1
|
Staabs F, Foverskov Rasmussen H, Buthut M, Höltje M, Li LY, Stöcker W, Teegen B, Prüss H. Brain-targeting autoantibodies in patients with dementia. Front Neurol 2024; 15:1412813. [PMID: 39050125 PMCID: PMC11266002 DOI: 10.3389/fneur.2024.1412813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Autoantibodies against proteins in the brain are increasingly considered as a potential cause of cognitive decline, not only in subacute autoimmune encephalopathies but also in slowly progressing impairment of memory in patients with classical neurodegenerative dementias. In this retrospective cohort study of 161 well-characterized patients with different forms of dementia and 34 controls, we determined the prevalence of immunoglobulin (Ig) G and IgA autoantibodies to brain proteins using unbiased immunofluorescence staining of unfixed murine brain sections. Autoantibodies were detected in 21.1% of dementia patients and in 2.9% of gender-matched controls, with higher frequencies in vascular dementia (42%), Alzheimer's disease (30%), dementia of unknown cause (25%), and subjective cognitive impairment (16.7%). Underlying antigens involved glial fibrillary acidic protein (GFAP), glycine receptor, and Rho GTPase activating protein 26 (ARHGAP26), but also a range of yet undetermined epitopes on neurons, myelinated fiber tracts, choroid plexus, glial cells, and blood vessels. Antibody-positive patients were younger than antibody-negative patients but did not differ in the extent of cognitive impairment, epidemiological and clinical factors, or comorbidities. Further research is needed to understand the potential contribution to disease progression and symptomatology, and to determine the antigenic targets of dementia-associated autoantibodies.
Collapse
Affiliation(s)
- Finja Staabs
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Helle Foverskov Rasmussen
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Maria Buthut
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Markus Höltje
- Institute of Integrative Neuroanatomy Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universiät Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lucie Y. Li
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Winfried Stöcker
- Clinical Immunological Laboratory Prof. Stöcker, Groß Grönau, Germany
| | - Bianca Teegen
- Clinical Immunological Laboratory Prof. Stöcker, Groß Grönau, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| |
Collapse
|
2
|
Hansen N, Wiltfang J. Fluid biomarkers unveil signatures of pathological aging. Seizure 2024:S1059-1311(24)00158-4. [PMID: 38871529 DOI: 10.1016/j.seizure.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
Aging is a multifaceted and highly varied process in the brain. Identifying aging biomarkers is one means of distinguishing pathological from physiological aging. The aim of this narrative review is to focus on two new developments in the field of fluid biomarkers and draw attention to this excellent tool for the early detection of potential brain pathologies that delay, alter, or enable physiological aging to become pathological. Pathological aging can lower the threshold for the development of specific diseases such as late-onset epilepsy. Fluid biomarkers can reveal pathological levels at an early stage and thus indicate disease processes in the brain that begin before symptoms develop; they thus differ from physiological aging.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Göttingen, Germany.
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany; Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
3
|
Italia M, Salvadè M, La Greca F, Zianni E, Pelucchi S, Spinola A, Ferrari E, Archetti S, Alberici A, Benussi A, Solje E, Haapasalo A, Hoffmann D, Katisko K, Krüger J, Facchinetti R, Scuderi C, Padovani A, DiLuca M, Scheggia D, Borroni B, Gardoni F. Anti-GluA3 autoantibodies define a new sub-population of frontotemporal lobar degeneration patients with distinct neuropathological features. Brain Behav Immun 2024; 118:380-397. [PMID: 38485064 DOI: 10.1016/j.bbi.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024] Open
Abstract
Autoantibodies directed against the GluA3 subunit (anti-GluA3 hIgGs) of AMPA receptors have been identified in 20%-25% of patients with frontotemporal lobar degeneration (FTLD). Data from patients and in vitro/ex vivo pre-clinical studies indicate that anti-GluA3 hIgGs negatively affect glutamatergic neurotransmission. However, whether and how the chronic presence of anti-GluA3 hIgGs triggers synaptic dysfunctions and the appearance of FTLD-related neuropathological and behavioural signature has not been clarified yet. To address this question, we developed and characterized a pre-clinical mouse model of passive immunization with anti-GluA3 hIgGs purified from patients. In parallel, we clinically compared FTLD patients who were positive for anti-GluA3 hIgGs to negative ones. Clinical data showed that the presence of anti-GluA3 hIgGs defined a subgroup of patients with distinct clinical features. In the preclinical model, anti-GluA3 hIgGs administration led to accumulation of phospho-tau in the postsynaptic fraction and dendritic spine loss in the prefrontal cortex. Remarkably, the preclinical model exhibited behavioural disturbances that mostly reflected the deficits proper of patients positive for anti-GluA3 hIgGs. Of note, anti-GluA3 hIgGs-mediated alterations were rescued in the animal model by enhancing glutamatergic neurotransmission with a positive allosteric modulator of AMPA receptors. Overall, our study clarified the contribution of anti-GluA3 autoantibodies to central nervous system symptoms and pathology and identified a specific subgroup of FTLD patients. Our findings will be instrumental in the development of a therapeutic personalised medicine strategy for patients positive for anti-GluA3 hIgGs.
Collapse
Affiliation(s)
- Maria Italia
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Michela Salvadè
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Filippo La Greca
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Elisa Zianni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Alessio Spinola
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Elena Ferrari
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Silvana Archetti
- Department of Laboratories, Central Laboratory of Clinical Chemistry Analysis. ASST Spedali Civili, Brescia, Italy
| | - Antonella Alberici
- Neurology Unit, Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alberto Benussi
- Neurology Unit, Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Eino Solje
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland; Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Annakaisa Haapasalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dorit Hoffmann
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kasper Katisko
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland; Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Johanna Krüger
- Research Unit of Clinical Medicine, Neurology, University of Oulu, Oulu, Finland; Neurocenter, Neurology, Oulu University Hospital, Oulu, Finland; Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Roberta Facchinetti
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Alessandro Padovani
- Neurology Unit, Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Monica DiLuca
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Diego Scheggia
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Barbara Borroni
- Neurology Unit, Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy.
| |
Collapse
|
4
|
Ehtewish H, Mesleh A, Ponirakis G, Lennard K, Al Hamad H, Chandran M, Parray A, Abdesselem H, Wijten P, Decock J, Alajez NM, Ramadan M, Khan S, Ayadathil R, Own A, Elsotouhy A, Albagha O, Arredouani A, Blackburn JM, Malik RA, El-Agnaf OMA. Profiling the autoantibody repertoire reveals autoantibodies associated with mild cognitive impairment and dementia. Front Neurol 2023; 14:1256745. [PMID: 38107644 PMCID: PMC10722091 DOI: 10.3389/fneur.2023.1256745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/31/2023] [Indexed: 12/19/2023] Open
Abstract
Background Dementia is a debilitating neurological disease affecting millions of people worldwide. The exact mechanisms underlying the initiation and progression of the disease remain to be fully defined. There is an increasing body of evidence for the role of immune dysregulation in the pathogenesis of dementia, where blood-borne autoimmune antibodies have been studied as potential markers associated with pathological mechanisms of dementia. Methods This study included plasma from 50 cognitively normal individuals, 55 subjects with MCI (mild cognitive impairment), and 22 subjects with dementia. Autoantibody profiling for more than 1,600 antigens was performed using a high throughput microarray platform to identify differentially expressed autoantibodies in MCI and dementia. Results The differential expression analysis identified 33 significantly altered autoantibodies in the plasma of patients with dementia compared to cognitively normal subjects, and 38 significantly altered autoantibodies in the plasma of patients with dementia compared to subjects with MCI. And 20 proteins had significantly altered autoantibody responses in MCI compared to cognitively normal individuals. Five autoantibodies were commonly dysregulated in both dementia and MCI, including anti-CAMK2A, CKS1B, ETS2, MAP4, and NUDT2. Plasma levels of anti-ODF3, E6, S100P, and ARHGDIG correlated negatively with the cognitive performance scores (MoCA) (r2 -0.56 to -0.42, value of p < 0.001). Additionally, several proteins targeted by autoantibodies dysregulated in dementia were significantly enriched in the neurotrophin signaling pathway, axon guidance, cholinergic synapse, long-term potentiation, apoptosis, glycolysis and gluconeogenesis. Conclusion We have shown multiple dysregulated autoantibodies in the plasma of subjects with MCI and dementia. The corresponding proteins for these autoantibodies are involved in neurodegenerative pathways, suggesting a potential impact of autoimmunity on the etiology of dementia and the possible benefit for future therapeutic approaches. Further investigations are warranted to validate our findings.
Collapse
Affiliation(s)
- Hanan Ehtewish
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Areej Mesleh
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Georgios Ponirakis
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation (QF), Doha, Qatar
| | - Katie Lennard
- Sengenics Corporation, Level M, Plaza Zurich, Damansara Heights, Kuala Lumpur, Malaysia
| | - Hanadi Al Hamad
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Mani Chandran
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Aijaz Parray
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Houari Abdesselem
- Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Patrick Wijten
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Julie Decock
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Nehad M. Alajez
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Marwan Ramadan
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Shafi Khan
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Raheem Ayadathil
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Ahmed Own
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha, Qatar
- Department of Neuroradiology, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Elsotouhy
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha, Qatar
- Department of Clinical Radiology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Omar Albagha
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Abdelilah Arredouani
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Jonathan M. Blackburn
- Sengenics Corporation, Level M, Plaza Zurich, Damansara Heights, Kuala Lumpur, Malaysia
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Rayaz A. Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation (QF), Doha, Qatar
| | - Omar M. A. El-Agnaf
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
5
|
Hansen N, Teegen B, Hirschel S, Wiltfang J, Schott BH, Bartels C, Bouter C. Case report: Mixed dementia associated with autoantibodies targeting the vesicular glutamate transporter 2. Front Psychiatry 2023; 14:1227824. [PMID: 37502813 PMCID: PMC10368954 DOI: 10.3389/fpsyt.2023.1227824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023] Open
Abstract
Background Autoantibodies against the vesicular glutamate transporter type 2 (VGlut2) can trigger impaired synaptic signaling and are described here for the first time in association with mixed dementia. Methods We report on a 71-year-old female patient with a dementing syndrome who underwent a thorough dementia diagnosis including neuropsychological testing, magnetic resonance imaging (MRI), 18F-fluorodesoxyglucose positron emission tomography (FDG-PET), and a spinal tap to search for neural autoantibodies. Results Our patient exhibited mixed dementia. Her CSF revealed elevated ptau 181 protein and a reduced Aß42/40 ratio indicating Alzheimer's disease (AD) pathology. In addition, neuropsychological testing showed a profile consistent with AD with impaired memory, reduced semantic word fluency, naming disorder, and impaired visuoconstructive skills. Nevertheless, in-depth neuropsychological testing also revealed marked psychomotor slowing and visuospatial perceptual impairments that are more indicative of the presence of DLB. Overall, her dementia is more likely of mixed pathology. In addition, we repeatedly detected VGlut2 autoantibodies in her serum. Conclusion To the best of our knowledge, this report is the first to describe mixed dementia associated with VGlut2 autoantibodies.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Bianca Teegen
- Clinical Immunological Laboratory Prof. Stöcker, Groß Grönau, Germany
| | - Sina Hirschel
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Björn H. Schott
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Leibniz Institute for Neurobiology, University of Magdeburg, Magdeburg, Germany
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Philosophical Approach to Neural Autoantibodies in Psychiatric Disease-Multi-Systemic Dynamic Continuum from Protective to Harmful Autoimmunity in Neuronal Systems. Antibodies (Basel) 2022; 12:antib12010001. [PMID: 36648885 PMCID: PMC9844366 DOI: 10.3390/antib12010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
(1) Background: philosophical views are important to enable a general and multi-systemic view of the potential understanding of autoimmunity in psychiatric disease that is not solely reflected by an immunological viewpoint. (2) Methods: we reviewed current theories of autoimmunity. (3) Results: we propose a novel area view integrating the "self/non-self" and "continuity" model into the expression of varied forms of autoimmunity in psychiatric disease, ranging from protective to harmful autoimmunity consequences framed into micro-systems (nerve cells) and macro-systems (neuronal networks), termed the "multi-systemic dynamic continuum model". (4) Conclusions: autoimmunity's dynamic spectrum is delineated here as something that probably functions as a whole entity to maintain, first of all, human homeostasis in behavior affecting cells or neuronal networks differently, and secondly to prevent psychiatric disease.
Collapse
|
7
|
Hansen N, Hirschel S, Rentzsch K, Wiltfang J, Malchow B, Fitzner D. Immunotherapy with corticosteroids in anti-neural autoantibody-associated cognitive impairment: Retrospective case series. Front Aging Neurosci 2022; 14:856876. [PMID: 36238935 PMCID: PMC9552765 DOI: 10.3389/fnagi.2022.856876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAnti-neural autoantibody-associated cognitive impairment is an increasing phenomenon in memory clinics deserving more attention to applying immunotherapy such as methylprednisolone to improve cognition. Our study aims to investigate the usefulness of intravenous high-dosage corticosteroids in a small cohort of patients suffering from anti-neural autoantibody-associated cognitive impairment.Materials and methodsWe included in our retrospective case series seven patients presenting diverse neural autoantibodies and cognitive impairments varying from a mild impairment to dementia. We conducted neuropsychological and psychopathological investigations before and after the application of high intravenous methylprednisolone therapy over a 6-month period. Neuropsychological function was assessed by the CERAD (Consortium to Establish a Registry for Alzheimer’s Disease) test battery. Patients were also characterized by assessing their patient files for demographic and clinical data.ResultsThe patients’ cognitive subdomains did not improve according to CERAD in their z-scores before and after immunotherapy. We noted a non-significant trend toward an improvement in semantic fluency and verbal memory consolidation. Patients did not do worse in 4 of 12 (33%) cognitive subdomains in the CERAD test battery. Furthermore, mood dysfunction lessened as a non-significant trend in specific psychopathological features such as reduced affective symptoms, loss of drive, and ruminations. Affective symptoms, loss of drive and ruminations were reduced by 43% after immunotherapy.DiscussionOur small pilot study revealed no relevant alleviation of cognitive dysfunction in patients with neural autoantibodies. However, mood dysfunction became less obvious in specific functions concerning affect, drive, and rumination. However, we do not know whether methylprednisolone affects mood dysfunction, as some patients were taking antidepressant drugs at the same time. Our results might indicate that methylprednisolone immunotherapy is associated with impeding the progression of cognitive dysfunction and reducing mood dysfunction. Further large-scale, placebo-controlled studies in a more homogeneous patient population presenting a uniform pattern of neural autoantibodies should be undertaken.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- *Correspondence: Niels Hansen,
| | - Sina Hirschel
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Kristin Rentzsch
- Clinical Immunological Laboratory Prof. Dr. med. Winfried Stöcker, Lübeck, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk Fitzner
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Hansen N. Immunopsychiatry – Innovative Technology to Characterize Disease Activity in Autoantibody-Associated Psychiatric Diseases. Front Immunol 2022; 13:867229. [PMID: 35711412 PMCID: PMC9197207 DOI: 10.3389/fimmu.2022.867229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/19/2022] [Indexed: 01/04/2023] Open
Abstract
Background Anti-neural autoantibody-associated psychiatric disease is a novel field in immunopsychiatry that has been attracting attention thanks to its potentially positive therapeutic outcome and distinct prognosis compared with non-organic psychiatric disease. This review aims to describe recent novel technological developments for improving diagnostics in the field of autoantibody-related psychiatric disease.MethodsWe screened for relevant articles in PubMed for this narrative article. We focused on research methods such as neuroimaging, immune cells and inflammation markers, and molecular biomarkers in human biofluids like serum and cerebrospinal fluid and plasma proteomics.ResultsWe introduce several novel methods for investigating autoinflammation with the aim of optimizing therapies for autoantibody-associated psychiatric disease. We describe measuring the translocator protein 18kDa in activated microglia via positron emission tomography imaging, brain volumetric assessment, flow cell cytometry of cerebrospinal fluid and blood, and blood biological probes as well as psychopathological cues to help us gain insights into diagnosing inflammation and brain damage better in psychiatric patients presenting a suspected autoimmune etiology.ConclusionOur short methodological review provides an overview of recent developments in the field of autoantibody-related immunopsychiatry. More research is needed to prove their usefulness in diagnosing and treating autoantibody-associated psychiatric disease and its subtypes.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Translational Psychoneuroscience, University Medical Center Göttingen, Göttingen, Germany
- *Correspondence: Niels Hansen,
| |
Collapse
|
9
|
Kocurova G, Ricny J, Ovsepian SV. Autoantibodies targeting neuronal proteins as biomarkers for neurodegenerative diseases. Theranostics 2022; 12:3045-3056. [PMID: 35547759 PMCID: PMC9065204 DOI: 10.7150/thno.72126] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 01/08/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are associated with the accumulation of a range of misfolded proteins across the central nervous system and related autoimmune responses, including the generation of antibodies and the activation of immune cells. Both innate and adaptive immunity become mobilized, leading to cellular and humoral effects. The role of humoral immunity in disease onset and progression remains to be elucidated with rising evidence suggestive of positive (protection, repair) and negative (injury, toxicity) outcomes. In this study, we review advances in research of neuron-targeting autoantibodies in the most prevalent NDDs. We discuss their biological origin, molecular diversity and changes in the course of diseases, consider their relevance to the initiation and progression of pathology as well as diagnostic and prognostic significance. It is suggested that the emerging autoimmune aspects of NDDs not only could facilitate the early detection but also might help to elucidate previously unknown facets of pathobiology with relevance to the development of precision medicine.
Collapse
Affiliation(s)
- Gabriela Kocurova
- Experimental Neurobiology Program, National Institute of Mental Health, Klecany, Czech Republic
| | - Jan Ricny
- Experimental Neurobiology Program, National Institute of Mental Health, Klecany, Czech Republic
| | - Saak V. Ovsepian
- Faculty of Science and Engineering, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, United Kingdom
| |
Collapse
|
10
|
Hansen N, Juhl AL, Grenzer IM, Hirschel S, Teegen B, Fitzner D, Bartels C, Timäus C, Wiltfang J, Malchow B. Cerebrospinal Fluid Total Tau Protein Correlates With Longitudinal, Progressing Cognitive Dysfunction in Anti-Neural Autoantibody-Associated Dementia and Alzheimer's Dementia: A Case-Control Study. Front Immunol 2022; 13:837376. [PMID: 35309366 PMCID: PMC8927820 DOI: 10.3389/fimmu.2022.837376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/27/2022] [Indexed: 01/18/2023] Open
Abstract
Background Neural autoantibody-associated dementia (NABD) is an increasing phenomenon in memory clinics with a high impact on later therapy. Biomarkers are lacking that differentiate this type of dementia from neurodegenerative dementia such as Alzheimer’s dementia (AD). Our aim is to analyze neurodegeneration markers and their relationship to progressing cognitive dysfunction in NABD and AD to test for tools differentiating these two forms of dementia prior to neural autoantibody testing. Methods In our retrospective, observational study, we investigated 14 patients with dementia and serum and/or cerebrospinal fluid (CSF) neural autoantibodies as well as 14 patients with AD by relying on recent CSF and clinical criteria for AD. Patient files were checked for psychopathology, neuropsychological test performance, autoimmune indicators, CSF, and MRI results. Results Our patient groups did not differ in their psychopathology, autoimmune indicators, or MRI profile. The progression of cognitive dysfunction [as measured by the difference in Mini-Mental State Examination (MMSE) scores since disease onset, and the yearly progression rate (MMSE loss/per year)] did not vary significantly between groups. Total tau protein was significantly higher in AD patients than NABD patients revealing no signs of Alzheimer’s disease pathology in their CSF (p < 0.05). Total tau protein levels in CSF correlated with cognitive decline since disease onset (r = 0.38, p < 0.05) and yearly progression rates (r = 0.56, p < 0.005) in all patients. Discussion Our results suggest that the progression of cognitive dysfunction as defined by MMSE does not seem to be an appropriate biomarker for distinguishing NABD from AD. However, the total tau protein level in CSF might be a relevant molecular biomarker that can indicate disease pathology and/or progression in both known AD and NABD, which is often accompanied by axonal degeneration. Total tau protein may be an additional diagnostic tool with which to differentiate anti-neural-associated dementia from AD if further research confirms these proof-of-concept findings in larger patient cohorts.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Aaron Levin Juhl
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Insa Maria Grenzer
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Sina Hirschel
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | | | - Dirk Fitzner
- Department of Neurology, University of Göttingen, Göttingen, Germany
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Charles Timäus
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
11
|
Hansen N, Juhl AL, Grenzer IM, Rentzsch K, Wiltfang J, Fitzner D. Prevalence of Anti-neural Autoantibodies in a Psychiatric Patient Cohort-Paradigmatic Application of Criteria for Autoimmune-Based Psychiatric Syndromes. Front Psychiatry 2022; 13:864769. [PMID: 35711589 PMCID: PMC9196031 DOI: 10.3389/fpsyt.2022.864769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/21/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Anti-neural autoantibodies associated with psychiatric syndromes is an increasing phenomenon in psychiatry. Our investigation aimed to assess the frequency and type of neural autoantibodies associated with distinct psychiatric syndromes in a mixed cohort of psychiatric patients. METHODS We recruited 167 patients retrospectively from the Department of Psychiatry and Psychotherapy, University Medical Center Göttingen for this study. Clinical features including the assessment of psychopathology via the Manual for Assessment and Documentation of Psychopathology in Psychiatry (AMDP), neurological examination, cerebrospinal fluid (CSF), magnetic resonance imaging (MRI) and electroencephalography (EEG) analysis were done in patients. Serum and or CSF anti- neural autoantibodies were measured in all patients for differential diagnostic reasons. RESULTS We divided patients in three different groups: (1) psychiatric patients with CSF and/or serum autoantibodies [PSYCH-AB+, n = 25 (14.9%)], (2) psychiatric patients with CSF autoantibodies [PSYCH-AB CSF+, n = 13 (7.8%)] and (3) those psychiatric patients without autoantibodies in serum and/or CSF [PSYCH-AB-, n = 131]. The prevalence of serum neural autoantibodies was 14.9% (PSYCH-AB+), whereas 7.2% had CSF autoantibodies (PSYCH-AB CSF+) in our psychiatric cohort. The most prevalent psychiatric diagnoses were neurocognitive disorders (61-67%) and mood disorders (25-36%) in the patients presenting neural autoantibodies (PSYCH-AB+ and PSYCH-AB CSF+). However, psychiatric diagnoses, neurological deficits, and laboratory results from CSF, EEG or MRI did not differ between the three groups. To evaluate the relevance of neural autoantibody findings, we applied recent criteria for possible, probable, or definitive autoimmune based psychiatric syndromes in an paradigmatic patient with delirium and in the PSYCH-AB+ cohort. Applying criteria for any autoimmune-based psychiatric syndromes, we detected a probable autoimmune-based psychiatric syndrome in 13 of 167 patients (7.8%) and a definitive autoimmune-based psychiatric syndrome in 11 of 167 patients (6.6%). CONCLUSIONS Neural autoantibodies were detected mainly in patients presenting neurocognitive and mood disorders in our psychiatric cohort. The phenotypical appearance of psychiatric syndromes in conjunction with neural autoantibodies did not differ from those without neural autoantibodies. More research is therefore warranted to optimize biomarker research to help clinicians differentiate patients with potential neural autoantibodies when a rapid clinical response is required as in delirium states.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany.,Translational Psychoneuroscience, University of Göttingen, Göttingen, Germany
| | - Aaron Levin Juhl
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany.,Translational Psychoneuroscience, University of Göttingen, Göttingen, Germany
| | - Insa Maria Grenzer
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany.,Translational Psychoneuroscience, University of Göttingen, Göttingen, Germany
| | | | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Department of Medical Sciences, Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Dirk Fitzner
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Hansen N, Bartels C, Stöcker W, Wiltfang J, Fitzner D. Impaired Verbal Memory Recall in Patients With Axonal Degeneration and Serum Glycine-Receptor Autoantibodies-Case Series. Front Psychiatry 2021; 12:778684. [PMID: 35153852 PMCID: PMC8831910 DOI: 10.3389/fpsyt.2021.778684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/21/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Glycine receptor antibody-associated neuropsychiatric disease is currently known to be dominated by the phenotypes stiff-person syndrome and progressive encephalomyelitis entailing rigidity and myoclonus. In our case series we aim to depict the less-often reported feature of cognitive impairment associated with glycine receptor antibodies. METHODS We investigated five patients with cognitive impairment varying from mild cognitive impairment to dementia associated with serum glycine receptor antibodies. Mild and major neurocognitive disorders were diagnosed according to the DSM-5 (fifth edition of the Diagnostic and Statistical Manual of Mental Disorders). Neuropsychology via Consortium to Establish a Registry for Alzheimer's Disease (CERAD) testing results, psychopathology data via the Manual for the Assessment and Documentation of Psychopathology in Psychiatry (AMDP), cerebrospinal fluid analysis and magnetic resonance imaging data were retrospectively analyzed from patient files. RESULTS We identified five patients with cognitive impairment as the main neuropsychiatric feature associated with serum glycine receptor antibodies. One patient also presented akinetic rigidity syndrome. The psychopathology comprised disorders of attention and memory, orientation, formal thought, and affect. In addition to suffering deficits in verbal memory function, figural recall, phonematic fluency, and globally deteriorated cognitive function, these patients presented seriously impaired memory recall in particular. Tau protein and phosphorylated tau protein 181 were elevated in 75% of patients. CONCLUSIONS Our results suggest that axonal neurodegeneration and especially impaired verbal memory recall in addition to deficits in verbal and figural memory characterize patients with progressive cognitive impairment associated with glycine receptor antibodies. This unresolved issue should be clarified by researchers to discover whether axonal degeneration is merely an age-related phenomenon or one related to glycine-receptor autoantibodies in old age. Cognitive impairment as a neuropsychiatric syndrome of glycine-receptor antibody disease is a potential, conceivable, but so far unproven additional feature requiring deeper large-scale investigations and consideration during differential diagnosis in memory clinics.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | | | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Dirk Fitzner
- Department of Neurology, University Medical Center of Göttingen, Göttingen, Germany
| |
Collapse
|