1
|
Mulholland MM, Stuifbergen A, De La Torre Schutz A, Franco Rocha OY, Blayney DW, Kesler SR. Evidence of compensatory neural hyperactivity in a subgroup of breast cancer survivors treated with chemotherapy and its association with brain aging. Front Aging Neurosci 2024; 16:1421703. [PMID: 39723153 PMCID: PMC11668692 DOI: 10.3389/fnagi.2024.1421703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Chemotherapy-related cognitive impairment (CRCI) remains poorly understood in terms of the mechanisms of cognitive decline. Neural hyperactivity has been reported on average in cancer survivors, but it is unclear which patients demonstrate this neurophenotype, limiting precision medicine in this population. Methods We evaluated a retrospective sample of 80 breast cancer survivors and 80 non-cancer controls, aged 35-73, for which we had previously identified and validated three data-driven, biological subgroups (biotypes) of CRCI. We measured neural activity using the z-normalized percent amplitude of fluctuation from resting-state functional magnetic resonance imaging (MRI). We tested established, quantitative criteria to determine whether hyperactivity can accurately be considered compensatory. We also calculated the brain age gap by applying a previously validated algorithm to anatomic MRI. Results We found that neural activity differed across the three CRCI biotypes and controls (F = 13.5, p < 0.001), with Biotype 2 demonstrating significant hyperactivity compared to the other groups (p < 0.004, corrected), primarily in prefrontal regions. Alternatively, Biotypes 1 and 3 demonstrated significant hypoactivity (p < 0.02, corrected). Hyperactivity in Biotype 2 met several of the criteria to be considered compensatory. However, we also found a positive relationship between neural activity and the brain age gap in these patients (r = 0.45, p = 0.042). Discussion Our results indicated that neural hyperactivity is specific to a subgroup of breast cancer survivors and, while it seems to support preserved cognitive function, it could also increase the risk of accelerated brain aging. These findings could inform future neuromodulatory interventions with respect to the risks and benefits of upregulation or downregulation of neural activity.
Collapse
Affiliation(s)
- Michele M. Mulholland
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, United States
| | - Alexa Stuifbergen
- Division of Adult Health, School of Nursing, University of Texas at Austin, Austin, TX, United States
| | - Alexa De La Torre Schutz
- Division of Adult Health, School of Nursing, University of Texas at Austin, Austin, TX, United States
| | - Oscar Y. Franco Rocha
- Division of Adult Health, School of Nursing, University of Texas at Austin, Austin, TX, United States
| | - Douglas W. Blayney
- Department of Medical Oncology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Shelli R. Kesler
- Division of Adult Health, School of Nursing, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
2
|
Klein F, Kohl SH, Lührs M, Mehler DMA, Sorger B. From lab to life: challenges and perspectives of fNIRS for haemodynamic-based neurofeedback in real-world environments. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230087. [PMID: 39428887 PMCID: PMC11513164 DOI: 10.1098/rstb.2023.0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 10/22/2024] Open
Abstract
Neurofeedback allows individuals to monitor and self-regulate their brain activity, potentially improving human brain function. Beyond the traditional electrophysiological approach using primarily electroencephalography, brain haemodynamics measured with functional magnetic resonance imaging (fMRI) and more recently, functional near-infrared spectroscopy (fNIRS) have been used (haemodynamic-based neurofeedback), particularly to improve the spatial specificity of neurofeedback. Over recent years, especially fNIRS has attracted great attention because it offers several advantages over fMRI such as increased user accessibility, cost-effectiveness and mobility-the latter being the most distinct feature of fNIRS. The next logical step would be to transfer haemodynamic-based neurofeedback protocols that have already been proven and validated by fMRI to mobile fNIRS. However, this undertaking is not always easy, especially since fNIRS novices may miss important fNIRS-specific methodological challenges. This review is aimed at researchers from different fields who seek to exploit the unique capabilities of fNIRS for neurofeedback. It carefully addresses fNIRS-specific challenges and offers suggestions for possible solutions. If the challenges raised are addressed and further developed, fNIRS could emerge as a useful neurofeedback technique with its own unique application potential-the targeted training of brain activity in real-world environments, thereby significantly expanding the scope and scalability of haemodynamic-based neurofeedback applications.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Franziska Klein
- Biomedical Devices and Systems Group, R&D Division Health, OFFIS—Institute for Information Technology, Oldenburg, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
| | - Simon H. Kohl
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Forschungszentrum Jülich, Jülich, Germany
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Michael Lührs
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Innovation B.V., Research Department, Maastricht, The Netherlands
| | - David M. A. Mehler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Institute of Translational Psychiatry, Medical Faculty, University of Münster, Münster, Germany
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
3
|
Enriquez-Geppert S, Krc J, O’Higgins FJ, Lietz M. Psilocybin-assisted neurofeedback for the improvement of executive functions: a randomized semi-naturalistic-lab feasibility study. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230095. [PMID: 39428872 PMCID: PMC11513162 DOI: 10.1098/rstb.2023.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 10/22/2024] Open
Abstract
Executive function deficits, common in psychiatric disorders, hinder daily activities and may be linked to diminished neural plasticity, affecting treatment and training responsiveness. In this pioneering study, we evaluated the feasibility and preliminary efficacy of psilocybin-assisted frontal-midline theta neurofeedback (NF), a neuromodulation technique leveraging neuroplasticity, to improve executive functions (EFs). Thirty-seven eligible participants were randomized into an experimental group (n = 18) and a passive control group (n = 19). The experimental group underwent three microdose sessions and then three psilocybin-assisted NF sessions, without requiring psychological support, demonstrating the approach's feasibility. NF learning showed a statistical trend for increases in frontal-midline theta from session to session with a large effect size and non-significant but medium effect size dynamical changes within sessions. Placebo effects were consistent across groups, with no tasks-based EF improvements, but significant self-reported gains in daily EFs-working memory, shifting, monitoring and inhibition-showing medium and high effect sizes. The experimental group's significant gains in their key training goals underscored the approach's external relevance. A thorough study with regular sessions and an active control group is crucial to evaluate EFs improvement and their specificity in future. Psilocybin-enhanced NF could offer significant, lasting benefits across diagnoses, improving daily functioning. This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- S. Enriquez-Geppert
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, Netherlands
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, Netherlands
| | - J. Krc
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, Netherlands
- Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - F. J. O’Higgins
- Trinity College Institute of Neuroscience, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - M. Lietz
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, Netherlands
- Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
4
|
Lin T, Rana M, Liu P, Polk R, Heemskerk A, Weisberg SM, Bowers D, Sitaram R, Ebner NC. Real-Time fMRI Neurofeedback Training of Selective Attention in Older Adults. Brain Sci 2024; 14:931. [PMID: 39335425 PMCID: PMC11430676 DOI: 10.3390/brainsci14090931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Selective attention declines with age, due to age-related functional changes in dorsal anterior cingulate cortex (dACC). Real-time functional magnetic resonance imaging (rtfMRI) neurofeedback has been used in young adults to train volitional control of brain activity, including in dACC. METHODS For the first time, this study used rtfMRI neurofeedback to train 19 young and 27 older adults in volitional up- or down-regulation of bilateral dACC during a selective attention task. RESULTS Older participants in the up-regulation condition (experimental group) showed greater reward points and dACC BOLD signal across training sessions, reflective of neurofeedback training success; and faster reaction time and better response accuracy, suggesting behavioral benefits on selective attention. These effects were not observed for older participants in the down-regulation condition (inverse condition control group), supporting specificity of volitional dACC up-regulation training in older adults. These effects were, unexpectedly, also not observed for young participants in the up-regulation condition (age control group), perhaps due to a lack of motivation to continue the training. CONCLUSIONS These findings provide promising first evidence of functional plasticity in dACC in late life via rtfMRI neurofeedback up-regulation training, enhancing selective attention, and demonstrate proof of concept of rtfMRI neurofeedback training in cognitive aging.
Collapse
Affiliation(s)
- Tian Lin
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA; (P.L.); (R.P.); (A.H.); (S.M.W.); (N.C.E.)
| | - Mohit Rana
- Institute of Biological and Medical Engineering, Department of Psychiatry and Section of Neuroscience, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Peiwei Liu
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA; (P.L.); (R.P.); (A.H.); (S.M.W.); (N.C.E.)
| | - Rebecca Polk
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA; (P.L.); (R.P.); (A.H.); (S.M.W.); (N.C.E.)
| | - Amber Heemskerk
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA; (P.L.); (R.P.); (A.H.); (S.M.W.); (N.C.E.)
| | - Steven M. Weisberg
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA; (P.L.); (R.P.); (A.H.); (S.M.W.); (N.C.E.)
| | - Dawn Bowers
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32610, USA;
| | | | - Natalie C. Ebner
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA; (P.L.); (R.P.); (A.H.); (S.M.W.); (N.C.E.)
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
5
|
Dastgheib SS, Wang W, Kaufmann JM, Moratti S, Schweinberger SR. Mu-Suppression Neurofeedback Training Targeting the Mirror Neuron System: A Pilot Study. Appl Psychophysiol Biofeedback 2024; 49:457-471. [PMID: 38739182 PMCID: PMC11310260 DOI: 10.1007/s10484-024-09643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Neurofeedback training (NFT) is a promising adjuvant intervention method. The desynchronization of mu rhythm (8-13 Hz) in the electroencephalogram (EEG) over centro-parietal areas is known as a valid indicator of mirror neuron system (MNS) activation, which has been associated with social skills. Still, the effect of neurofeedback training on the MNS requires to be well investigated. The present study examined the possible impact of NFT with a mu suppression training protocol encompassing 15 NFT sessions (45 min each) on 16 healthy neurotypical participants. In separate pre- and post-training sessions, 64-channel EEG was recorded while participants (1) observed videos with various types of movements (including complex goal-directed hand movements and social interaction scenes) and (2) performed the "Reading the Mind in the Eyes Test" (RMET). EEG source reconstruction analysis revealed statistically significant mu suppression during hand movement observation across MNS-attributed fronto-parietal areas after NFT. The frequency analysis showed no significant mu suppression after NFT, despite the fact that numerical mu suppression appeared to be visible in a majority of participants during goal-directed hand movement observation. At the behavioral level, RMET accuracy scores did not suggest an effect of NFT on the ability to interpret subtle emotional expressions, although RMET response times were reduced after NFT. In conclusion, the present study exhibited preliminary and partial evidence that mu suppression NFT can induce mu suppression in MNS-attributed areas. More powerful experimental designs and longer training may be necessary to induce substantial and consistent mu suppression, particularly while observing social scenarios.
Collapse
Affiliation(s)
- Samaneh S Dastgheib
- Department for General Psychology and Cognitive Neuroscience, Institute of Psychology, Friedrich Schiller University of Jena, Am Steiger 3/1, 07743, Jena, Germany
- Social Potential in Autism Research Unit, Friedrich Schiller University of Jena, Am Steiger 3/1, 07743, Jena, Germany
- Center for Intervention and Research On Adaptive and Maladaptive Brain Circuits Underlying, Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Wenbo Wang
- Department for General Psychology and Cognitive Neuroscience, Institute of Psychology, Friedrich Schiller University of Jena, Am Steiger 3/1, 07743, Jena, Germany
- Social Potential in Autism Research Unit, Friedrich Schiller University of Jena, Am Steiger 3/1, 07743, Jena, Germany
- Center for Intervention and Research On Adaptive and Maladaptive Brain Circuits Underlying, Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Jürgen M Kaufmann
- Department for General Psychology and Cognitive Neuroscience, Institute of Psychology, Friedrich Schiller University of Jena, Am Steiger 3/1, 07743, Jena, Germany
- Social Potential in Autism Research Unit, Friedrich Schiller University of Jena, Am Steiger 3/1, 07743, Jena, Germany
| | - Stephan Moratti
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Stefan R Schweinberger
- Department for General Psychology and Cognitive Neuroscience, Institute of Psychology, Friedrich Schiller University of Jena, Am Steiger 3/1, 07743, Jena, Germany.
- Social Potential in Autism Research Unit, Friedrich Schiller University of Jena, Am Steiger 3/1, 07743, Jena, Germany.
- German Center for Mental Health (DZPG), Jena-Magdeburg-Halle, Germany.
| |
Collapse
|
6
|
Ard K, Thomas J, Bullock C. Toxic air pollution and cognitive decline: Untangling particulate matter. Health Place 2024; 89:103330. [PMID: 39153260 PMCID: PMC11402554 DOI: 10.1016/j.healthplace.2024.103330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024]
Abstract
There is increasing evidence indicating air pollution is an important factor influencing the aging brain. However, much of this work measures air pollution using particulate matter (PM). Yet we know that the chemical components of PM are not consistent across space or time. Rather, the possible chemical mixtures of PM vary and are therefore not reliably measuring the same thing across studies. In this study we attempt to disentangle the effects of the components of measured PM by using estimates of concurrent exposures of 415 industrial air toxics, as well as 44 neuro- and developmental toxics. Using bivariate latent curve models, we leverage individual level panel data from the bi-annual Health and Retirement Study to test how these exposures relate to cognitive score trajectories of respondents across the years 2002-2012. We find that more exposure to neurotoxics was associated with faster rate of cognitive decline by 1.09 points (p < 0.05).
Collapse
Affiliation(s)
- Kerry Ard
- School of Environment and Natural Resources, Ohio State University, 2021 Coffey Rd, Columbus, OH, 43210, USA.
| | - Jason Thomas
- Institute for Population Research, Ohio State University, 060 Townshend Hall, 1885 Neil Ave Mall, Columbus, OH, 43210, USA.
| | - Clair Bullock
- School of Environment and Natural Resources, Ohio State University, 2021 Coffey Rd, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Cooke A, Hindle J, Lawrence C, Bellomo E, Pritchard AW, MacLeod CA, Martin-Forbes P, Jones S, Bracewell M, Linden DEJ, Mehler DMA. Effects of home-based EEG neurofeedback training as a non-pharmacological intervention for Parkinson's disease. Neurophysiol Clin 2024; 54:102997. [PMID: 38991470 DOI: 10.1016/j.neucli.2024.102997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
OBJECTIVES Aberrant movement-related cortical activity has been linked to impaired motor function in Parkinson's disease (PD). Dopaminergic drug treatment can restore these, but dosages and long-term treatment are limited by adverse side-effects. Effective non-pharmacological treatments could help reduce reliance on drugs. This experiment reports the first study of home-based electroencephalographic (EEG) neurofeedback training as a non-pharmacological candidate treatment for PD. Our primary aim was to test the feasibility of our EEG neurofeedback intervention in a home setting. METHODS Sixteen people with PD received six home visits comprising symptomology self-reports, a standardised motor assessment, and a precision handgrip force production task while EEG was recorded (visits 1, 2 and 6); and 3 × 1-hr EEG neurofeedback training sessions to supress the EEG mu rhythm before initiating handgrip movements (visits 3 to 5). RESULTS Participants successfully learned to self-regulate mu activity, and this appeared to expedite the initiation of precision movements (i.e., time to reach target handgrip force off-medication pre-intervention = 628 ms, off-medication post-intervention = 564 ms). There was no evidence of wider symptomology reduction (e.g., Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III Motor Examination, off-medication pre-intervention = 29.00, off-medication post intervention = 30.07). Interviews indicated that the intervention was well-received. CONCLUSION Based on the significant effect of neurofeedback on movement-related cortical activity, positive qualitative reports from participants, and a suggestive benefit to movement initiation, we conclude that home-based neurofeedback for people with PD is a feasible and promising non-pharmacological treatment that warrants further research.
Collapse
Affiliation(s)
- Andrew Cooke
- Instutute for the Psychology of Elite Performance (IPEP), Bangor University, UK; School of Psychology and Sport Science, Bangor University, UK.
| | - John Hindle
- The Centre for Research in Ageing and Cognitive Health (REACH), University of Exeter, UK; University of Exeter Medical School, UK
| | - Catherine Lawrence
- Centre for Health Economics and Medicines Evaluation (CHEME), Bangor University, UK; School of Health Sciences, Bangor University, UK
| | - Eduardo Bellomo
- Instutute for the Psychology of Elite Performance (IPEP), Bangor University, UK
| | | | - Catherine A MacLeod
- Centre for Population Health Sciences, Usher Institute, The University of Edinburgh, UK
| | | | | | - Martyn Bracewell
- School of Psychology and Sport Science, Bangor University, UK; North Wales Medical School, Bangor University, UK; Walton Centre NHS Foundation Trust, UK
| | - David E J Linden
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands; Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, UK; MRC Center for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, UK
| | - David M A Mehler
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, UK; MRC Center for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, UK; Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Germany; Institute for Translational Psychiatry, University Hospital Münster, Germany
| |
Collapse
|
8
|
Gillespie AK, Astudillo Maya D, Denovellis EL, Desse S, Frank LM. Neurofeedback training can modulate task-relevant memory replay rate in rats. eLife 2024; 12:RP90944. [PMID: 38958562 PMCID: PMC11221834 DOI: 10.7554/elife.90944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Hippocampal replay - the time-compressed, sequential reactivation of ensembles of neurons related to past experience - is a key neural mechanism of memory consolidation. Replay typically coincides with a characteristic pattern of local field potential activity, the sharp-wave ripple (SWR). Reduced SWR rates are associated with cognitive impairment in multiple models of neurodegenerative disease, suggesting that a clinically viable intervention to promote SWRs and replay would prove beneficial. We therefore developed a neurofeedback paradigm for rat subjects in which SWR detection triggered rapid positive feedback in the context of a memory-dependent task. This training protocol increased the prevalence of task-relevant replay during the targeted neurofeedback period by changing the temporal dynamics of SWR occurrence. This increase was also associated with neural and behavioral forms of compensation after the targeted period. These findings reveal short-timescale regulation of SWR generation and demonstrate that neurofeedback is an effective strategy for modulating hippocampal replay.
Collapse
Affiliation(s)
- Anna K Gillespie
- Departments of Biological Structure and Lab Medicine & Pathology, University of WashingtonSeattleUnited States
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Daniela Astudillo Maya
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Eric L Denovellis
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Sachi Desse
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Loren M Frank
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
9
|
Wu W, Chen G, Ren X, Zhao Y, Yu Z, Peng H, Deng C, Song W. The Prevalence of Mild Cognitive Impairment in China: Evidence from a Meta-Analysis and Systematic Review of 393,525 Adults. Neuroepidemiology 2024:1-18. [PMID: 38870921 DOI: 10.1159/000539802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
OBJECTIVE This study aims to precisely determine the prevalence of mild cognitive impairment (MCI) in China, acknowledging its significance as a preclinical stage of dementia and a potential "intervention window." The acceleration of the aging process in China underscores the urgency of this research. METHODS A comprehensive search was conducted across PubMed, Embase, Web of Science, CNKI, WFD, VIP, and CBM databases from their inception until March 1, 2023. The Agency for Healthcare Research and Quality (AHRQ) methodology checklist guided our quality assessment. A random-effects model meta-analysis was employed to synthesize the pooled prevalence data of MCI in China. RESULTS Our analysis encompassed 139 studies, incorporating data from 393,525 individuals aged 40 years and above. The studies were predominantly rated as moderate-to-high quality. The overall prevalence of MCI was determined to be 19.6% (95% CI: 17.7-21.6%). Subgroup analyses indicated variations in prevalence: 20.8% (95% CI: 18.9-22.7%) for P-MCI compared to 16.2% (95% CI: 11.7-20.7%) for DSM criteria. Geographically, prevalence in Southern China (21.0%, 95% CI: 18.1-23.9%) exceeded that in Northern China (17.6%, 95% CI: 15.9-19.4%). Notably, prevalence in hospitals (61.7%, 95% CI: 27.8-95.7%) was significantly higher than in nursing homes (16.1%, 95% CI: 14.3-17.9%) and communities (25.3%, 95% CI: 17.4-33.2%), especially after the COVID-19 outbreak. CONCLUSION The study confirms a 19.6% prevalence rate of MCI in China, influenced by factors such as sample sources, beginning year of survey, and regional differences. It highlights the need for targeted screening and resource allocation to subpopulations at risk, aiming to prevent the progression to dementia.
Collapse
Affiliation(s)
- Weiwei Wu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China,
| | - Guancheng Chen
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohan Ren
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanyuan Zhao
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhengmiao Yu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Traditional Chinese Medicine, Guangzhou, China
| | - Haojun Peng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Traditional Chinese Medicine, Guangzhou, China
| | - Chuxin Deng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Traditional Chinese Medicine, Guangzhou, China
| | - Wenxin Song
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Takahashi S, Takahashi D, Kuroiwa Y, Sakurai N, Kodama N. Construction and evaluation of a neurofeedback system using finger tapping and near-infrared spectroscopy. FRONTIERS IN NEUROIMAGING 2024; 3:1361513. [PMID: 38726042 PMCID: PMC11079114 DOI: 10.3389/fnimg.2024.1361513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
Introduction Neurofeedback using near-infrared spectroscopy (NIRS) has been used in patients with stroke and other patients, but few studies have included older people or patients with cognitive impairment. Methods We constructed a NIRS-based neurofeedback system and used finger tapping to investigate whether neurofeedback can be implemented in older adults while finger tapping and whether brain activity improves in older adults and healthy participants. Our simple neurofeedback system was constructed using a portable wearable optical topography (WOT-HS) device. Brain activity was evaluated in 10 older and 31 healthy young individuals by measuring oxygenated hemoglobin concentration during finger tapping and neurofeedback implementation. Results During neurofeedback, the concentration of oxygenated hemoglobin increased in the prefrontal regions in both the young and older participants. Discussion The results of this study demonstrate the usefulness of neurofeedback using simple NIRS devices for older adults and its potential to mitigate cognitive decline.
Collapse
Affiliation(s)
- Shingo Takahashi
- Department of Healthcare Informatics, Faculty of Health and Welfare, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Daishi Takahashi
- Department of Healthcare Informatics, Faculty of Health and Welfare, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Yuki Kuroiwa
- Department of Healthcare Informatics, Faculty of Health and Welfare, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Noriko Sakurai
- Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, Niigata, Japan
| | - Naoki Kodama
- Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
11
|
Mulholland MM, Stuifbergen A, De La Torre Schutz A, Franco Rocha OY, Blayney DW, Kesler SR. Evidence of compensatory neural hyperactivity in a subgroup of chemotherapy-treated breast cancer survivors and its association with brain aging. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.22.24306190. [PMID: 38712178 PMCID: PMC11071584 DOI: 10.1101/2024.04.22.24306190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Chemotherapy-related cognitive impairment (CRCI) remains poorly understood in terms of the mechanisms of cognitive decline. Neural hyperactivity has been reported on average in cancer survivors, but it is unclear which patients demonstrate this neurophenotype, limiting precision medicine in this population. We evaluated a retrospective sample of 80 breast cancer survivors and 80 non-cancer controls, age 35-73, for which we had previously identified and validated three data-driven, biological subgroups (biotypes) of CRCI. We measured neural activity using the z-normalized percent amplitude of fluctuation from resting state functional magnetic resonance imaging (MRI). We tested established, quantitative criteria to determine if hyperactivity can accurately be considered compensatory. We also calculated brain age gap by applying a previously validated algorithm to anatomic MRI. We found that neural activity differed across the three CRCI biotypes and controls (F = 13.5, p < 0.001), with Biotype 2 demonstrating significant hyperactivity compared to the other groups (p < 0.004, corrected), primarily in prefrontal regions. Alternatively, Biotypes 1 and 3 demonstrated significant hypoactivity (p < 0.02, corrected). Hyperactivity in Biotype 2 met several of the criteria to be considered compensatory. However, we also found a positive relationship between neural activity and brain age gap in these patients (r = 0.45, p = 0.042). Our results indicated that neural hyperactivity is specific to a subgroup of breast cancer survivors and, while it seems to support preserved cognitive function, it could also increase the risk of accelerated brain aging. These findings could inform future neuromodulatory interventions with respect to the risks and benefits of up or downregulation of neural activity.
Collapse
Affiliation(s)
- Michele M Mulholland
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Alexa Stuifbergen
- Division of Adult Health, School of Nursing, University of Texas at Austin, Austin, TX, USA
| | | | - Oscar Y Franco Rocha
- Division of Adult Health, School of Nursing, University of Texas at Austin, Austin, TX, USA
| | - Douglas W Blayney
- Department of Medical Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Shelli R Kesler
- Division of Adult Health, School of Nursing, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
12
|
Noble SC, Woods E, Ward T, Ringwood JV. Accelerating P300-based neurofeedback training for attention enhancement using iterative learning control: a randomised controlled trial. J Neural Eng 2024; 21:026006. [PMID: 38394680 DOI: 10.1088/1741-2552/ad2c9e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/23/2024] [Indexed: 02/25/2024]
Abstract
Objective. Neurofeedback (NFB) training through brain-computer interfacing has demonstrated efficacy in treating neurological deficits and diseases, and enhancing cognitive abilities in healthy individuals. It was previously shown that event-related potential (ERP)-based NFB training using a P300 speller can improve attention in healthy adults by incrementally increasing the difficulty of the spelling task. This study aims to assess the impact of task difficulty adaptation on ERP-based attention training in healthy adults. To achieve this, we introduce a novel adaptation employing iterative learning control (ILC) and compare it against an existing method and a control group with random task difficulty variation.Approach. The study involved 45 healthy participants in a single-blind, three-arm randomised controlled trial. Each group underwent one NFB training session, using different methods to adapt task difficulty in a P300 spelling task: two groups with personalised difficulty adjustments (our proposed ILC and an existing approach) and one group with random difficulty. Cognitive performance was evaluated before and after the training session using a visual spatial attention task and we gathered participant feedback through questionnaires.Main results. All groups demonstrated a significant performance improvement in the spatial attention task post-training, with an average increase of 12.63%. Notably, the group using the proposed iterative learning controller achieved a 22% increase in P300 amplitude during training and a 17% reduction in post-training alpha power, all while significantly accelerating the training process compared to other groups.Significance. Our results suggest that ERP-based NFB training using a P300 speller effectively enhances attention in healthy adults, with significant improvements observed after a single session. Personalised task difficulty adaptation using ILC not only accelerates the training but also enhances ERPs during the training. Accelerating NFB training, while maintaining its effectiveness, is vital for its acceptability by both end-users and clinicians.
Collapse
Affiliation(s)
- S-C Noble
- Department of Electronic Engineering, Maynooth University, Maynooth, Ireland
| | - E Woods
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - T Ward
- Insight SFI Research Centre for Data Analytics, Dublin City University, Dublin, Ireland
| | - J V Ringwood
- Department of Electronic Engineering, Maynooth University, Maynooth, Ireland
| |
Collapse
|
13
|
Lin YR, Hsu TW, Hsu CW, Chen PY, Tseng PT, Liang CS. Effectiveness of Electroencephalography Neurofeedback for Improving Working Memory and Episodic Memory in the Elderly: A Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:369. [PMID: 38541096 PMCID: PMC10972127 DOI: 10.3390/medicina60030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 07/23/2024]
Abstract
Background and Objective: Existing evidence indicates the potential benefits of electroencephalography neurofeedback (NFB) training for cognitive function. This study aims to comprehensively review all available evidence investigating the effectiveness of NFB on working memory (WM) and episodic memory (EM) in the elderly population. Material and Methods: A systematic search was conducted across five databases to identify clinical trials examining the impact of NFB on memory function in healthy elderly individuals or those with mild cognitive impairment (MCI). The co-primary outcomes focused on changes in WM and EM. Data synthesis was performed using a random-effects meta-analysis. Results: Fourteen clinical trials (n = 284) were included in the analysis. The findings revealed that NFB was associated with improved WM (k = 11, reported as Hedges' g = 0.665, 95% confidence [CI] = 0.473 to 0.858, p < 0.001) and EM (k = 12, 0.595, 0.333 to 0.856, p < 0.001) in the elderly, with moderate effect sizes. Subgroup analyses demonstrated that NFB had a positive impact on both WM and EM, not only in the healthy population (WM: k = 7, 0.495, 0.213 to 0.778, p = 0.001; EM: k = 6, 0.729, 0.483 to 0.976, p < 0.001) but also in those with MCI (WM: k = 6, 0.812, 0.549 to 1.074, p < 0.001; EM: k = 6, 0.503, 0.088 to 0.919, p = 0.018). Additionally, sufficient training time (totaling more than 300 min) was associated with a significant improvement in WM (k = 6, 0.743, 0.510 to 0.976, p < 0.001) and EM (k = 7, 0.516, 0.156 to 0.876, p = 0.005); however, such benefits were not observed in groups with inadequate training time. Conclusions: The results suggest that NFB is associated with enhancement of both WM and EM in both healthy and MCI elderly individuals, particularly when adequate training time (exceeding 300 min) is provided. These findings underscore the potential of NFB in dementia prevention or rehabilitation.
Collapse
Affiliation(s)
- Yu-Ru Lin
- Graduate Institute of Psychology, College of Humanities and Social Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tien-Wei Hsu
- Department of Psychiatry, E-DA Dachang Hospital, I-Shou University, Kaohsiung 807, Taiwan
- Department of Psychiatry, E-DA Hospital, I-Shou University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Che-Wei Hsu
- Department of Psychology, Kaohsiung Kai-Suan Psychiatric Hospital, Kaohsiung 807, Taiwan;
| | - Peng-Yu Chen
- Department of Psychology, Pingtung Veterans Hospital, Pingtung 900, Taiwan;
| | - Ping-Tao Tseng
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 807, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung 807, Taiwan
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung 807, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Tri-Service General Hospital, Beitou Branch, Taipei 114, Taiwan
- Department of Psychiatry, National Defense Medical Centre, Taipei 114, Taiwan
| |
Collapse
|
14
|
Tazaki M. A review: effects of neurofeedback on patients with mild cognitive impairment (MCI), and Alzheimer's disease (AD). Front Hum Neurosci 2024; 17:1331436. [PMID: 38420112 PMCID: PMC10899454 DOI: 10.3389/fnhum.2023.1331436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 03/02/2024] Open
Abstract
Neurofeedback training (NFT) is a non-invasive method and has been shown to be effective for attention deficit/hyperactivity disorder (ADHD) and various psychiatric disorders. The aim of this paper is to evaluate the effectiveness of NFT for patients with Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD) or Vascular Diseases (VD), so that we searched research articles from four databases, using the keywords neurofeedback, elderly, MCI, AD, VD, and dementia. As a result, 13 articles were identified regarding the effectiveness of NFT in patients with MCI and AD. Although each study differed in study design, training protocol, electroencephalogram (EEG) electrode placement, and reward and inhibition frequency bands, all were shown to enhance memory, attention, and other cognitive abilities. Additional well-designed, randomized studies with sufficient power are needed to further confirm the effectiveness of NFT.
Collapse
Affiliation(s)
- Miyako Tazaki
- Department of Psychology, Faculty of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
15
|
Ribeiro TF, Carriello MA, de Paula EP, Garcia AC, da Rocha GL, Teive HAG. Clinical applications of neurofeedback based on sensorimotor rhythm: a systematic review and meta-analysis. Front Neurosci 2023; 17:1195066. [PMID: 38053609 PMCID: PMC10694284 DOI: 10.3389/fnins.2023.1195066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/07/2023] [Indexed: 12/07/2023] Open
Abstract
Background Among the brain-machine interfaces, neurofeedback is a non-invasive technique that uses sensorimotor rhythm (SMR) as a clinical intervention protocol. This study aimed to investigate the clinical applications of SMR neurofeedback to understand its clinical effectiveness in different pathologies or symptoms. Methods A systematic review study with meta-analysis of the clinical applications of EEG-based SMR neurofeedback performed using pre-selected publication databases. A qualitative analysis of these studies was performed using the Consensus tool on the Reporting and Experimental Design of Neurofeedback studies (CRED-nf). The Meta-analysis of clinical efficacy was carried out using Review Manager software, version 5.4.1 (RevMan 5; Cochrane Collaboration, Oxford, UK). Results The qualitative analysis includes 44 studies, of which only 27 studies had some kind of control condition, five studies were double-blinded, and only three reported a blind follow-up throughout the intervention. The meta-analysis included a total sample of 203 individuals between stroke and fibromyalgia. Studies on multiple sclerosis, insomnia, quadriplegia, paraplegia, and mild cognitive impairment were excluded due to the absence of a control group or results based only on post-intervention scales. Statistical analysis indicated that stroke patients did not benefit from neurofeedback interventions when compared to other therapies (Std. mean. dif. 0.31, 95% CI 0.03-0.60, p = 0.03), and there was no significant heterogeneity among stroke studies, classified as moderate I2 = 46% p-value = 0.06. Patients diagnosed with fibromyalgia showed, by means of quantitative analysis, a better benefit for the group that used neurofeedback (Std. mean. dif. -0.73, 95% CI -1.22 to -0.24, p = 0.001). Thus, on performing the pooled analysis between conditions, no significant differences were observed between the neurofeedback intervention and standard therapy (0.05, CI 95%, -0.20 to -0.30, p = 0.69), with the presence of substantial heterogeneity I2 = 92.2%, p-value < 0.001. Conclusion We conclude that although neurofeedback based on electrophysiological patterns of SMR contemplates the interest of numerous researchers and the existence of research that presents promising results, it is currently not possible to point out the clinical benefits of the technique as a form of clinical intervention. Therefore, it is necessary to develop more robust studies with a greater sample of a more rigorous methodology to understand the benefits that the technique can provide to the population.
Collapse
Affiliation(s)
- Tatiana Ferri Ribeiro
- Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Marcelo Alves Carriello
- Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Eugenio Pereira de Paula
- Physical Education (UFPR)—Invited Colaborador, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Amanda Carvalho Garcia
- Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Guilherme Luiz da Rocha
- Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Helio Afonso Ghizoni Teive
- Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
- Department of Clinical Medicine, UFPR, and Coordinator of the Movement Disorders Sector, Neurology Service, Clinic Hospital, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| |
Collapse
|
16
|
Song WX, Wu WW, Zhao YY, Xu HL, Chen GC, Jin SY, Chen J, Xian SX, Liang JH. Evidence from a meta-analysis and systematic review reveals the global prevalence of mild cognitive impairment. Front Aging Neurosci 2023; 15:1227112. [PMID: 37965493 PMCID: PMC10641463 DOI: 10.3389/fnagi.2023.1227112] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Objective Mild cognitive impairment (MCI) is a preclinical and transitional stage between healthy ageing and dementia. The purpose of our study was to investigate the recent pooled global prevalence of MCI. Methods This meta-analysis was in line with the recommendations of Cochrane's Handbook and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020. We conducted a comprehensive search using the PubMed, Embase, Web of Science, CNKI, WFD, VIP, and CBM from their inception to March 1, 2023. Quality assessment was guided by the Agency for Healthcare Research and Quality (AHRQ) methodology checklist. The pooled global prevalence of MCI was synthesized using meta-analysis via random effect model. Subgroup analyses were performed to examine considered factors potentially associated with MCI prevalence. Results We identified 233 studies involving 676,974 individuals aged above 50 years. All the studies rated as moderated-to-high quality. The overall prevalence of MCI was 19.7% [95% confidence interval (95% CI): 18.3-21.1%]. Subgroup analyses revealed that the global prevalence of MCI increased over time, with a significant rise [32.1% (95% CI: 22.6-41.6%)] after 2019. Additionally, MCI prevalence in hospitals [34.0% (95% CI: 22.2-45.7%)] was higher than in nursing homes [22.6% (95% CI: 15.5-29.8%)] and communities [17.9% (95% CI: 16.6-19.2%)], particularly after the epidemic of coronavirus disease 2019 (COVID-19). Conclusion The global prevalence of MCI was 19.7% and mainly correlated with beginning year of survey and sample source. The MCI prevalence increased largely in hospitals after 2019 may be related to the outbreak of COVID-19. Further attention to MCI is necessary in the future to inform allocation of health resources for at-risk populations.
Collapse
Affiliation(s)
- Wen-xin Song
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei-wei Wu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan-yuan Zhao
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hai-lun Xu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guan-cheng Chen
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | - Jie Chen
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shao-xiang Xian
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing-hong Liang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Lee I, Kim D, Kim S, Kim HJ, Chung US, Lee JJ. Cognitive training based on functional near-infrared spectroscopy neurofeedback for the elderly with mild cognitive impairment: a preliminary study. Front Aging Neurosci 2023; 15:1168815. [PMID: 37564400 PMCID: PMC10410268 DOI: 10.3389/fnagi.2023.1168815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Mild cognitive impairment (MCI) is often described as an intermediate stage of the normal cognitive decline associated with aging and dementia. There is a growing interest in various non-pharmacological interventions for MCI to delay the onset and inhibit the progressive deterioration of daily life functions. Previous studies suggest that cognitive training (CT) contributes to the restoration of working memory and that the brain-computer-interface technique can be applied to elicit a more effective treatment response. However, these techniques have certain limitations. Thus, in this preliminary study, we applied the neurofeedback paradigm during CT to increase the working memory function of patients with MCI. Methods Near-infrared spectroscopy (NIRS) was used to provide neurofeedback by measuring the changes in oxygenated hemoglobin in the prefrontal cortex. Thirteen elderly MCI patients who received CT-neurofeedback sessions four times on the left dorsolateral prefrontal cortex (dlPFC) once a week were recruited as participants. Results Compared with pre-intervention, the activity of the targeted brain region increased when the participants first engaged in the training; after 4 weeks of training, oxygen saturation was significantly decreased in the left dlPFC. The participants demonstrated significantly improved working memory compared with pre-intervention and decreased activity significantly correlated with improved cognitive performance. Conclusion Our results suggest that the applications for evaluating brain-computer interfaces can aid in elucidation of the subjective mental workload that may create additional or decreased task workloads due to CT.
Collapse
Affiliation(s)
- Ilju Lee
- Department of Psychology, College of Health Science, Dankook University, Cheonan, Republic of Korea
| | - Dohyun Kim
- Department of Psychiatry, Dankook University Hospital, Cheonan, Republic of Korea
- Department of Psychiatry, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Sehwan Kim
- Department of Biomedical Engineering, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Hee Jung Kim
- Department of Physiology, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Un Sun Chung
- Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jung Jae Lee
- Department of Psychiatry, Dankook University Hospital, Cheonan, Republic of Korea
- Department of Psychiatry, College of Medicine, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
18
|
Nouchi R, Nouchi H, Dinet J, Kawashima R. Cognitive Training with Neurofeedback Using NIRS Improved Cognitive Functions in Young Adults: Evidence from a Randomized Controlled Trial. Brain Sci 2021; 12:brainsci12010005. [PMID: 35053748 PMCID: PMC8774006 DOI: 10.3390/brainsci12010005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023] Open
Abstract
(1) Background: A previous study has shown that cognitive training with neurofeedback (CT-NF) using down-regulation improves cognitive functions in young adults. Neurofeedback has two strategies for manipulating brain activity (down-regulation and upregulation). However, the benefit of CT-NF with the upregulation of cognitive functions is still unknown. In this study, we investigated whether the upregulation of CT-NF improves a wide range of cognitive functions compared to cognitive training alone. (2) Methods: In this double-blinded randomized control trial (RCT), 60 young adults were randomly assigned to one of three groups: CT-NF group, CT alone group, and an active control (ACT) group who played a puzzle game. Participants in the three groups used the same device (tablet PC and 2ch NIRS (near-infrared spectroscopy)) and performed the training game for 20 min every day for four weeks. We measured brain activity during training in all groups, but only CT-NFs received NF. We also measured a wide range of cognitive functions before and after the intervention period. (3) Results: The CT-NF groups showed superior beneficial effects on episodic memory, working memory, and attention compared to the CT alone and ACT groups. In addition, the CT-NF group showed an increase in brain activity during CT, which was associated with improvements in cognitive function. (4) Discussion: This study first demonstrated that the CT-NF using the upregulation strategy has beneficial effects on cognitive functions compared to the CT alone. Our results suggest that greater brain activities during CT would enhance a benefit from CT.
Collapse
Affiliation(s)
- Rui Nouchi
- Department of Cognitive Health Science, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan;
- Smart Aging Research Center (S.A.R.C.), Tohoku University, Seiryo-Machi 4-1, Sendai 980-8575, Japan;
- Correspondence:
| | - Haruka Nouchi
- Department of Cognitive Health Science, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan;
| | - Jerome Dinet
- Department of Psychology, Université de Lorraine, F-54000 Nancy, France;
- Lorraine Research Laboratory in Computer Science and Its Applications (LORIA), Université de Lorraine, CNRS, INRIA, F-54000 Nancy, France
| | - Ryuta Kawashima
- Smart Aging Research Center (S.A.R.C.), Tohoku University, Seiryo-Machi 4-1, Sendai 980-8575, Japan;
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|