induction of BMSC neuronal differentiation while inhibiting apoptosis, the production of inflammatory factors, and p65 expression. Compared with differentiation induction alone, combined NBP treatment increased the levels of nestin, neuron-specific enolase (NSE), TUJ-1, and microtubule-associated protein 2 (MAP2) protein, as well as the ratio of TUJ-1-positive cells and cAMP expression. Furthermore, p65 overexpression weakened the effect of NBP, and the overexpression of hairy and enhancer of split homolog-1 (HES1) reversed the effect of NBP in the induction of BMSC neuronal differentiation in vitro. Conclusions We confirmed that NBP exhibited potential therapeutic properties in the stem cell transplantation treatment of neurodegenerative diseases by protecting cells and promoting BMSC neuronal differentiation by inhibiting the p65/HES 1 pathway.
Collapse
Affiliation(s)
- Eryi Zhao
- Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Peijian Huang
- Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Zhongyan Zhao
- Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Shixiong Huang
- Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Shijun Hu
- Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Ling Xie
- Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Jie Lin
- Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Daimei Wang
- Hainan General Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
16
|
Activated AMPK Protects Against Chronic Cerebral Ischemia in Bilateral Carotid Artery Stenosis Mice. Cell Mol Neurobiol 2022:10.1007/s10571-022-01312-6. [DOI: 10.1007/s10571-022-01312-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022]
|
17
|
Higher Circulating Trimethylamine N-Oxide Aggravates Cognitive Impairment Probably via Downregulating Hippocampal SIRT1 in Vascular Dementia Rats. Cells 2022; 11:cells11223650. [PMID: 36429082 PMCID: PMC9688447 DOI: 10.3390/cells11223650] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Oxidative stress and inflammation damage play pivotal roles in vascular dementia (VaD). Trimethylamine N-oxide (TMAO), an intestinal microbiota-stemming metabolite, was reported to promote inflammation and oxidative stress, involved in the etiology of several diseases. Still, these effects have not been investigated in VaD. Here, we tested whether pre-existing, circulating, high levels of TMAO could affect VaD-induced cognitive decline. TMAO (120 mg/kg) was given to rats for a total of 8 weeks, and these rats underwent a sham operation or bilateral common carotid artery (2VO) surgery after 4 weeks of treatment. Four weeks after surgery, the 2VO rats exhibited hippocampal-dependent cognitive function declines and synaptic plasticity dysfunction, accompanied by an increase in oxidative stress, neuroinflammation, and apoptosis. TMAO administration, which increased plasma and hippocampal TMAO at 4 weeks postoperatively, further aggravated these effects, resulting in exaggerated cognitive and synaptic plasticity impairment, though not within the Sham group. Moreover, TMAO treatment activated the NLRP3 inflammasome and decreased SIRT1 protein expression within the hippocampus. However, these effects of TMAO were significantly attenuated by the overexpression of SIRT1. Our findings suggest that TMAO increases oxidative stress-induced neuroinflammation and apoptosis by inhibiting the SIRT1 pathway, thereby exacerbating cognitive dysfunction and neuropathological changes in VaD rats.
Collapse
|
18
|
Liu Z, Lu W, Gao L, Guo X, Liu J, Gao F, Huo K, Wang J, Qu Q. Protocol of End-PSCI trial: a multicenter, randomized controlled trial to evaluate the effects of DL-3-n-butylphthalide on delayed-onset post stroke cognitive impairment. BMC Neurol 2022; 22:435. [PMID: 36384493 PMCID: PMC9667601 DOI: 10.1186/s12883-022-02957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background Delayed-onset post stroke cognitive impairment (PSCI) results from secondary neurodegeneration induced by stroke. Whereas targeted prevention or treatment strategies are still missing due to lack of evidences. This trial aims to evaluate the preventive effects of DL-3-n-butylphthalide (NBP) on delayed-onset PSCI. Methods Effects of NBP on Delayed-onset Post Stroke Cognitive Impairment (End-PSCI) is a prospective, parallel-group, open-label, multicenter, randomized controlled trial with blinded outcome assessment. Hospital patients with acute cerebral infarction (within 2 weeks of onset) will be randomized into either standard medical therapy group or standard medical therapy combined NBP treatment group (NBP 200 mg, three times per day for 24 weeks). The primary outcome is the difference of incidence of delayed-onset PSCI between two groups. The secondary outcomes include difference of white matter degeneration, cognitive scores and prevalence of early-onset PSCI between two groups. Discussion End-PSCI trial will provide evidences for NBP preventing delayed-onset PSCI. The secondary outcomes will also provide valuable insights into the pathogenesis of delayed-onset PSCI and mechanism of NBP’s actions. Trial registration Trialsearch.who.int, ChiCTR2000032555, 2020/5/2, prospectively registered.
Collapse
|
19
|
Song B, Zhou W. Amarogentin has protective effects against sepsis-induced brain injury via modulating the AMPK/SIRT1/NF-κB pathway. Brain Res Bull 2022; 189:44-56. [PMID: 35985610 DOI: 10.1016/j.brainresbull.2022.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/21/2022] [Accepted: 08/14/2022] [Indexed: 02/05/2023]
Abstract
Amarogentin (AMA), a secoiridoid glycoside that is mainly derived from SwertiaandGentiana roots, has been confirmed to exhibit antioxidative, tumor-suppressive and anti-diabetic properties. This research intends to investigate the protective effect of AMA against sepsis-induced brain injury and its mechanism. NSC-34 and HT22 cells were treated with lipopolysaccharide (LPS) to induce an in-vitro sepsis model and then treated with varying concentrations (1, 5, 10 µM) of AMA. Cell proliferation and apoptosis were evaluated. The intensity of inflammation and oxidative stress were assessed by different methods. The AMPK/SIRT1/NF-κB pathway expression was determined by WB. An in-vitro sepsis model was set up with cecal ligation and puncture (CLP) in adult C57/BL6J mice, and different concentrations (25, 50, 100 mg/kg) of AMA were applied for treatment. Neurological function was evaluated using the modified neurological severity scores (mNSS), and the brain tissue damage was measured using hematoxylin-eosin (H&E) staining and Nissl staining. Tissue apoptosis was tested using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Then, the AMPK inhibitor Compound C (CC) was administered to confirm AMA-mediated mechanism. Our finding illustrated that AMA mitigated LPS-induced neuronal damage, inflammation and oxidative stress, activated the AMPK/SIRT1 pathway and choked NF-κB phosphorylation. Furthermore, AMA improved neurological functions of sepsis mice by reliving neuroinflammation and oxidative stress. Inhibition of AMPK attenuated the protective effect of AMA on neurons or the mice's brain tissues. In conclusion, AMA protected against sepsis-induced brain injury by modulating the AMPK/SIRT1/NF-κB pathway.
Collapse
Affiliation(s)
- Bihui Song
- Emergency Department, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, China
| | - Wenhao Zhou
- Emergency Department, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, China.
| |
Collapse
|
20
|
Wang H, Ye K, Li D, Liu Y, Wang D. DL-3-n-butylphthalide for acute ischemic stroke: An updated systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2022; 13:963118. [PMID: 36120291 PMCID: PMC9479342 DOI: 10.3389/fphar.2022.963118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022] Open
Abstract
Background: DL -3-n-butylphthalide (NBP) is widely used as a neuroprotective drug in stroke patients in China. A systematic review in 2010 suggested NBP to be safe and effective at promoting neurological recovery, but could not conclude whether it decreased risk of long-term death or disability. Since numerous randomized controlled trials (RCTs) have been conducted on NBP since 2010, we performed an updated systematic review and meta-analysis of safety and efficacy data. Method: We searched electronic databases and reference lists to identify RCTs that compared patients who received NBP or not (including placebo). Methodological quality of RCTs was assessed using the Revised Cochrane Risk of Bias Tool 2.0, and data were meta-analyzed using Review Manager 5.4 software. Results: Fifty-seven RCTs involving 8,747 participants were included. Twenty trials examined NBP as a capsule, 29 as an injection, and 8 as sequential injection-capsule therapy. Meta-analyses showed that NBP treatment was associated with a reduction in composite outcome of death and dependency (risk ratio 0.59, 95% CI 0.42 to 0.83; 260 participants; 2 studies), death (risk ratio 0.32, 95% CI 0.13 to 0.75; 2,287 participants; 10 studies), modified Rankin Scale score (mean difference -0.80, 95% CI -0.88 to -0.72; 568 participants; 4 studies), and an increase in Barthel Index, which assesses the ability to engage in basic activities of daily living (mean difference 11.08, 95% CI 9.10 to 13.05; 2,968 participants; 22 studies). Meta-analyses found that NBP significantly reduced neurological deficit based on National Institute of Health Stroke Scale (mean difference -3.39, 95% CI -3.76 to -3.03; 7.283 participants; 46 studies) and Chinese Stroke Scale (mean difference -4.16, 95% CI -7.60 to -0.73; 543 participants; 4 studies). Of the adverse events reported in 31 trials, elevated transaminase (incidence, 1.39-17.53%), rash (0-1.96%) and gastrointestinal discomfort (1.09-6.15%) were most frequent and no serious adverse events were reported. Conclusion: This update review confirms that NBP can help acute ischemic stroke patients regain the ability to perform activities of daily living, reduce their neurological deficit and short-term death rates. However, the available evidence on whether NBP reduces risk of long-term death or dependence after ischemic stroke remains insufficient.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Kaili Ye
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Li
- Department of Psychiatry, Dazhou Central Hospital, Dazhou, China
| | - Yuxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yatsen University, Guangzhou, China
| | - Deren Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Deren Wang,
| |
Collapse
|
21
|
Yan J, Tang X, Zhou ZQ, Zhang J, Zhao Y, Li S, Luo A. Sirtuins functions in central nervous system cells under neurological disorders. Front Physiol 2022; 13:886087. [PMID: 36111151 PMCID: PMC9468898 DOI: 10.3389/fphys.2022.886087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/25/2022] [Indexed: 11/14/2022] Open
Abstract
The sirtuins (SIRTs), a class of NAD+ -dependent deacylases, contain seven SIRT family members in mammals, from SIRT1 to SIRT7. Extensive studies have revealed that SIRT proteins regulate virous cell functions. Central nervous system (CNS) decline resulted in progressive cognitive impairment, social and physical abilities dysfunction. Therefore, it is of vital importance to have a better understanding of potential target to promote homeostasis of CNS. SIRTs have merged as the underlying regulating factors of the process of neurological disorders. In this review, we profile multiple functions of SIRT proteins in different cells during brain function and under CNS injury.
Collapse
Affiliation(s)
- Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaole Tang
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-qiang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Shiyong Li, ; Ailin Luo,
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Shiyong Li, ; Ailin Luo,
| |
Collapse
|
22
|
Ligustilide Improves Cognitive Impairment via Regulating the SIRT1/IRE1α/XBP1s/CHOP Pathway in Vascular Dementia Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6664990. [PMID: 36017237 PMCID: PMC9398841 DOI: 10.1155/2022/6664990] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022]
Abstract
Vascular dementia (VaD), the second cause of dementia, is caused by chronic cerebral hypoperfusion, producing progressive damage to cerebral cortex, hippocampus, and white matter. Ligustilide (LIG), one of the main active ingredients of Angelica sinensis, exerts the neuroprotective effect on neurodegenerative diseases. However, the mechanism remains unclear. An in vivo model of bilateral common carotid artery occlusion and in vitro model of oxygen glucose deprivation (OGD) were employed in this study. LIG (20 or 40 mg/kg/day) was intragastrically administered to the VaD rats for four weeks. The results of the Morris water maze test demonstrated that LIG effectively ameliorated learning and memory deficiency in VaD rats. LIG obviously relieved neuronal oxidative stress damage by increasing the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) and decreasing the level of malondialdehyde (MDA) in VaD rats. Nissl staining showed that LIG increased the number of the Nissl body in VaD rats. After LIG administration, the apoptotic-related protein, Bax, was decreased and Bcl-2 was increased in the hippocampus of VaD rats. Moreover, the expressions of sirtuin 1 (SIRT1) and protein disulfide isomerase (PDI) were decreased, binding immunoglobulin protein (BIP) and phospho-inositol-requiring enzyme-1α (P-IRE1α), X-box binding protein 1 (XBP1s), and C/EBP-homologous protein (CHOP) were increased in VaD rats. After LIG treatment, these changes were reversed. The immunofluorescence results further showed that LIG upregulated the expression of SIRT1 and downregulated the expression of P-IRE1α in VaD rats. In addition, in vitro experiment showed that EX-527 (SIRT1 inhibitor) partly abolished the inhibitory effect of LIG on the IRE1α/XBP1s/CHOP pathway. In conclusion, these studies indicated that LIG could improve cognitive impairment by regulating the SIRT1/IRE1α/XBP1s/CHOP pathway in VaD rats.
Collapse
|
23
|
The effect of electroacupuncture on the expression of Sirt1 and STAT3 in hippocampus and amygdala of vascular dementia rats. Neuroreport 2022; 33:534-542. [PMID: 35882013 DOI: 10.1097/wnr.0000000000001814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Inflammation has long been considered a key factor in learning and memory impairment in patients with vascular dementia (VaD). Studies have confirmed that electroacupuncture can improve the learning and memory impairment of patients with VaD by reducing inflammation, but the specific mechanism of this effect is still unclear. The aim of this study was to explore the underlying mechanism of electroacupuncture in the treatment of VaD. METHODS The vascular dementia animal model was established by bilateral occlusion of common carotid arteries, and electroacupuncture treatment was given at Baihui (DU20) and Zusanli (ST36). The morris water maze (MWM) was used to test the spatial learning and memory ability of rats in each group. To evaluate the expression of Sirtuin1 (Sirt1), Signal transducer and activator of transcription 3 (STAT3) and inflammatory cytokine (IL-17) in the hippocampus and amygdala, immunohistochemistry and western blot were performed. RESULTS The MWM test and Nissl staining results show that electroacupuncture can significantly improve the learning and memory impairment of VaD rats, and can repair damaged neurons. Immunohistochemistry and western blot results showed that electroacupuncture could enhance the expression of sirt1 in VaD rats, on the contrary, the expression of STAT3 and IL-17 was reduced due to electroacupuncture. CONCLUSIONS The result suggests that electroacupuncture can suppress inflammation through the Sirt1/STAT3 pathway and improve spatial learning and memory in VaD rats.
Collapse
|
24
|
Bhat JA, Kumar M. Neuroprotective Effects of Theobromine in permanent bilateral common carotid artery occlusion rat model of cerebral hypoperfusion. Metab Brain Dis 2022; 37:1787-1801. [PMID: 35587851 DOI: 10.1007/s11011-022-00995-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Cerebral hypoperfusion (CH) is a common underlying mechanism of dementia disorders linked to aberrations in the neurovascular unit. Hemodynamic disturbances adversely affect cellular energy homeostasis that triggers a sequence of events leading to irrevocable damage to the brain and neurobehavioral discrepancies. Theobromine is a common ingredient of many natural foods consumed by a large population worldwide. Theobromine has shown health benefits in several studies, attributed to regulation of calcium homeostasis, phosphodiesterase, neurotransmission, and neurotrophins. The current study evaluated the neuroprotective potential of theobromine against CH in the permanent bilateral common carotid artery occlusion (BCCAO) prototype. Wistar rats were distributed in Sham-operated (S), S + T100, CH, CH + T50, and CH + T100 groups. Animals received permanent BCCAO or Sham treatment on day 1. Theobromine (50, 100 mg/kg) was given orally in animals subjected to BCCAO for 14 days daily. CH caused neurological deficits (12-point scale), motor dysfunction, and memory impairment in rats. Treatment with theobromine significantly attenuated neurological deficits and improved sensorimotor functions and memory in rats with CH. In biochemistry investigation of the entire brain, findings disclosed reduction in brain oxidative stress, inflammatory intermediaries (tumor necrosis factor-α, interleukin-1β and - 6, nuclear factor-κB), markers of cell demise (lactate dehydrogenase, caspase-3), acetylcholinesterase activity, and improvement in γ-aminobutyric acid quantity in rats that were given theobromine for 14 days daily after CH. Histopathological analysis substantiated attenuation of neurodegenerative changes by theobromine. The findings of this study indicated that theobromine could improve neurological scores, sensorimotor abilities, and memory in CH prototype.
Collapse
Affiliation(s)
- Javeed Ahmad Bhat
- Department of Pharmacology, Swift School of Pharmacy, Ghaggar Sarai, Rajpura, Punjab, India
| | - Manish Kumar
- Department of Pharmacology, Swift School of Pharmacy, Ghaggar Sarai, Rajpura, Punjab, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
25
|
Kang N, Shi Y, Song J, Gao F, Fan M, Jin W, Gao Y, Lv P. Resveratrol reduces inflammatory response and detrimental effects in chronic cerebral hypoperfusion by down-regulating stimulator of interferon genes/TANK-binding kinase 1/interferon regulatory factor 3 signaling. Front Aging Neurosci 2022; 14:868484. [PMID: 35936778 PMCID: PMC9354401 DOI: 10.3389/fnagi.2022.868484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Inflammatory responses induced by chronic cerebral hypoperfusion (CCH) play a critical role in the progression of vascular dementia. Stimulator of interferon genes (STING) signaling function as a key mediator of inflammation and immunological responses in the central nervous system (CNS), and resveratrol (RES) exerts potent anti-inflammatory effects. However, the role of STING signaling and the relationship between RES and STING signaling in persistent hypoperfusion-induced cerebral inflammation remain unclear. In this study, Sprague–Dawley rats were subjected to either Sham or bilateral common carotid artery occlusion (2VO) surgery and received RES or vehicle daily by intraperitoneal injection for 4 or 8 weeks. Morris’s water maze was used for the analysis of cognitive function. The neuroinflammatory responses in white matter and hippocampus of the rat brain were assessed by Western blot, Immunofluorescence staining, and qRT-PCR analyses. Myelin integrity, neutrophil infiltration, and microglia proliferation were assessed by Immunohistochemistry and histologic analysis. We demonstrated that after CCH, neurons, microglia, and astrocyte under endoplasmic reticulum (ER) stress upregulated the expression of STING, TANK-binding kinase 1 (TBK1), and the transcription factor interferon regulatory factor 3 (IRF3), as well as translocation of IRF3 into the nucleus. These were accompanied by infiltration of neutrophils, activation of microglia, and overproduction of proinflammatory mediators. Improvements in cognitive deficits were related to reduced hippocampal neuronal cell death and increased myelin integrity in RES-treated rats. The neuroprotective effects of RES were associated with suppression of the expression of tumor necrosis factor-alpha (TNF-α), intercellular adhesion molecule 1 (ICAM-1), VCAM-1, interferon-β (IFN-β), and IL-1β, likely through mitigation of the STING/TBK1/IRF3 pathway. These inhibitory effects exerted by RES also inhibited the levels of myeloperoxidase, reduced excess expression of reactive astrocytes, and activated microglia. In conclusion, the STING/TBK1/IRF3 axis may be critical for proinflammatory responses in cerebral tissue with persistent hypoperfusion, and RES exerts its anti-inflammatory effects by suppressing STING/TBK1/IRF3 signaling.
Collapse
Affiliation(s)
- Ning Kang
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Yuanyuan Shi
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Jiaxi Song
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Fei Gao
- Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Mingyue Fan
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Wei Jin
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Yaran Gao
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Peiyuan Lv
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
- *Correspondence: Peiyuan Lv,
| |
Collapse
|
26
|
Sun M, Jiang C, Hao X, Pang J, Chen C, Xiang W, Zhang J, Zhao S, Wang P, Geng S, Wang H, Li Y, Wang B. Long-term L-3-n-butylphthalide pretreatment attenuates ischemic brain injury in mice with permanent distal middle cerebral artery occlusion through the Nrf2 pathway. Heliyon 2022; 8:e09909. [PMID: 35874077 PMCID: PMC9305368 DOI: 10.1016/j.heliyon.2022.e09909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/24/2022] [Accepted: 07/04/2022] [Indexed: 10/25/2022] Open
Abstract
L-3-n-butylphthalide (NBP), which is used for treatment of mild and moderate acute ischemic stroke, exerts its effects by modulating the Nrf2 pathway. However, it has not been established whether NBP exerts its preventive effects in high-risk ischemic stroke patients through the Nrf2 pathway. We investigated whether NBP exerts its preventive effects through the Nrf2 pathway in long-term NBP pretreated dMCAO mice models. Nrf2+/+ wild-type and Nrf2-/- knockout mice were randomized into the vehicle group (equal volume vegetable oil), NBP-low-dose group (20 mg/kg) and NBP-high-dose group (60 mg/kg). The drug was administered once daily by gavage for a month. Then, a permanent distal middle cerebral artery occlusion model (dMCAO) was established after pretreatment with NBP. Neurological deficits, cerebral infarct volumes, brain water contents, activities of SOD, GSH-Px and MDA levels were determined. Further, axonal injury and demyelination, expression levels of Nrf2, HO-1 and NQO1 in ischemic brains were determined. Long-term NBP pretreatment significantly improved neurological functions, reduced cerebral infarction volumes, reduced brain water contents, increased SOD, GSH-Px activities, decreased MDA contents, reduced neurological injuries, axonal damage as well as demyelination, while increasing Nrf2, HO-1 and NQO1 mRNA as well as protein expressions in dMCAO mice models.
Collapse
Affiliation(s)
- Mingying Sun
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Neurology Academician Workstation of Baotou Central Hospital, Inner Mongolia, China
| | - Changchun Jiang
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| | - Xiwa Hao
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China.,Neurology Academician Workstation of Baotou Central Hospital, Inner Mongolia, China
| | - Jiangxia Pang
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China.,Neurology Academician Workstation of Baotou Central Hospital, Inner Mongolia, China
| | - Chao Chen
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China.,Neurology Academician Workstation of Baotou Central Hospital, Inner Mongolia, China
| | - Wenping Xiang
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| | - Jun Zhang
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| | - Shijun Zhao
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| | - Po Wang
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| | - Shangyong Geng
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| | - Hanzhang Wang
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| | - Yuechun Li
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| | - Baojun Wang
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| |
Collapse
|
27
|
Peng D, Qiao HZ, Tan HY, Wang YX, Luo D, Qiao LJ, Cai YF, Zhang SJ, Wang Q, Guan L. Ligustilide ameliorates cognitive impairment via AMPK/SIRT1 pathway in vascular dementia rat. Metab Brain Dis 2022; 37:1401-1414. [PMID: 35420377 DOI: 10.1007/s11011-022-00947-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/24/2022] [Indexed: 11/29/2022]
Abstract
Vascular dementia (VaD) is the second cause of dementia after Alzheimer's disease. Ligustilide (LIG) is one of the main active ingredients of traditional Chinese medicines, such as Angelica. Studies have reported that LIG could protect against VaD. However, the mechanism is still confused. In this study, we employed a bilateral common carotid artery occlusion rat model to study. LIG (20 or 40 mg/kg/day) and Nimodipine (20 mg/kg) were orally administered to the VaD rats for four weeks. Morris water maze test showed that LIG effectively ameliorated learning and memory impairment in VaD rats. LIG obviously reduced neuronal oxidative stress damage and the level of homocysteine in the brain of VaD rats. Western blot results showed that pro-apoptotic protein Bax and cleaved caspase 3 increased and anti-apoptotic protein Bcl-2 decreased in the hippocampi of VaD rats. But after LIG treatment, these changes were reversed. Moreover, Nissl staining result showed that LIG could reduce neuronal degeneration in VaD rats. Furthermore, LIG enhanced the expressions of P-AMPK and Sirtuin1(SIRT1) in VaD rats. In conclusion, these studies indicated that LIG could ameliorate cognitive impairment in VaD rats, which might be related to AMPK/SIRT1 pathway activation.
Collapse
Affiliation(s)
- Dong Peng
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Han-Zi Qiao
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Yu Tan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Xue Wang
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Jun Qiao
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ye-Feng Cai
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shi-Jie Zhang
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Li Guan
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
28
|
Dl-3-n-Butylphthalide Improves Neuroinflammation in Mice with Repeated Cerebral Ischemia-Reperfusion Injury through the Nrf2-Mediated Antioxidant Response and TLR4/MyD88/NF- κB Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8652741. [PMID: 35615581 PMCID: PMC9126665 DOI: 10.1155/2022/8652741] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022]
Abstract
Increasing evidence shows that oxidative stress and neuroinflammation play a crucial role in the pathology of vascular dementia (VD). Previously, we have found that Dl-3-n-butylphthalide (NBP) has antioxidant and anti-inflammatory activities in VD, whereas little is known about its mechanism. Therefore, the objective of our study was to explore the contribution of nuclear factor erythroid-2 related factor 2 (Nrf2) to NBP and its effects on anti-inflammatory activity in a mouse model of VD. Our studies revealed that NBP could effectively mitigate cognitive deficits, neuron cell loss, and apoptosis in mice subjected to repeated cerebral ischemia-reperfusion (RCIR). Additionally, NBP promoted both the expression of brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB) in hippocampus tissue. NBP exhibited antioxidant activity by enhancing Nrf2 nuclear accumulation, increasing HO-1 and NQO1 expression, enhancing SOD activity, and inhibiting RCIR-induced MDA and 8-iso PGF2α generation in the hippocampus. NBP also significantly inhibited TLR4/MyD88/NF-κB signaling and suppressed microglial proliferation and the production of proinflammatory mediators in RCIR mice. Importantly, the antioxidant, antineuroinflammatory, and neuroprotective effects of NBP above were abolished by Nrf2 knockout. Collectively, these results indicated the effects of NBP on neuroinflammation were strongly associated with the Nrf2 pathway. Modulation of TLR4/MyD88/NF-κB pathway by Nrf2 is involved in the neuroprotective effect of NBP against VD induced by RCIR injury. With antioxidant and anti-neuroinflammatory properties, NBP could be a promising drug candidate for the prevention and/or treatment of VD and other neuroinflammatory disorders.
Collapse
|
29
|
Role of Butylphthalide in Immunity and Inflammation: Butylphthalide May Be a Potential Therapy for Anti-Inflammation and Immunoregulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7232457. [PMID: 35422893 PMCID: PMC9005281 DOI: 10.1155/2022/7232457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
Abstract
Inflammation and immunity play an essential role in disease pathogenesis. 3-N-Butylphthalide (NBP), a group of compounds extracted from seeds of Apium graveolens (Chinese celery), has been demonstrated as an efficient and effective therapy for ischemic stroke. The amount of research on NBP protective effect is increasing at pace, such as microcircular reconstruction, alleviating inflammation, ameliorating brain edema and blood-brain barrier (BBB) damage, mitochondrial function protection, antiplatelet aggregation, antithrombosis, decreasing oxidative damage, and reducing neural cell apoptosis. There has been increasing research emphasizing the association between NBP and immunity and inflammation in the past few years. Hence, it is aimed at reviewing the related literature and summarizing the underlying anti-inflammatory and immunoregulatory function of NBP in various disorders.
Collapse
|
30
|
Tian Y, Wang TS, Bu H, Shao G, Zhang W, Zhang L. Role of Exosomal miR-223 in Chronic Skeletal Muscle Inflammation. Orthop Surg 2022; 14:644-651. [PMID: 35293669 PMCID: PMC9002075 DOI: 10.1111/os.13232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/30/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
As skeletal muscle is one of the largest organs in the body, its damage can directly reflect a decline in somatic function, thus, further affecting daily life and health. Inflammation is a prerequisite for the repair of injured skeletal muscles. Chronic inflammation induced by inadequate repair in skeletal muscle aggravates tissue injury. Exosomes regulate inflammatory responses to facilitate the repair of skeletal muscle injury. Moreover, exosomal miR‐223 with high specificity is the most abundant miRNA in peripheral blood and regarded as biomarkers for inflammation post skeletal muscle injury, which warrants further investigation. Available studies have demonstrated that exosomal miR‐223 negatively correlates with TNF‐α levels in serum and regulates the canonical inflammatory NF‐κB signaling pathway. miR‐223 is a negative feedback regulator with great potential for adjusting inflammatory imbalance and promoting skeletal muscle repair. The research on the regulation of negative feedback factors in the inflammatory signaling pathway is essential in biology and medicine. Therefore, this review mainly elaborates the formation, heterogeneity and markers of exosomes and points out exosomal miR‐223 as a beneficial role in chronic skeletal muscle inflammation and can be expected to be a potential therapeutic target for skeletal muscle damage.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China.,Department of Acupuncture-Moxibustion and Tuina, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Tie-Shan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - He Bu
- Department of Acupuncture-Moxibustion and Tuina, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Guo Shao
- Center for Translational Medicine and Department of Laboratory Medicine, the Third People's Hospital of Longgang District, Shenzhen, China
| | - Wei Zhang
- Department of Pathology, the First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| | - Li Zhang
- Department of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
31
|
Sesamol Attenuates Neuroinflammation by Regulating the AMPK/SIRT1/NF- κB Signaling Pathway after Spinal Cord Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8010670. [PMID: 35035666 PMCID: PMC8758308 DOI: 10.1155/2022/8010670] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
Inflammation is one of the crucial mechanisms mediating spinal cord injury (SCI) progress. Sesamol, a component of sesame oil, has anti-inflammatory activity, but its mechanism in SCI remains unclear. We investigated if the AMPK/SIRT1/NF-κB pathway participated in anti-inflammation of sesamol in SCI. Sesamol could inhibit neuronal apoptosis, reduce neuroinflammation, enhance M2 phenotype microglial polarization, and improved motor function recovery in mice after SCI. Furthermore, sesamol increased SIRT1 protein expression and p-AMPK/AMPK ratio, while it downregulated the p-p65/p65 ratio, indicating that sesamol treatment upregulated the AMPK/SIRT1 pathway and inhibited NF-κB activation. However, these effects were blocked by compound C which is a specific AMPK inhibitor. Together, the study suggests that sesamol is a potential drug for antineuroinflammation and improving locomotor functional recovery through regulation of the AMPK/SIRT1/NF-κB pathway in SCI.
Collapse
|
32
|
Mayorga-Weber G, Rivera FJ, Castro MA. Neuron-glia (mis)interactions in brain energy metabolism during aging. J Neurosci Res 2022; 100:835-854. [PMID: 35085408 DOI: 10.1002/jnr.25015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/08/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Life expectancy in humans is increasing, resulting in a growing aging population, that is accompanied by an increased disposition to develop cognitive deterioration. Hypometabolism is one of the multiple factors related to inefficient brain function during aging. This review emphasizes the metabolic interactions between glial cells (astrocytes, oligodendrocytes, and microglia) and neurons, particularly, during aging. Glial cells provide support and protection to neurons allowing adequate synaptic activity. We address metabolic coupling from the expression of transporters, availability of substrates, metabolic pathways, and mitochondrial activity. In aging, the main metabolic exchange machinery is altered with inefficient levels of nutrients and detrimental mitochondrial activity that results in high reactive oxygen species levels and reduced ATP production, generating a highly inflammatory environment that favors deregulated cell death. Here, we provide an overview of the glial-to-neuron mechanisms, from the molecular components to the cell types, emphasizing aging as the crucial risk factor for developing neurodegenerative/neuroinflammatory diseases.
Collapse
Affiliation(s)
- Gonzalo Mayorga-Weber
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Stem Cells and Neuroregeneration, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Maite A Castro
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Janelia Research Campus, HHMI, Ashburn, VA, USA
| |
Collapse
|
33
|
Fan X, Shen W, Wang L, Zhang Y. Efficacy and Safety of DL-3-n-Butylphthalide in the Treatment of Poststroke Cognitive Impairment: A Systematic Review and Meta-Analysis. Front Pharmacol 2022; 12:810297. [PMID: 35145408 PMCID: PMC8823901 DOI: 10.3389/fphar.2021.810297] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Poststroke cognitive impairment (PSCI) is a common complication observed after stroke. Current pharmacologic therapies have no definitive evidence for cognitive recovery or disease progression. Recent studies have verified the positive effect of DL-3-n-butylphthalide (NBP). However, the clinical efficacy and safety are still unclear. The aim of this study was to assess the efficacy of NBP and its harmful effect in the treatment of PSCI. Method: Eligible randomized controlled trials (RCTs) were retrieved from inception to June 2021 from seven medical databases and two clinical registries. The revised Cochrane risk of bias tool (RoB 2.0) was used for methodological quality. RevMan v5.4.1 from Cochrane Collaboration was used for statistical analysis, and Hartung-Knapp-Sidik-Jonkman (HKSJ) method was used for post hoc testing depend on the number of studies. This study has been submitted to PROSPERO with registration number is CRD42021274123. Result: We identified 26 studies with a total sample size of 2,571 patients. The results of this study showed that NBP as monotherapy or combination therapy had better performance in increasing the MoCA (monotherapy: SMDN = 1.05, 95% CI [0.69, 1.42], p < 0.00001; SMDP = 1.06, 95% CI [0.59, 1.52], p < 0.00001. combination: SMDO = 0.81, 95% CI [0.62, 1.01], p < 0.00001; SMDN = 0.90, 95% CI [0.46, 1.33], p < 0.0001; SMDD = 1.04, 95% CI [0.71, 1.38], p < 0.00001), MMSE (monotherapy: MDN = 4.89, 95% CI [4.14, 5.63]), p < 0.00001). combination: SMDO = 1.26, 95% CI [0.97, 1.56], p < 0.00001; SMDC = 1.63, 95% CI [1.28, 1.98], p < 0.00001; SMDN = 2.13, 95% CI [1.52, 2.75], p < 0.00001) and BI (monotherapy: MDN = 13.53, HKSJ 95% CI [9.84, 17.22], p = 0.014. combination: SMDO = 2.24, HKSJ 95%CI [0.37, 4.11], p = 0.032; SMDC = 3.36, 95%CI [2.80, 3.93], p < 0.00001; SMDD = 1.48, 95%CI [1.13, 1.83], p < 0.00001); and decreasing the NIHSS (monotherapy: MDN = −3.86, 95% CI [−5.22, −2.50], p < 0.00001. combination: SMDO = −1.15, 95% CI [−1.31, −0.98], p < 0.00001; SMDC = −1.82, 95% CI [−2.25, −1.40], p < 0.00001) and CSS (combination: MDO = −7.11, 95% CI [−8.42, −5.80], p < 0.00001), with no serious adverse reactions observed. The funnel plot verified the possibility of publication bias. Conclusion: NBP maintains a stable pattern in promoting the recovery of cognitive function and abilities of daily living, as well as reducing the symptoms of neurological deficits. However, there is still a need for more high-quality RCTs to verify its efficacy and safety.
Collapse
Affiliation(s)
| | - Wei Shen
- *Correspondence: Wei Shen, ; Yunling Zhang,
| | | | | |
Collapse
|
34
|
Que R, Zheng J, Chang Z, Zhang W, Li H, Xie Z, Huang Z, Wang HT, Xu J, Jin D, Yang W, Tan EK, Wang Q. Dl-3-n-Butylphthalide Rescues Dopaminergic Neurons in Parkinson's Disease Models by Inhibiting the NLRP3 Inflammasome and Ameliorating Mitochondrial Impairment. Front Immunol 2021; 12:794770. [PMID: 34925379 PMCID: PMC8671881 DOI: 10.3389/fimmu.2021.794770] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
Background Neuroinflammation and mitochondrial impairment play important roles in the neuropathogenesis of Parkinson’s disease (PD). The activation of NLRP3 inflammasome and the accumulation of α-synuclein (α-Syn) are strictly correlated to neuroinflammation. Therefore, the regulation of NLRP3 inflammasome activation and α-Syn aggregation might have therapeutic potential. It has been indicated that Dl-3-n-butylphthalide (NBP) produces neuroprotection against some neurological diseases such as ischemic stroke. We here intended to explore whether NBP suppressed NLRP3 inflammasome activation and reduced α-Syn aggregation, thus protecting dopaminergic neurons against neuroinflammation. Methods In our study, we established a MPTP-induced mouse model and 6-OHDA-induced SH-SY5Y cell model to examine the neuroprotective actions of NBP. We then performed behavioral tests to examine motor dysfunction in MPTP-exposed mice after NBP treatment. Western blotting, immunofluorescence staining, flow cytometry and RT-qPCR were conducted to investigate the expression of NLRP3 inflammasomes, neuroinflammatory cytokines, PARP1, p-α-Syn, and markers of microgliosis and astrogliosis. Results The results showed that NBP exerts a neuroprotective effect on experimental PD models. In vivo, NBP ameliorated behavioral impairments and reduced dopaminergic neuron loss in MPTP-induced mice. In vitro, treatment of SH-SY5Y cells with 6-OHDA (100uM,24 h) significantly decreased cell viability, increased intracellular ROS production, and induced apoptosis, while pretreatment with 5uM NBP could alleviated 6-OHDA-induced cytotoxicity, ROS production and cell apoptosis to some extent. Importantly, both in vivo and in vitro, NBP suppressed the activation of the NLRP3 inflammasome and the aggregation of α-Syn, thus inhibited neuroinflammation ameliorated mitochondrial impairments. Conclusions In summary, NBP rescued dopaminergic neurons by reducing NLRP3 inflammasome activation and ameliorating mitochondrial impairments and increases in p-α-Syn levels. This current study may provide novel neuroprotective mechanisms of NBP as a potential therapeutic agent.
Collapse
Affiliation(s)
- Rongfang Que
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jialing Zheng
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zihan Chang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjie Zhang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hualing Li
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenchao Xie
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zifeng Huang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-Tao Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Dana Jin
- College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Wanlin Yang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore.,Department of Neurology, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
35
|
Wu W, Zhang X, Zhou J, Yang H, Chen J, Zhao L, Zhong J, Lin WJ, Wang Z. Clemastine Ameliorates Perioperative Neurocognitive Disorder in Aged Mice Caused by Anesthesia and Surgery. Front Pharmacol 2021; 12:738590. [PMID: 34497527 PMCID: PMC8419266 DOI: 10.3389/fphar.2021.738590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022] Open
Abstract
Perioperative neurocognitive disorder (PND) leads to progressive deterioration of cognitive function, especially in aged patients. Demyelination is closely associated with cognitive dysfunction. However, the relationship between PND and demyelination remains unclear. Here we showed that demyelination was related to the pathogenesis of PND. Clemastine, an antihistamine with potency in remyelination, was predicted to have a potential therapeutic effect on PND by next-generation sequencing and bioinformatics in our previous study. In the present study, it was given at 10 mg/kg per day for 2 weeks to evaluate the effects on PND in aged mice. We found that clemastine ameliorated PND and reduced the expression levels of inflammatory factors such as tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β). Further investigation suggested clemastine increased the expression of oligodendrocyte transcription factor 2 (OLIG2) and myelin basic protein (MBP) to enhance remyelination by inhibiting the overactivation of the WNT/β-catenin pathway. At the same time, the expression of post-synaptic density protein 95 (PSD95, or DLG4), brain-derived neurotrophic factor (BDNF), synaptosomal-associated protein 25 (SNAP25) and neuronal nuclei (NEUN) were also improved. Our results suggested that clemastine might be a therapy for PND caused by anesthetic and surgical factors in aged patients.
Collapse
Affiliation(s)
- Wensi Wu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Xiaojun Zhang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Jiaxin Zhou
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Hongmei Yang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Junjun Chen
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Le Zhao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Junying Zhong
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Medical Research Center of Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| |
Collapse
|
36
|
Jiang Y, Steinle JJ. Epac1 Requires AMPK Phosphorylation to Regulate HMGB1 in the Retinal Vasculature. Invest Ophthalmol Vis Sci 2021; 61:33. [PMID: 32940662 PMCID: PMC7500149 DOI: 10.1167/iovs.61.11.33] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose To investigate whether AMP-activated protein kinase (AMPK) is required for the reduction of high mobility group box 1 (HMGB1) by exchange proteins activated by cAMP 1 (Epac1) in the retinal vasculature. Methods We measured AMPK phosphorylation in normal and diabetic Epac1 floxed and cdh5/Epac1 Cre mice. We also treated primary human retinal endothelial cells (RECs) in normal (5-mM) or high (25-mM) glucose with an Epac1 agonist and AMPK or insulin-like growth factor receptor binding protein 3 siRNA. We measured protein levels of AMPK, sirtuin 1 (SIRT1), and HMGB1. Results AMPK phosphorylation was reduced in cdh5/Epac1 Cre mice, suggesting that Epac1 regulated AMPK actions. High-glucose culturing conditions reduced AMPK levels in RECs, but the levels were increased by the Epac1 agonist, supporting the idea that Epac1 regulates AMPK. The Epac1 agonist was not able to reduce HMGB1 levels or increase SIRT1 when AMPK was blocked by AMPK siRNA, thus demonstrating that Epac1 requires AMPK to regulate SIRT1 and HMGB1. Conclusions Epac1 requires AMPK to increase SIRT1 and reduce HMGB1 in the diabetic retinal vasculature. This finding provides another pathway by which Epac1 may protect the retina during diabetes.
Collapse
Affiliation(s)
- Youde Jiang
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Jena J Steinle
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|