1
|
Hernandez RJ, Madhusudhan S, Zheng Y, El-Bouri WK. Linking Vascular Structure and Function: Image-Based Virtual Populations of the Retina. Invest Ophthalmol Vis Sci 2024; 65:40. [PMID: 38683566 PMCID: PMC11059806 DOI: 10.1167/iovs.65.4.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Purpose This study explored the relationship among microvascular parameters as delineated by optical coherence tomography angiography (OCTA) and retinal perfusion. Here, we introduce a versatile framework to examine the interplay between the retinal vascular structure and function by generating virtual vasculatures from central retinal vessels to macular capillaries. Also, we have developed a hemodynamics model that evaluates the associations between vascular morphology and retinal perfusion. Methods The generation of the vasculature is based on the distribution of four clinical parameters pertaining to the dimension and blood pressure of the central retinal vessels, constructive constrained optimization, and Voronoi diagrams. Arterial and venous trees are generated in the temporal retina and connected through three layers of capillaries at different depths in the macula. The correlations between total retinal blood flow and macular flow fraction and vascular morphology are derived as Spearman rank coefficients, and uncertainty from input parameters is quantified. Results A virtual cohort of 200 healthy vasculatures was generated. Means and standard deviations for retinal blood flow and macular flow fraction were 20.80 ± 7.86 µL/min and 15.04% ± 5.42%, respectively. Retinal blood flow was correlated with vessel area density, vessel diameter index, fractal dimension, and vessel caliber index. The macular flow fraction was not correlated with any morphological metrics. Conclusions The proposed framework is able to reproduce vascular networks in the macula that are morphologically and functionally similar to real vasculature. The framework provides quantitative insights into how macular perfusion can be affected by changes in vascular morphology delineated on OCTA.
Collapse
Affiliation(s)
- Rémi J. Hernandez
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Savita Madhusudhan
- St Paul's Eye Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Department of Eye and Vision Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Yalin Zheng
- St Paul's Eye Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Department of Eye and Vision Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Wahbi K. El-Bouri
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Nuamah HG, Li Y, Yatsuya H, Yamagishi K, Saito I, Kokubo Y, Muraki I, Iso H, Inoue M, Tsugane S, Sawada N. The effect of age on the relationship between body mass index and risks of incident stroke subtypes: The JPHC study. J Stroke Cerebrovasc Dis 2024; 33:107486. [PMID: 38070372 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 01/23/2024] Open
Abstract
OBJECTIVE The associations between body mass index (BMI) and stroke subtypes, particularly intracerebral hemorrhage, have not been consistent. Such inconsistencies may be due to differences in the age at which BMI was obtained. We examined the possible age modifications in the association between BMI and stroke risk. MATERIALS AND METHODS We followed 88,754 participants, aged 40-69 years at baseline (1990-1994), of the Japan Public Health Center-based prospective (JPHC) study for stroke incidence. BMI was obtained using self-reported body weight and height, which were categorized using the following cut-off points: 18.5, 21, 23, 25, 27.5, and 30 kg/m2. Time-dependent Cox proportional hazards models that updated BMI and covariates using 5- and 10-year questionnaire responses were used to estimate hazard ratios and 95 % confidence intervals. The analyses were stratified by age group (40-59 and ≥60 years) and the age of the individuals was updated. RESULTS During the median follow-up period of 19 years, we documented 4,690 strokes, including 2,781 ischemic strokes and 1,358 intracerebral hemorrhages. After adjusting for sex, age, smoking, alcohol consumption, leisure-time physical activity, history of hypertension, dyslipidemia, and diabetes mellitus, we observed a positive linear association between BMI and ischemic stroke (linear trend, p < 0.001) in both age groups (interaction p>0.05). In contrast, a curvilinear association between BMI and intracerebral hemorrhage was observed in both the middle (curvilinear trend, p=0.017) and the older group (curvilinear trend, p=0.098) (interaction p>0.05). CONCLUSION BMI and stroke associations did not vary significantly with age, although the association may differ according to subtype.
Collapse
Affiliation(s)
- Hanson Gabriel Nuamah
- Department of Public Health and Health Systems, Nagoya University, Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yuanying Li
- Department of Public Health and Health Systems, Nagoya University, Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroshi Yatsuya
- Department of Public Health and Health Systems, Nagoya University, Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Kazumasa Yamagishi
- Department of Public Health Medicine and Health Services Research and Development Center, University of Tsukuba, Institute of Medicine, Tsukuba, Japan
| | - Isao Saito
- Department of Public Health and Epidemiology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yoshihiro Kokubo
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Isao Muraki
- Public Health, Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroyasu Iso
- Institute for Global Health Policy Research, Bureau of International Health Cooperation, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Manami Inoue
- Division of Prevention, National Cancer Center Institute for Cancer Control, Chuo-ku, Tokyo, Japan; Division of Cohort Research, National Cancer Center Institute for Cancer Control, Chuo-ku, Tokyo, Japan
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Chuo-ku, Tokyo, Japan; International University of Health and Welfare Graduate School of Public Health, Minato-ku, Japan
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Chuo-ku, Tokyo, Japan
| |
Collapse
|
3
|
Driss LB, Lian J, Walker RG, Howard JA, Thompson TB, Rubin LL, Wagers AJ, Lee RT. GDF11 and aging biology - controversies resolved and pending. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:42. [PMID: 38235060 PMCID: PMC10793994 DOI: 10.20517/jca.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Since the exogenous administration of GDF11, a TGF-ß superfamily member, was reported to have beneficial effects in some models of human disease, there have been many research studies in GDF11 biology. However, many studies have now confirmed that exogenous administration of GDF11 can improve physiology in disease models, including cardiac fibrosis, experimental stroke, and disordered metabolism. GDF11 is similar to GDF8 (also called Myostatin), differing only by 11 amino acids in their mature signaling domains. These two proteins are now known to be biochemically different both in vitro and in vivo. GDF11 is much more potent than GDF8 and induces more strongly SMAD2 phosphorylation in the myocardium compared to GDF8. GDF8 and GDF11 prodomain are only 52% identical and are cleaved by different Tolloid proteases to liberate the mature signaling domain from inhibition of the prodomain. Here, we review the state of GDF11 biology, highlighting both resolved and remaining controversies.
Collapse
Affiliation(s)
- Laura Ben Driss
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - John Lian
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Ryan G. Walker
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - James A. Howard
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Thomas B. Thompson
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy J. Wagers
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Joslin Diabetes Center, Boston, MA 02115, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
4
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
5
|
Mun J, Kang HM, Park C. Cerebral chronic hypoperfusion in mice causes premature aging of the cerebrovasculature. Brain Res Bull 2023; 195:47-54. [PMID: 36775041 DOI: 10.1016/j.brainresbull.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/29/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Chronic cerebral hypoperfusion (CCH) is the main characteristic of an aged brain showing cerebrovascular alterations. Our previous study that the morphological changes in the pial arteries accompany a decrease in the cerebral blood flow in aged mouse brains, and it raises the question of whether artificial CCH can induce the same changes in brain vessel morphology. Here, we examined the effect of CCH on cerebrovascular morphology. Using a microcoil-induced chronic cerebral hypoperfusion (MCH) model, we induced CCH for 8 and 12 weeks. The cerebrovasculature morphology was evaluated using three-dimensional vessel analysis and compared with that of aging mice. We found the morphological changes in brain vessels of MCH mice, indicating that the CCH can induce cerebrovascular alteration. However, the changes in brain vessel morphology in the MCH mice were different in detail from those in the aging mice. Aging mice showed an increase in vessel tortuosity and thinned string vessels; MCH mice mainly showed thinned string vessels. This suggests that CCH may be a cause of age-related cerebrovascular alterations.
Collapse
Affiliation(s)
- Juyeon Mun
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, the Republic of Korea; Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, the Republic of Korea
| | - Hye-Min Kang
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, Seoul, the Republic of Korea
| | - Chan Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, the Republic of Korea; Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, the Republic of Korea.
| |
Collapse
|
6
|
Liu H, Pan F, Lei X, Hui J, Gong R, Feng J, Zheng D. Effect of intracranial pressure on photoplethysmographic waveform in different cerebral perfusion territories: A computational study. Front Physiol 2023; 14:1085871. [PMID: 37007991 PMCID: PMC10060556 DOI: 10.3389/fphys.2023.1085871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
Background: Intracranial photoplethysmography (PPG) signals can be measured from extracranial sites using wearable sensors and may enable long-term non-invasive monitoring of intracranial pressure (ICP). However, it is still unknown if ICP changes can lead to waveform changes in intracranial PPG signals.Aim: To investigate the effect of ICP changes on the waveform of intracranial PPG signals of different cerebral perfusion territories.Methods: Based on lump-parameter Windkessel models, we developed a computational model consisting three interactive parts: cardiocerebral artery network, ICP model, and PPG model. We simulated ICP and PPG signals of three perfusion territories [anterior, middle, and posterior cerebral arteries (ACA, MCA, and PCA), all left side] in three ages (20, 40, and 60 years) and four intracranial capacitance conditions (normal, 20% decrease, 50% decrease, and 75% decrease). We calculated following PPG waveform features: maximum, minimum, mean, amplitude, min-to-max time, pulsatility index (PI), resistive index (RI), and max-to-mean ratio (MMR).Results: The simulated mean ICPs in normal condition were in the normal range (8.87–11.35 mm Hg), with larger PPG fluctuations in older subject and ACA/PCA territories. When intracranial capacitance decreased, the mean ICP increased above normal threshold (>20 mm Hg), with significant decreases in maximum, minimum, and mean; a minor decrease in amplitude; and no consistent change in min-to-max time, PI, RI, or MMR (maximal relative difference less than 2%) for PPG signals of all perfusion territories. There were significant effects of age and territory on all waveform features except age on mean.Conclusion: ICP values could significantly change the value-relevant (maximum, minimum, and amplitude) waveform features of PPG signals measured from different cerebral perfusion territories, with negligible effect on shape-relevant features (min-to-max time, PI, RI, and MMR). Age and measurement site could also significantly influence intracranial PPG waveform.
Collapse
Affiliation(s)
- Haipeng Liu
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
| | - Fan Pan
- College of Electronics and Information Engineering, Sichuan University, Chengdu, China
| | - Xinyue Lei
- College of Electronics and Information Engineering, Sichuan University, Chengdu, China
| | - Jiyuan Hui
- Brain Injury Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ru Gong
- Brain Injury Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junfeng Feng
- Brain Injury Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Junfeng Feng, ; Dingchang Zheng,
| | - Dingchang Zheng
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
- *Correspondence: Junfeng Feng, ; Dingchang Zheng,
| |
Collapse
|