1
|
Raghavan S, Lesnick TG, Castillo AM, Reid RI, Fought AJ, Thostenson KB, Johnson Sparrman KL, Gehrking TL, Gehrking JA, Sletten DM, Low PA, Singer W, Vemuri P. White Matter Abnormalities Track Disease Progression in Multiple System Atrophy. Mov Disord Clin Pract 2024; 11:1085-1094. [PMID: 38923361 PMCID: PMC11452797 DOI: 10.1002/mdc3.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/16/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND White matter (WM) abnormalities have been implicated in clinically relevant functional decline in multiple system atrophy (MSA). OBJECTIVE To identify the WM and gray matter (GM) abnormalities in MSA and assess the utility of longitudinal structural and diffusion changes as surrogate markers for tracking disease progression in MSA. METHODS Twenty-seven participants with early MSA [15 with clinically predominant cerebellar (MSA-C) and 12 with clinically predominant parkinsonian features (MSA-P)] and 14 controls were enrolled as a part of our prospective, longitudinal study of synucleinopathies. Using structural magnetic resonance imaging (MRI) and diffusion MRI (diffusion tensor and neurite orientation and dispersion density imaging), we analyzed whole and regional brain changes in these participants. We also evaluated temporal imaging trajectories based on up to three annual follow-up scans and assessed the impact of baseline diagnosis on these imaging biomarkers using mixed-effect models. RESULTS MSA patients exhibited more widespread WM changes than GM, particularly in the cerebellum and brainstem, with greater severity in MSA-C. Structural and diffusion measures in the cerebellum WM and brainstem deteriorated with disease progression. Rates of progression of these abnormalities were similar in both MSA subtypes, reflecting increasing overlap of clinical features over time. CONCLUSION WM abnormalities are core features of MSA disease progression and advance at similar rates in clinical MSA subtypes. Multimodal MRI imaging reveals novel insights into the distribution and pattern of brain abnormalities and their progression in MSA. Selected structural and diffusion measures may be useful for tracking disease progression in MSA clinical trials.
Collapse
Affiliation(s)
| | | | - Anna M. Castillo
- Department of Quantitative Health SciencesMayo ClinicRochesterMNUSA
| | - Robert I. Reid
- Department of Information TechnologyMayo ClinicRochesterMNUSA
| | - Angela J. Fought
- Department of Quantitative Health SciencesMayo ClinicRochesterMNUSA
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Ellis EG, Meyer GM, Kaasinen V, Corp DT, Pavese N, Reich MM, Joutsa J. Multimodal neuroimaging to characterize symptom-specific networks in movement disorders. NPJ Parkinsons Dis 2024; 10:154. [PMID: 39143114 PMCID: PMC11324766 DOI: 10.1038/s41531-024-00774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Movement disorders, such as Parkinson's disease, essential tremor, and dystonia, are characterized by their predominant motor symptoms, yet diseases causing abnormal movement also encompass several other symptoms, including non-motor symptoms. Here we review recent advances from studies of brain lesions, neuroimaging, and neuromodulation that provide converging evidence on symptom-specific brain networks in movement disorders. Although movement disorders have traditionally been conceptualized as disorders of the basal ganglia, cumulative data from brain lesions causing parkinsonism, tremor and dystonia have now demonstrated that this view is incomplete. Several recent studies have shown that lesions causing a given movement disorder occur in heterogeneous brain locations, but disrupt common brain networks, which appear to be specific to each motor phenotype. In addition, findings from structural and functional neuroimaging in movement disorders have demonstrated that brain abnormalities extend far beyond the brain networks associated with the motor symptoms. In fact, neuroimaging findings in each movement disorder are strongly influenced by the constellation of patients' symptoms that also seem to map to specific networks rather than individual anatomical structures or single neurotransmitters. Finally, observations from deep brain stimulation have demonstrated that clinical changes, including both symptom improvement and side effects, are dependent on the modulation of large-scale networks instead of purely local effects of the neuromodulation. Combined, this multimodal evidence suggests that symptoms in movement disorders arise from distinct brain networks, encouraging multimodal imaging studies to better characterize the underlying symptom-specific mechanisms and individually tailor treatment approaches.
Collapse
Affiliation(s)
- Elizabeth G Ellis
- Turku Brain and Mind Center, University of Turku, Turku, Finland.
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia.
| | - Garance M Meyer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Valtteri Kaasinen
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Daniel T Corp
- Turku Brain and Mind Center, University of Turku, Turku, Finland
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Nicola Pavese
- Institute of Clinical Medicine, Department of Nuclear Medicine & PET, Aarhus University, Aarhus, Denmark
- Translational and Clinical Research Institute, Newcastle University, Upon Tyn, UK
| | - Martin M Reich
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Juho Joutsa
- Turku Brain and Mind Center, University of Turku, Turku, Finland.
- Clinical Neurosciences, University of Turku, Turku, Finland.
- Neurocenter, Turku University Hospital, Turku, Finland.
| |
Collapse
|
3
|
Xiao H, Lang L, Ye Z, Wu J. Subthalamic Nucleus Stimulation Modulates Cognitive Theory of Mind in Parkinson's Disease. Mov Disord 2024; 39:1154-1165. [PMID: 38696281 DOI: 10.1002/mds.29830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Theory of mind (ToM), the ability to infer others' mental state, is essential for social interaction among human beings. It has been widely reported that both cognitive (inference of knowledge) and affective (inference of emotion) components of ToM are disrupted in Parkinson's disease (PD). Previous studies usually focused on the involvement of the prefrontal cortex. OBJECTIVE This study investigated the causal role of the subthalamic nucleus (STN), a key hub of the fronto-basal ganglia loops, in ToM. METHODS Thirty-four patients with idiopathic PD (15 women, aged 62.2 ± 8.3 years) completed a Yoni task with deep brain stimulation (DBS) ON and OFF. The Yoni task was designed to separate the cognitive and affective components of ToM. Volumes of tissue activated (VTA) were computed for three subregions of the STN. RESULTS DBS showed insignificant effects on ToM inference costs at the group level, which may be due to the large interindividual variability. The associative VTA correlated with the cognitive inference cost change but not the affective inference cost change. Patients with greater associative STN stimulation infer more slowly on cognitive ToM. Stimulating associative STN can adversely affect cognitive ToM in PD patients, especially in patients with a wide range of stimulation (≥0.157) or cognitive decline (Montreal Cognitive Assessment < 26). CONCLUSIONS The associative STN plays a causal role in cognitive ToM in patients with PD. However, stimulating the associative STN likely impairs cognitive ToM and potentially leads to social interaction deficits in PD. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Haoyun Xiao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liqin Lang
- Department of Neurology and National Research Center for Aging and Medicine and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zheng Ye
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jianjun Wu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Fukunaga K, Fujiwara Y, Enzaki M, Komi M, Hirai T, Azuma M. [Usefulness of Voxel-Based Quantification (VBQ) Smoothing in Relaxation Time Mapping]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2023; 79:913-922. [PMID: 37544734 DOI: 10.6009/jjrt.2023-1378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
PURPOSE Voxel-based quantification (VBQ) smoothing is a technique used to smooth quantitative parametric maps in the Montreal Neurological Institute standard space. Although VBQ smoothing could suppress changes in quantitative values at tissue boundaries, its effectiveness on relaxation time (T1 and T2 values and proton density PD) maps has not been investigated. The purpose of this study was to clarify the usefulness of VBQ smoothing in relaxation time mapping. METHOD T1 and T2 values and PD maps of the brains of 20 healthy participants were obtained using a two-dimensional multi-dynamic multi-echo sequence. VBQ and Gaussian smoothing were applied to the relaxation time maps by varying the kernel size by 1 mm from 1 to 6 mm. Changes in relaxation time before and after VBQ and Gaussian smoothing for the putamen, caudate nucleus, substantia nigra, and corpus callosum on the relaxation time maps were evaluated. RESULT The changes in relaxation time after VBQ smoothing application were smaller than those in that after Gaussian smoothing application. Although the differences in the relaxation time for all tissues before and after VBQ and Gaussian smoothing applications increased with increasing kernel size for all relaxation times for both methods, the changes in the relaxation time for VBQ smoothing were smaller than those in that for Gaussian smoothing. CONCLUSION VBQ smoothing can suppress the change in the relaxation time on the boundary of the tissue and is thus a useful smoothing technique in relaxation time mapping.
Collapse
Affiliation(s)
- Kota Fukunaga
- Graduate School of Health Sciences, Kumamoto University
| | - Yasuhiro Fujiwara
- Department of Medical Image Sciences, Faculty of Life Sciences, Kumamoto University
| | | | | | - Toshinori Hirai
- Department of Diagnostic Radiology, Faculty of Medicine, Kumamoto University
| | - Minako Azuma
- Department of Radiology, Faculty of Medicine, University of Miyazaki
| |
Collapse
|
5
|
Kang N. Increased Cerebellar Gray Matter Volume in Athletes: A Voxel-Wise Coordinate-Based Meta-Analysis. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:597-608. [PMID: 35438607 DOI: 10.1080/02701367.2022.2026285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Purpose: The purpose of this systematic review and meta-analysis study was to investigate distinct brain structural characteristics in athletes as compared with those in non-athletes by quantifying regional gray matter (GM) volume changes using voxel-based morphometry analysis based on a whole-brain approach. Methods: The systematic literature search was conducted from November 1, 2020 to October 18, 2021 via the two search engines including the PubMed and Web of Science. We included 13 studies that reported GM volume data in 229 athletes as compared 219 non-athletes based on the whole-brain analysis with specific three-dimensional coordinates in a standard stereotactic space. Thus, we performed a coordinate-based meta-analysis using the seed-based d mapping via permutation of subject images methods. Result: The coordinate-based meta-analysis reported that the athletes significantly reveal greater regional GM volume across right cerebellar lobules IV-V and Brodmann area 37 regions than those in the non-athletes with minimal levels of heterogeneity and publication bias between the included studies. The subgroup analyses show that greater GM volume for athletes in closed-skill sports appeared across the right cerebellar hemispheric lobules VIII and the right cingulum than those for non-athletes. Conclusion: These cumulative findings from multiple brain imaging studies suggest potential brain plasticity evidence in the athletes who experienced extensive motor training.
Collapse
|
6
|
Liu H, Lin J, Shang H. Voxel-based meta-analysis of gray matter and white matter changes in patients with spinocerebellar ataxia type 3. Front Neurol 2023; 14:1197822. [PMID: 37576018 PMCID: PMC10413272 DOI: 10.3389/fneur.2023.1197822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose Increasing neuroimaging studies have revealed gray matter (GM) and white matter (WM) anomalies of several brain regions by voxel-based morphometry (VBM) studies on patients with spinocerebellar ataxia type 3 (SCA3); however, the findings of previous studies on SCA3 patients by VBM studies remain inconsistent. The study aimed to identify consistent findings of gray matter (GM) and white matter (WM) changes in SCA3 patients by voxel-wise meta-analysis of whole-brain VBM studies. Methods VBM studies comparing GM or WM changes in SCA3 patients and healthy controls (HCs) were retrieved from PubMed, Embase, Web of Science, and Medline databases from January 1990 to February 2023. Manual searches were also conducted, and authors of studies were contacted for additional data. The coordinates with significant differences in GM and WM between SCA3 patients and HCs were extracted from each cluster. A meta-analysis was performed using anisotropic effect size-based signed differential mapping (AES-SDM) software. Results A total of seven studies comprising 160 SCA3 patients and 165 HCs were included in the GM volume meta-analysis. Three studies comprising 57 SCA3 patients and 63 HCs were included for WM volume meta-analysis. Compared with HC subjects, the reduced GM volume in SCA3 patients was found in the bilateral cerebellar hemispheres, cerebellar vermis, pons, right lingual gyrus, and right fusiform gyrus. The decreased WM volume was mainly concentrated in the bilateral cerebellar hemispheres, right corticospinal tract, middle cerebellar peduncles, cerebellar vermis, and left lingual gyrus. No increased density or volume of any brain structures was found. In the jackknife sensitivity analysis, the results remained largely robust. Conclusion Our meta-analysis clearly found the shrinkage of GM and WM volume in patients with SCA3. These lesions are involved in ataxia symptoms, abnormal eye movements, visual impairment, cognitive impairment, and affective disorders. The findings can explain the clinical manifestations and provide a morphological basis for SCA3.
Collapse
Affiliation(s)
- Hai Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Neurology, Xuanhan County People's Hospital, Dazhou, Sichuan, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Chen Y, Wang H, Huang H, Chen Y, Xu Y. Freezing of gait in Chinese patients with multiple system atrophy: prevalence and risk factors. Front Neurosci 2023; 17:1194904. [PMID: 37351425 PMCID: PMC10282176 DOI: 10.3389/fnins.2023.1194904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Objective Freezing of gait (FOG) is common in neurodegenerative forms of atypical parkinsonism, but few studies have examined FOG in multiple system atrophy (MSA). In this study, we examined the prevalence of freezing of gait and its relationship to clinical features in a large cohort of Chinese MSA patients. Methods This exploratory study included 202 Chinese patients with probable MSA. FOG was defined as a score ≥ 1 on item 14 of the Unified Parkinson's Disease Rating Scale. Patients with or without FOG were compared in terms of the Unified MSA Rating Scale (UMSARS) as well as cognitive and neuropsychiatric assessments. Results The frequency of FOG was 48.0, 52.1, and 38.7% in MSA, MSA with predominant parkinsonism (MSA-P), and MSA with predominant cerebellar ataxia (MSA-C), respectively. FOG was associated with worse subscores on parts I, II and IV of the UMSARS as well as worse total UMSARS score; greater likelihood of speech difficulties, falls, gait impairment and balance disorder; more severe symptoms of anxiety and depression; and lower activities of daily living. The binary logistic regression model indicated that higher total UMSARS scores were associated with FOG in MSA, MSA-P, and MSA-C patients. Conclusion Freezing of gait may be common among Chinese MSA patients, FOG may correlate with severe motor symptoms, anxiety, depression and activities of daily living. Total UMSARS score may be an independent risk factor for FOG.
Collapse
Affiliation(s)
- Yalan Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongyan Huang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Ellis EG, Joutsa J, Morrison-Ham J, Younger EFP, Saward JB, Caeyenberghs K, Corp DT. Large-scale activation likelihood estimation meta-analysis of parkinsonian disorders. Brain Commun 2023; 5:fcad172. [PMID: 37324240 PMCID: PMC10265724 DOI: 10.1093/braincomms/fcad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/31/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
Parkinsonism is a feature of several neurodegenerative disorders, including Parkinson's disease, progressive supranuclear palsy, corticobasal syndrome and multiple system atrophy. Neuroimaging studies have yielded insights into parkinsonian disorders; however, due to variability in results, the brain regions consistently implicated in these disorders remain to be characterized. The aim of this meta-analysis was to identify consistent brain abnormalities in individual parkinsonian disorders (Parkinson's disease, progressive supranuclear palsy, corticobasal syndrome and multiple system atrophy) and to investigate any shared abnormalities across disorders. A total of 44 591 studies were systematically screened following searches of two databases. A series of whole-brain activation likelihood estimation meta-analyses were performed on 132 neuroimaging studies (69 Parkinson's disease; 23 progressive supranuclear palsy; 17 corticobasal syndrome; and 23 multiple system atrophy) utilizing anatomical MRI, perfusion or metabolism PET and single-photon emission computed tomography. Meta-analyses were performed in each parkinsonian disorder within each imaging modality, as well as across all included disorders. Results in progressive supranuclear palsy and multiple system atrophy aligned with current imaging markers for diagnosis, encompassing the midbrain, and brainstem and putamen, respectively. PET imaging studies of patients with Parkinson's disease most consistently reported abnormality of the middle temporal gyrus. No significant clusters were identified in corticobasal syndrome. When examining abnormalities shared across all four disorders, the caudate was consistently reported in MRI studies, whilst the thalamus, inferior frontal gyrus and middle temporal gyri were commonly implicated by PET. To our knowledge, this is the largest meta-analysis of neuroimaging studies in parkinsonian disorders and the first to characterize brain regions implicated across parkinsonian disorders.
Collapse
Affiliation(s)
- Elizabeth G Ellis
- Correspondence to: Elizabeth G. Ellis Cognitive Neuroscience Unit, School of Psychology Deakin University, 221 Burwood Highway Burwood, VIC 3125, Australia E-mail:
| | - Juho Joutsa
- Center for Brain Circuit Therapeutics, Department of Neurology, Psychiatry, and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku 20520, Finland
- Turku PET Centre, Neurocenter, Turku University Hospital, Turku 20520, Finland
| | - Jordan Morrison-Ham
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC 3220, Australia
| | - Ellen F P Younger
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC 3220, Australia
| | - Jacqueline B Saward
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC 3220, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC 3220, Australia
| | - Daniel T Corp
- Correspondence may also be addressed to: Daniel T. Corp Cognitive Neuroscience Unit, School of Psychology Deakin University, 221 Burwood Highway Burwood, VIC 3125, Australia E-mail:
| |
Collapse
|
9
|
Zhang S, Lin J, Cheng Y, Hou Y, Shang H. Aberrant resting-state brain activity in Huntington's disease: A voxel-based meta-analysis. Front Neurol 2023; 14:1124158. [PMID: 37064205 PMCID: PMC10098104 DOI: 10.3389/fneur.2023.1124158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
IntroductionFunctional neuroimaging could provide abundant information of underling pathophysiological mechanisms of the clinical triad including motor, cognitive and psychiatric impairment in Huntington's Disease (HD).MethodsWe performed a voxel-based meta-analysis using anisotropic effect size-signed differential mapping (AES-SDM) method.Results6 studies (78 symptomatic HD, 102 premanifest HD and 131 healthy controls) were included in total. Altered resting-state brain activity was primarily detected in the bilateral medial part of superior frontal gyrus, bilateral anterior cingulate/paracingulate gyrus, left insula, left striatum, right cortico-spinal projections area, right inferior temporal gyrus area, right thalamus, right cerebellum and right gyrus rectus area. Premanifest and symptomatic HD patients showed different alterative pattern in the subgroup analyses.DiscussionThe robust and consistent abnormalities in the specific brain regions identified in the current study could help to understand the pathophysiology of HD and explore reliable neuroimaging biomarkers for monitoring disease progression, or even predicting the onset of premanifest HD patients.
Collapse
Affiliation(s)
- Sirui Zhang
- Department of Neurology, West China Hospital, Rare Disease Center, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Junyu Lin
- Department of Neurology, West China Hospital, Rare Disease Center, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Yangfan Cheng
- Department of Neurology, West China Hospital, Rare Disease Center, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Yanbin Hou
- Department of Neurology, West China Hospital, Rare Disease Center, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Rare Disease Center, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Huifang Shang
| |
Collapse
|
10
|
Vemuri P, Castillo AM, Thostenson KB, Ward CP, Raghavan S, Reid RI, Lesnick TG, Reddy AL, Gehrking TL, Gehrking JA, Sletten DM, Jack CR, Low PA, Singer W. Imaging biomarkers for early multiple system atrophy. Parkinsonism Relat Disord 2022; 103:60-68. [PMID: 36063706 PMCID: PMC10597684 DOI: 10.1016/j.parkreldis.2022.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
Abstract
OBJECTIVE To systematically evaluate structural MRI and diffusion MRI features for cross-sectional discrimination and tracking of longitudinal disease progression in early multiple system atrophy (MSA). METHODS In a prospective, longitudinal study of synucleinopathies with imaging on 14 controls and 29 MSA patients recruited at an early disease stage (15 predominant cerebellar ataxia subtype or MSA-C and 14 predominant parkinsonism subtype or MSA-P), we computed regional morphometric and diffusion MRI features. We identified morphometric features by ranking them based on their ability to distinguish MSA-C from controls and MSA-P from controls and evaluated diffusion changes in these regions. For the top performing regions, we evaluated their utility for tracking longitudinal disease progression using imaging from 12-month follow-up and computed sample size estimates for a hypothetical clinical trial in MSA. We also computed these selected morphometric features in an independent validation dataset. RESULTS We found that morphometric changes in the cerebellar white matter, brainstem, and pons can separate early MSA-C patients from controls both cross-sectionally and longitudinally (p < 0.01). The putamen and striatum, though useful for separating early MSA-P patients from control subjects at baseline, were not useful for tracking MSA disease progression. Cerebellum white matter diffusion changes aided in capturing early disease related degeneration in MSA. INTERPRETATION Regardless of clinically predominant features at the time of MSA assessment, brainstem and cerebellar pathways progressively deteriorate with disease progression. Quantitative measurements of these regions are promising biomarkers for MSA diagnosis in early disease stage and potential surrogate markers for future MSA clinical trials.
Collapse
Affiliation(s)
- Prashanthi Vemuri
- Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Anna M Castillo
- Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kaely B Thostenson
- Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN, 55905, USA
| | - Chadwick P Ward
- Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Robert I Reid
- Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN, 55905, USA
| | - Timothy G Lesnick
- Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ashritha L Reddy
- Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN, 55905, USA
| | - Tonette L Gehrking
- Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jade A Gehrking
- Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN, 55905, USA
| | - David M Sletten
- Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN, 55905, USA
| | - Clifford R Jack
- Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN, 55905, USA
| | - Phillip A Low
- Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN, 55905, USA
| | - Wolfgang Singer
- Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
11
|
Xiao Y, Zhang L, Wei Q, Ou R, Hou Y, Liu K, Lin J, Yang T, Shang H. Health-related quality of life in patients with multiple system atrophy using the EQ-5D-5L. Brain Behav 2022; 12:e2774. [PMID: 36124355 PMCID: PMC9575615 DOI: 10.1002/brb3.2774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/03/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Multiple system atrophy (MSA) is an incurable neurodegenerative disease. We aimed to investigate the health-related quality of life (HRQoL) and the determinants of HRQoL in patients with MSA. METHODS The five-level EuroQol five-dimensional questionnaire (EQ-5D-5L) was used to evaluate patients' HRQoL. The results of HRQoL were indicated by the EQ-5D-5L index values and visual analog scale (EQ VAS) scores. Specific scales were used to measure disease severity, cognition, frontal lobe function, anxiety, depression, fatigue, and sleep disorders. The beta mixture model and the linear regression model were used to explore the determinants of HRQoL in patients with MSA. RESULTS A total of 205 patients with cerebellar variants (MSA-C; 53.9%) and 175 patients with parkinsonian variants (MSA-P; 46.1%) were included in this cross-sectional study. The mean values of the EQ-5D-5L index values and EQ VAS scores were .558 and 59.5, respectively. Problem with mobility was the problem reported by the highest proportion of patients (92.1%), followed by problems with usual activities (88.7%), self-care (81.3%), anxiety/depression (72.1%), and pain/discomfort (53.9%). The determinants of the lower EQ-5D-5L index values in patients with MSA were greater disease severity, fatigue, Parkinson's disease-related sleep problems (PD-SP), depressive mood, and anxious mood. Greater disease severity, fatigue, and depressive mood were associated with lower EQ VAS scores. CONCLUSION The problem reported most frequently by Chinese individuals with MSA was mobility. In addition to the greater disease severity of MSA, fatigue, PD-SP, depression, and anxiety were determinants of poor HRQoL.
Collapse
Affiliation(s)
- Yi Xiao
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyu Zhang
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Yanbing Hou
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Kuncheng Liu
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Junyu Lin
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Tianmi Yang
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Yu H, Chen D, Jiang H, Fu G, Yang Y, Deng Z, Chen Y, Zheng Q. Brain morphology changes after spinal cord injury: A voxel-based meta-analysis. Front Neurol 2022; 13:999375. [PMID: 36119697 PMCID: PMC9477418 DOI: 10.3389/fneur.2022.999375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/15/2022] [Indexed: 12/03/2022] Open
Abstract
Objectives Spinal cord injury (SCI) remodels the brain structure and alters brain function. To identify specific changes in brain gray matter volume (GMV) and white matter volume (WMV) following SCI, we conducted a voxel-based meta-analysis of whole-brain voxel-based morphometry (VBM) studies. Methods We performed a comprehensive literature search on VBM studies that compared SCI patients and healthy controls in PubMed, Web of Science and the China National Knowledge Infrastructure from 1980 to April 2022. Then, we conducted a voxel-based meta-analysis using seed-based d mapping with permutation of subject images (SDM-PSI). Meta-regression analysis was performed to identify the effects of clinical characteristics. Results Our study collected 20 studies with 22 GMV datasets and 15 WMV datasets, including 410 patients and 406 healthy controls. Compared with healthy controls, SCI patients showed significant GMV loss in the left insula and bilateral thalamus and significant WMV loss in the bilateral corticospinal tract (CST). Additionally, a higher motor score and pinprick score were positively related to greater GMV in the right postcentral gyrus, whereas a positive relationship was observed between the light touch score and the bilateral postcentral gyrus. Conclusion Atrophy in the thalamus and bilateral CST suggest that SCI may trigger neurodegeneration changes in the sensory and motor pathways. Furthermore, atrophy of the left insula may indicate depression and neuropathic pain in SCI patients. These indicators of structural abnormalities could serve as neuroimaging biomarkers for evaluating the prognosis and treatment effect, as well as for monitoring disease progression. The application of neuroimaging biomarkers in the brain for SCI may also lead to personalized treatment strategies. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021279716, identifier: CRD42021279716.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Duanyong Chen
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hai Jiang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guangtao Fu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuhui Yang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuanfeng Chen
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Research Department of Medical Science, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Qiujian Zheng
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Orthopedics, Southern Medical University, Guangzhou, China
- Yuanfeng Chen
| |
Collapse
|
13
|
Maass F, Hermann P, Varges D, Nuhn S, van Riesen C, Jamous A, Focke NK, Hewitt M, Leha A, Bähr M, Zerr I. Prospective CERAD Neuropsychological Assessment in Patients With Multiple System Atrophy. Front Neurol 2022; 13:881369. [PMID: 35928131 PMCID: PMC9344909 DOI: 10.3389/fneur.2022.881369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
The objective of the study was to characterize the pattern of cognitive dysfunction in patients with multiple system atrophy (MSA) applying a standardized neuropsychological assessment. A total of 20 patients with the diagnosis of probable or possible MSA were enrolled for neuropsychological assessment applying the CERAD plus battery. All patients were tested at baseline and 14/20 patients received additional follow-up assessments (median follow-up of 24 months). Additionally, relationship between cortical thickness values/subcortical gray matter volumes and CERAD subitems was evaluated at baseline in a subgroup of 13/20 patients. Trail Making Test (TMT) was the most sensitive CERAD item at baseline with abnormal performance (z-score < −1.28) in one or both pathological TMT items (TMT-A, TMT-B) in 60% of patients with MSA. Additionally, there was a significant inverse correlation between the volume of the left and the right accumbens area and the TMT A item after adjusting for age (left side: p = 0.0009; right side p = 0.003). Comparing both subtypes, patients with MSA-C had significant lower values in phonemic verbal fluency (p = 0.04) and a trend for lower values in semantic verbal fluency (p = 0.06) compared to MSA-P. Additionally, patients with MSA-C showed significantly worse performance in the TMT-B task (p = 0.04) and a trend for worse performance in the TMT-A task (p = 0.06). Concerning longitudinal follow-up, a significant worsening in the TMT-B (p = 0.03) can be reported in MSA. In conclusion, frontal-executive dysfunction presents the hallmark of cognitive impairment in MSA.
Collapse
Affiliation(s)
- Fabian Maass
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- *Correspondence: Fabian Maass
| | - Peter Hermann
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Daniela Varges
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Sabine Nuhn
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Christoph van Riesen
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Ala Jamous
- Department of Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - Niels K. Focke
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Manuel Hewitt
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Leha
- Department of Medical Statistics, University Medical Center, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
14
|
Ge Y, Zheng W, Li Y, Dou W, Ren S, Chen Z, Wang Z. Altered Brain Volume, Microstructure Metrics and Functional Connectivity Features in Multiple System Atrophy. Front Aging Neurosci 2022; 14:799251. [PMID: 35663568 PMCID: PMC9162384 DOI: 10.3389/fnagi.2022.799251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/22/2022] [Indexed: 11/14/2022] Open
Abstract
In order to deeply understand the specific patterns of volume, microstructure, and functional changes in Multiple System Atrophy patients with cerebellar ataxia syndrome (MSA-c), we perform the current study by simultaneously applying structural (T1-weighted imaging), Diffusion tensor imaging (DTI), functional (BOLD fMRI) and extended Network-Based Statistics (extended-NBS) analysis. Twenty-nine MSA-c type patients and twenty-seven healthy controls (HCs) were involved in this study. First, we analyzed the whole brain changes of volume, microstructure, and functional connectivity (FC) in MSA-c patients. Then, we explored the correlations between significant multimodal MRI features and the total Unified Multiple System Atrophy Rating Scale (UMSARS) scores. Finally, we searched for sensitive imaging biomarkers for the diagnosis of MSA-c using support vector machine (SVM) classifier. Results showed significant grey matter atrophy in cerebellum and white matter microstructural abnormalities in cerebellum, left fusiform gyrus, right precentral gyrus and lingual gyrus. Extended-NBS analysis found two significant different connected components, featuring altered functional connectivity related to left and right cerebellar sub-regions, respectively. Moreover, the reduced fiber bundle counts at right Cerebellum_3 (Cbe3) and decreased fractional anisotropy (FA) values at bilateral Cbe9 were negatively associated with total UMSARS scores. Finally, the significant features at left Cbe9, Cbe1, and Cbe7b were found to be useful as sensitive biomarkers to differentiate MSA-c from HCs according to the SVM analysis. These findings advanced our understanding of the neural pathophysiological mechanisms of MSA from the perspective of multimodal neuroimaging.
Collapse
Affiliation(s)
- Yunxiang Ge
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Weimin Zheng
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| | - Yujia Li
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Weibei Dou
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
- *Correspondence: Weibei Dou,
| | - Shan Ren
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhigang Chen
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Zhigang Chen,
| | - Zhiqun Wang
- Department of Radiology, Aerospace Center Hospital, Beijing, China
- Zhiqun Wang,
| |
Collapse
|
15
|
Qi Z, Wang J, Gong J, Su T, Fu S, Huang L, Wang Y. Common and specific patterns of functional and structural brain alterations in schizophrenia and bipolar disorder: a multimodal voxel-based meta-analysis. J Psychiatry Neurosci 2022; 47:E32-E47. [PMID: 35105667 PMCID: PMC8812718 DOI: 10.1503/jpn.210111] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/12/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Schizophrenia and bipolar disorder have been linked to alterations in the functional activity and grey matter volume of some brain areas, reflected in impaired regional homogeneity and aberrant voxel-based morphometry. However, because of variable findings and methods used across studies, identifying patterns of brain alteration in schizophrenia and bipolar disorder has been difficult. METHODS We conducted a meta-analysis of differences in regional homogeneity and voxel-based morphometry between patients and healthy controls for schizophrenia and bipolar disorder separately, using seed-based d mapping. RESULTS We included 45 publications on regional homogeneity (26 in schizophrenia and 19 in bipolar disorder) and 190 publications on voxel-based morphometry (120 in schizophrenia and 70 in bipolar disorder). Patients with schizophrenia showed increased regional homogeneity in the frontal cortex and striatum and the supplementary motor area; they showed decreased regional homogeneity in the insula, primary sensory cortex (visual and auditory cortices) and sensorimotor cortex. Patients with bipolar disorder showed increased regional homogeneity in the frontal cortex and striatum; they showed decreased regional homogeneity in the insula. Patients with schizophrenia showed decreased grey matter volume in the superior temporal gyrus, inferior frontal gyrus, cingulate cortex and cerebellum. Patients with bipolar disorder showed decreased grey matter volume in the insula, cingulate cortex, frontal cortex and thalamus. Overlap analysis showed that patients with schizophrenia displayed decreased regional homogeneity and grey matter volume in the left insula and left superior temporal gyrus; patients with bipolar disorder displayed decreased regional homogeneity and grey matter volume in the left insula. LIMITATIONS The small sample size for our subgroup analysis (unmedicated versus medicated patients and substantial heterogeneity in the results for some regions could limit the interpretability and generalizability of the results. CONCLUSION Patients with schizophrenia and bipolar disorder shared a common pattern of regional functional and structural alterations in the insula and frontal cortex. Patients with schizophrenia showed more widespread functional and structural impairment, most prominently in the primary sensory motor areas.
Collapse
Affiliation(s)
| | - Junjing Wang
- From the Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China (Qi, Su, Fu, Huang, Y. Wang); the Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China (Qi, Su, Fu, Huang, Y. Wang); the Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, China (J. Wang); and the Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Gong)
| | | | | | | | | | | |
Collapse
|
16
|
Nyatega CO, Qiang L, Adamu MJ, Kawuwa HB. Gray matter, white matter and cerebrospinal fluid abnormalities in Parkinson's disease: A voxel-based morphometry study. Front Psychiatry 2022; 13:1027907. [PMID: 36325532 PMCID: PMC9618656 DOI: 10.3389/fpsyt.2022.1027907] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/26/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by bradykinesia, tremor, and rigidity among other symptoms. With a 70% cumulative prevalence of dementia in PD, cognitive impairment and neuropsychiatric symptoms are frequent. MATERIALS AND METHODS In this study, we looked at anatomical brain differences between groups of patients and controls. A total of 138 people with PD were compared to 64 age-matched healthy people using voxel-based morphometry (VBM). VBM is a fully automated technique that allows for the identification of regional differences in gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) allowing for an objective comparison of brains of different groups of people. We used statistical parametric mapping for image processing and statistical analysis. RESULTS In comparison to controls, PD patients had lower GM volumes in the left middle cingulate, left lingual gyrus, right calcarine and left fusiform gyrus, also PD patients indicated lower WM volumes in the right middle cingulate, left lingual gyrus, right calcarine, and left inferior occipital gyrus. Moreover, PD patients group demonstrated higher CSF in the left caudate compared to the controls. CONCLUSION Physical fragility and cognitive impairments in PD may be detected more easily if anatomical abnormalities to the cingulate gyrus, occipital lobe and the level of CSF in the caudate are identified. Thus, our findings shed light on the role of the brain in PD and may aid in a better understanding of the events that occur in PD patients.
Collapse
Affiliation(s)
- Charles Okanda Nyatega
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China.,Department of Electronics and Telecommunication Engineering, Mbeya University of Science and Technology, Mbeya, Tanzania
| | - Li Qiang
- School of Microelectronics, Tianjin University, Tianjin, China
| | | | | |
Collapse
|
17
|
Lv Q, Pan Y, Chen X, Wei J, Wang W, Zhang H, Wan J, Li S, Zhuang Y, Yang B, Ma D, Ren D, Zhao Z. Depression in multiple system atrophy: Views on pathological, clinical and imaging aspects. Front Psychiatry 2022; 13:980371. [PMID: 36159911 PMCID: PMC9492977 DOI: 10.3389/fpsyt.2022.980371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/15/2022] [Indexed: 01/09/2023] Open
Abstract
Multiple system atrophy (MSA) is a common atypical parkinsonism, characterized by a varying combination of autonomic, cerebellar, and pyramidal systems. It has been noticed that the patients with MSA can be accompanied by some neuropsychiatric disorders, in particular depression. However, there is limited understanding of MSA-related depression. To bridge existing gaps, we summarized research progress on this topic and provided a new perspective regarding pathological, clinical, and imaging aspects. Firstly, we synthesized corresponding studies in order to investigate the relationship between depression and MSA from a pathological perspective. And then, from a clinical perspective, we focused on the prevalence of depression in MS patients and the comparison with other populations. Furthermore, the associations between depression and some clinical characteristics, such as life quality and gender, have been reported. The available neuroimaging studies were too sparse to draw conclusions about the radiological aspect of depression in MSA patients but we still described them in the presence of paper. Finally, we discussed some limitations and shortcomings existing in the included studies, which call for more high-quality basic research and clinical research in this field.
Collapse
Affiliation(s)
- Qiuyi Lv
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yuxin Pan
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Xing Chen
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jingpei Wei
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Hua Zhang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jifeng Wan
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Shiqiang Li
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhuang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Baolin Yang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Dayong Ma
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Dawei Ren
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Zijun Zhao
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
18
|
Ponticorvo S, Manara R, Russillo MC, Erro R, Picillo M, Di Salle G, Di Salle F, Barone P, Esposito F, Pellecchia MT. Magnetic resonance T1w/T2w ratio and voxel-based morphometry in multiple system atrophy. Sci Rep 2021; 11:21683. [PMID: 34737396 PMCID: PMC8569168 DOI: 10.1038/s41598-021-01222-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022] Open
Abstract
Diagnosis of multiple system atrophy (MSA) may be improved by using multimodal imaging approaches. We investigated the use of T1-weighted/T2-weighted (T1w/T2w) images ratio combined with voxel-based morphometry to evaluate brain tissue integrity in MSA compared to Parkinson’s disease (PD) and healthy controls (HC). Twenty-six patients with MSA, 43 patients with PD and 56 HC were enrolled. Whole brain voxel-based and local regional analyses were performed to evaluate gray and white matter (GM and WM) tissue integrity and mean regional values were used for patients classification using logistic regression. Increased mean regional values of T1w/T2w in bilateral putamen were detected in MSA-P compared to PD and HC. The combined use of regional GM and T1w/T2w values in the right and left putamen showed the highest accuracy in discriminating MSA-P from PD and good accuracy in discriminating MSA from PD and HC. A good accuracy was also found in discriminating MSA from PD and HC by either combining regional GM and T1w/T2w values in the cerebellum or regional WM and T1w/T2w in the cerebellum and brainstem. The T1w/T2w image ratio alone or combined with validated MRI parameters can be further considered as a potential candidate biomarker for differential diagnosis of MSA.
Collapse
Affiliation(s)
- S Ponticorvo
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy
| | - R Manara
- Neuroradiology Unit, Department of Neurosciences, University of Padua, Padua, Italy
| | - M C Russillo
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy
| | - R Erro
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy
| | - M Picillo
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy
| | - G Di Salle
- Classe di Scienze Sperimentali, Scuola Superiore di Studi Universitari e Perfezionamento Sant'Anna, Pisa, Italy
| | - F Di Salle
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy
| | - P Barone
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy
| | - F Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - M T Pellecchia
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy.
| |
Collapse
|