1
|
Saks DG, Sachdev PS. Monogenic causes of cerebral small vessel disease- models for vascular cognitive impairment and dementia? Curr Opin Psychiatry 2025; 38:112-118. [PMID: 39840612 PMCID: PMC11789596 DOI: 10.1097/yco.0000000000000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
PURPOSE OF REVIEW Recent advancements in molecular biomarkers and therapeutic options for Alzheimer's disease have brought into focus the need for greater progress in the second most common cause of dementia, vascular cognitive impairment and dementia (VCID). We examine how the study of monogenic causes of VCID has contributed to the understanding of its pathophysiology and potential biomarker and treatment research. RECENT FINDINGS It is widely accepted that conditions which disrupt the cerebral small vessels contribute to vascular pathologies including stroke and cerebral microbleeds, ultimately leading to vascular cognitive impairment and dementia. Among these conditions are a range of monogenic small vessel diseases (SVDs) such as CADASIL, CARASIL, Fabry disease and COL4A-related disorders. SUMMARY This review indicates the importance of furthering research into monogenic SVDs in order to gain insight into the pathomechanisms of VCID more broadly. Monogenic conditions are easier to model than sporadic VCID and can serve as a guide for identifying biomarkers for diagnosis, monitoring and intervention outcomes.
Collapse
Affiliation(s)
- Danit G. Saks
- Centre for Healthy Brain Ageing, University of New South Wales
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, University of New South Wales
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
2
|
Kanoh T, Mizoguchi T, Tonoki A, Itoh M. Modeling of age-related neurological disease: utility of zebrafish. Front Aging Neurosci 2024; 16:1399098. [PMID: 38765773 PMCID: PMC11099255 DOI: 10.3389/fnagi.2024.1399098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Many age-related neurological diseases still lack effective treatments, making their understanding a critical and urgent issue in the globally aging society. To overcome this challenge, an animal model that accurately mimics these diseases is essential. To date, many mouse models have been developed to induce age-related neurological diseases through genetic manipulation or drug administration. These models help in understanding disease mechanisms and finding potential therapeutic targets. However, some age-related neurological diseases cannot be fully replicated in human pathology due to the different aspects between humans and mice. Although zebrafish has recently come into focus as a promising model for studying aging, there are few genetic zebrafish models of the age-related neurological disease. This review compares the aging phenotypes of humans, mice, and zebrafish, and provides an overview of age-related neurological diseases that can be mimicked in mouse models and those that cannot. We presented the possibility that reproducing human cerebral small vessel diseases during aging might be difficult in mice, and zebrafish has potential to be another animal model of such diseases due to their similarity of aging phenotype to humans.
Collapse
Affiliation(s)
- Tohgo Kanoh
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Takamasa Mizoguchi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Ayako Tonoki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Health and Disease Omics Center, Chiba University, Chiba, Japan
| |
Collapse
|
3
|
Kastberger B, Winter S, Brandstätter H, Biller J, Wagner W, Plesnila N. Treatment with Cerebrolysin Prolongs Lifespan in a Mouse Model of Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy. Adv Biol (Weinh) 2024; 8:e2300439. [PMID: 38062874 DOI: 10.1002/adbi.202300439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Indexed: 02/15/2024]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare familial neurological disorder caused by mutations in the NOTCH3 gene and characterized by migraine attacks, depressive episodes, lacunar strokes, dementia, and premature death. Since there is no therapy for CADASIL the authors investigate whether the multi-modal neuropeptide drug Cerebrolysin may improve outcome in a murine CADASIL model. Twelve-month-old NOTCH3R169C mutant mice (n=176) are treated for nine weeks with Cerebrolysin or Vehicle and histopathological and functional outcomes are evaluated within the subsequent ten months. Cerebrolysin treatment improves spatial memory and overall health, reduces epigenetic aging, and prolongs lifespan, however, CADASIL-specific white matter vacuolization is not affected. On the molecular level Cerebrolysin treatment increases expression of Calcitonin Gene-Related Peptide (CGRP) and Silent Information Regulator Two (Sir2)-like protein 6 (SIRT6), decreases expression of Insulin-like Growth Factor 1 (IGF-1), and normalizes the expression of neurovascular laminin. In summary, Cerebrolysin fosters longevity and healthy aging without specifically affecting CADASIL pathology. Hence, Cerebrolysin may serve a therapeutic option for CADASIL and other disorders characterized by accelerated aging.
Collapse
Affiliation(s)
| | - Stefan Winter
- Ever Pharma, Oberburgau 3, Unterach am Attersee, 4866, Austria
| | | | - Janina Biller
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Wolfgang Wagner
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, 52074, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany
- Cygenia GmbH, 52078, Aachen, Germany
| | - Nikolaus Plesnila
- Cluster of Systems Neurology (Synergy), 81377, Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377, Munich, Germany
| |
Collapse
|
4
|
Hussain G, Akram R, Anwar H, Sajid F, Iman T, Han HS, Raza C, De Aguilar JLG. Adult neurogenesis: a real hope or a delusion? Neural Regen Res 2024; 19:6-15. [PMID: 37488837 PMCID: PMC10479850 DOI: 10.4103/1673-5374.375317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/27/2023] [Accepted: 04/10/2023] [Indexed: 07/26/2023] Open
Abstract
Adult neurogenesis, the process of creating new neurons, involves the coordinated division, migration, and differentiation of neural stem cells. This process is restricted to neurogenic niches located in two distinct areas of the brain: the subgranular zone of the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricle, where new neurons are generated and then migrate to the olfactory bulb. Neurogenesis has been thought to occur only during the embryonic and early postnatal stages and to decline with age due to a continuous depletion of neural stem cells. Interestingly, recent years have seen tremendous progress in our understanding of adult brain neurogenesis, bridging the knowledge gap between embryonic and adult neurogenesis. Here, we discuss the current status of adult brain neurogenesis in light of what we know about neural stem cells. In this notion, we talk about the importance of intracellular signaling molecules in mobilizing endogenous neural stem cell proliferation. Based on the current understanding, we can declare that these molecules play a role in targeting neurogenesis in the mature brain. However, to achieve this goal, we need to avoid the undesired proliferation of neural stem cells by controlling the necessary checkpoints, which can lead to tumorigenesis and prove to be a curse instead of a blessing or hope.
Collapse
Affiliation(s)
- Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Rabia Akram
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Faiqa Sajid
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Tehreem Iman
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Hyung Soo Han
- Department of Physiology, School of Medicine, Clinical Omics Institute, Kyungpook National University, Daegu, Korea
| | - Chand Raza
- Department of Zoology, Faculty of Chemistry and Life Sciences, Government College University, Lahore, Pakistan
| | - Jose-Luis Gonzalez De Aguilar
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
5
|
Ehret F, Pelz MS, Senko AN, Soto KEG, Liu H, Kempermann G. Presymptomatic Reduction of Individuality in the App NL-F Knockin Model of Alzheimer's Disease. Biol Psychiatry 2023; 94:721-731. [PMID: 37076091 DOI: 10.1016/j.biopsych.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND One-third of the risk for Alzheimer's disease is explained by environment and lifestyle, but Alzheimer's disease pathology might also affect lifestyle and thereby impair the individual potential for health behavior and prevention. METHODS We examined in mice how the AppNL-F/NL-F (NL-F) knockin mutation affects the presymptomatic response to environmental enrichment (ENR) as an experimental paradigm addressing nongenetic factors. We assessed the emergence of interindividual phenotypic variation under the condition that both the genetic background and the shared environment were held constant, thereby isolating the contribution of individual behavior (nonshared environment). RESULTS After 4 months of ENR, the mean and variability of plasma ApoE were increased in NL-F mice, suggesting a presymptomatic variation in pathogenic processes. Roaming entropy as a measure of behavioral activity was continuously assessed with radiofrequency identification (RFID) technology and revealed reduced habituation and variance in NL-F mice compared with control animals, which do not carry a Beyreuther/Iberian mutation. Intraindividual variation decreased, while behavioral stability was reduced in NL-F mice. Seven months after discontinuation of ENR, we found no difference in plaque size and number, but ENR increased variance in hippocampal plaque counts in NL-F mice. A reactive increase in adult hippocampal neurogenesis in NL-F mice, known from other models, was normalized by ENR. CONCLUSIONS Our data suggest that while NL-F has early effects on individual behavioral patterns in response to ENR, there are lasting effects on cellular plasticity even after the discontinuation of ENR. Hence, early behavior matters for maintaining individual behavioral trajectories and brain plasticity even under maximally constrained conditions.
Collapse
Affiliation(s)
- Fanny Ehret
- German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Center for Regenerative Therapies Technical University Dresden, Dresden, Germany; Institute of Anatomy, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Meike S Pelz
- German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Center for Regenerative Therapies Technical University Dresden, Dresden, Germany
| | - Anna N Senko
- German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Center for Regenerative Therapies Technical University Dresden, Dresden, Germany
| | - Karla E G Soto
- German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Center for Regenerative Therapies Technical University Dresden, Dresden, Germany
| | - Hang Liu
- German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Center for Regenerative Therapies Technical University Dresden, Dresden, Germany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Center for Regenerative Therapies Technical University Dresden, Dresden, Germany.
| |
Collapse
|
6
|
Haffner C. The emerging role of the HTRA1 protease in brain microvascular disease. FRONTIERS IN DEMENTIA 2023; 2:1146055. [PMID: 39081996 PMCID: PMC11285548 DOI: 10.3389/frdem.2023.1146055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 08/02/2024]
Abstract
Pathologies of the brain microvasculature, often referred to as cerebral small-vessel disease, are important contributors to vascular dementia, the second most common form of dementia in aging societies. In addition to their role in acute ischemic and hemorrhagic stroke, they have emerged as major cause of age-related cognitive decline in asymptomatic individuals. A central histological finding in these pathologies is the disruption of the vessel architecture including thickening of the vessel wall, narrowing of the vessel lumen and massive expansion of the mural extracellular matrix. The underlying molecular mechanisms are largely unknown, but from the investigation of several disease forms with defined etiology, high temperature requirement protein A1 (HTRA1), a secreted serine protease degrading primarily matrisomal substrates, has emerged as critical factor and potential therapeutic target. A genetically induced loss of HTRA1 function in humans is associated with cerebral autosomal-recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), a rare, hereditary form of brain microvascular disease. Recently, proteomic studies on cerebral amyloid angiopathy (CAA), a common cause of age-related dementia, and cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most prevalent monogenic small-vessel disease, have provided evidence for an impairment of HTRA1 activity through sequestration into pathological protein deposits, suggesting an alternative mechanism of HTRA1 inactivation and expanding the range of diseases with HTRA1 involvement. Further investigations of the mechanisms of HTRA1 regulation in the brain microvasculature might spawn novel strategies for the treatment of small-vessel pathologies.
Collapse
Affiliation(s)
- Christof Haffner
- Department of Psychiatry and Psychotherapy, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
7
|
Chang C, Bai W, Li J, Huo S, Wang T, Shao J. Effects of Subchronic Propofol Administration on the Proliferation and Differentiation of Neural Stem Cells in Rat Hippocampus. CURRENT THERAPEUTIC RESEARCH 2023; 98:100691. [PMID: 36798524 PMCID: PMC9925857 DOI: 10.1016/j.curtheres.2023.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Background Although controversial, experimental data suggest the use of propofol may be associated with neurotoxicity. The mechanisms responsible for propofol neurotoxicity in animals are not yet clear. Objective This study aimed to determine the effects of propofol on the proliferation of neural stem cells in rat hippocampus and the mechanisms underlying these effects. Methods Forty-five adult male Sprague-Dawley rats were randomly divided into 5 groups: Control (N group), intralipid (V group), 30 mg/kg propofol (Prop30 group), 60 mg/kg propofol (Prop60 group), and 120 mg/kg propofol (Prop120 group). The rats in all groups received 5, once daily intraperitoneal injections. For each of the 5 days, the N group received 6 mL/kg normal saline, the V group received 6 mL/kg fat emulsion, the Prop30 group received 30 mg/kg propofol, the Prop60 group received 60 mg/kg propofol, and the Prop120 group received 120 mg/kg propofol. Memory function was scored daily using the Morris water maze test. Immunofluorescence staining was used to histologically monitor the proliferation and differentiation of the rats' hippocampal neural stem cells, and real time quantitative polymerase chain reaction and Western blotting were used to determine the expression of Notch3, Hes1, and Hes5. Results Compared with the N group, the Prop120 group exhibited reduced learning and memory, whereas there were no significant differences for the Prop60 group. The number of β-tubulin III+ cells increased in the Prop60 group, but decreased in the Prop120 group. Compared with the N group, the relative expression of Notch3 and Hes5 increased significantly in the Prop60 group, whereas this expression decreased in the Prop120 group. Conclusions These data demonstrate that repeated, subchronic (5 days) intraperitoneal injections of 60 mg/kg propofol can effectively promote rat hippocampal neural stem cells proliferation and differentiation, and that this is likely mediated by its effects on the Notch3-Hes5 pathway.
Collapse
Affiliation(s)
- Cheng Chang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China,Department of anesthesiology, The first people's hospital of huaihua, huaihua, Hunan Province, China
| | - Wenya Bai
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Junjie Li
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Siying Huo
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Tinghua Wang
- Experimental Animal Center, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jianlin Shao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China,Address correspondence to: Jian-Lin Shao, PhD, Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Rd, Kunming, Yunnan 650032, P.R. China.
| |
Collapse
|