1
|
Risi B, Imarisio A, Cuconato G, Padovani A, Valente EM, Filosto M. Mitochondrial DNA (mtDNA) as fluid biomarker in neurodegenerative disorders: A systematic review. Eur J Neurol 2025; 32:e70014. [PMID: 39831374 PMCID: PMC11744304 DOI: 10.1111/ene.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Several studies evaluated peripheral and cerebrospinal fluid (CSF) mtDNA as a putative biomarker in neurodegenerative diseases, often yielding inconsistent findings. We systematically reviewed the current evidence assessing blood and CSF mtDNA levels and variant burden in Parkinson's disease (PD), Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Multiple sclerosis (MS) was also included as a paradigm of chronic neuroinflammation-driven neurodegeneration. METHODS Medline, Embase, Scopus and Web of Science were searched for articles published from inception until October 2023. Studies focused on mtDNA haplogroups or hereditary pathogenic variants were excluded. Critical appraisal was performed using the Quality Assessment for Diagnostic Accuracy Studies criteria. RESULTS Fifty-nine original studies met our a priori-defined inclusion criteria. The majority of CSF-focused studies showed (i) decreased mtDNA levels in PD and AD; (ii) increased levels in MS compared to controls. No studies evaluated CSF mtDNA in ALS. Results focused on blood cell-free and intracellular mtDNA were contradictory, even within studies evaluating the same disease. This poor reproducibility is likely due to the lack of consideration of the many factors known to affect mtDNA levels. mtDNA damage and methylation levels were increased and reduced in patients compared to controls, respectively. A few studies investigated the correlation between mtDNA and disease severity, with conflicting results. CONCLUSIONS Additional well-designed studies are needed to evaluate CSF and blood mtDNA profiles as putative biomarkers in neurodegenerative diseases. The identification of "mitochondrial subtypes" of disease may enable novel precision medicine strategies to counteract neurodegeneration.
Collapse
Affiliation(s)
- Barbara Risi
- NeMO‐Brescia Clinical Center for Neuromuscular DiseasesBresciaItaly
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Alberto Imarisio
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Neurogenetics Research CentreIRCCS Mondino FoundationPaviaItaly
| | - Giada Cuconato
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Neurogenetics Research CentreIRCCS Mondino FoundationPaviaItaly
| | - Alessandro Padovani
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
- Unit of NeurologyASST Spedali CiviliBresciaItaly
| | - Enza Maria Valente
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Neurogenetics Research CentreIRCCS Mondino FoundationPaviaItaly
| | - Massimiliano Filosto
- NeMO‐Brescia Clinical Center for Neuromuscular DiseasesBresciaItaly
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| |
Collapse
|
2
|
Stoccoro A, Coppedè F. Exposure to Metals, Pesticides, and Air Pollutants: Focus on Resulting DNA Methylation Changes in Neurodegenerative Diseases. Biomolecules 2024; 14:1366. [PMID: 39595543 PMCID: PMC11591912 DOI: 10.3390/biom14111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Individuals affected by neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are dramatically increasing worldwide. Thus, several efforts are being made to develop strategies for stopping or slowing the spread of these illnesses. Although causative genetic variants linked to the onset of these diseases are known, they can explain only a small portion of cases. The etiopathology underlying the neurodegenerative process in most of the patients is likely due to the interplay between predisposing genetic variants and environmental factors. Epigenetic mechanisms, including DNA methylation, are central candidates in translating the effects of environmental factors in genome modulation, and they play a critical role in the etiology of AD, PD, and ALS. Among the main environmental exposures that have been linked to an increased risk for these diseases, accumulating evidence points to the role of heavy metals, pesticides, and air pollutants. These compounds could trigger neurodegeneration through different mechanisms, mainly neuroinflammation and the induction of oxidative stress. However, increasing evidence suggests that they are also capable of inducing epigenetic alterations in neurons. In this article, we review the available literature linking exposure to metals, pesticides, and air pollutants to DNA methylation changes relevant to neurodegeneration.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Fabio Coppedè
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
3
|
Theys C, Ibrahim J, Mateiu L, Mposhi A, García-Pupo L, De Pooter T, De Rijk P, Strazisar M, İnce İA, Vintea I, Rots MG, Vanden Berghe W. Mitochondrial GpC and CpG DNA Hypermethylation Cause Metabolic Stress-Induced Mitophagy and Cholestophagy. Int J Mol Sci 2023; 24:16412. [PMID: 38003603 PMCID: PMC10671279 DOI: 10.3390/ijms242216412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by a constant accumulation of lipids in the liver. This hepatic lipotoxicity is associated with a dysregulation of the first step in lipid catabolism, known as beta oxidation, which occurs in the mitochondrial matrix. Eventually, this dysregulation will lead to mitochondrial dysfunction. To evaluate the possible involvement of mitochondrial DNA methylation in this lipid metabolic dysfunction, we investigated the functional metabolic effects of mitochondrial overexpression of CpG (MSssI) and GpC (MCviPI) DNA methyltransferases in relation to gene expression and (mito)epigenetic signatures. Overall, the results show that mitochondrial GpC and, to a lesser extent, CpG methylation increase bile acid metabolic gene expression, inducing the onset of cholestasis through mito-nuclear epigenetic reprogramming. Moreover, both increase the expression of metabolic nuclear receptors and thereby induce basal overactivation of mitochondrial respiration. The latter promotes mitochondrial swelling, favoring lipid accumulation and metabolic-stress-induced mitophagy and autophagy stress responses. In conclusion, both mitochondrial GpC and CpG methylation create a metabolically challenging environment that induces mitochondrial dysfunction, which may contribute to the progression of MASLD.
Collapse
Affiliation(s)
- Claudia Theys
- Lab Protein Chemistry, Proteomics & Epigenetic Signaling (PPES), Department Biomedical Sciences, University of Antwerp, Wilrijk, 2610 Antwerp, Belgium; (C.T.)
| | - Joe Ibrahim
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| | - Ligia Mateiu
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| | - Archibold Mposhi
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Laura García-Pupo
- Lab Protein Chemistry, Proteomics & Epigenetic Signaling (PPES), Department Biomedical Sciences, University of Antwerp, Wilrijk, 2610 Antwerp, Belgium; (C.T.)
| | - Tim De Pooter
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Wilrijk, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wirlijk, 2610 Antwerp, Belgium
| | - Peter De Rijk
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Wilrijk, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wirlijk, 2610 Antwerp, Belgium
| | - Mojca Strazisar
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Wilrijk, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wirlijk, 2610 Antwerp, Belgium
| | - İkbal Agah İnce
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Medical Microbiology, School of Medicine, Acıbadem Mehmet, Ali Aydınlar University, 34752 Ataşehir, İstanbul, Türkiye
| | - Iuliana Vintea
- Pathophysiology Lab, Infla-Med Centre of Excellence, Department of Biomedical Sciences, University of Antwerp, Wilrijk, 2610 Antwerp, Belgium
| | - Marianne G. Rots
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Wim Vanden Berghe
- Lab Protein Chemistry, Proteomics & Epigenetic Signaling (PPES), Department Biomedical Sciences, University of Antwerp, Wilrijk, 2610 Antwerp, Belgium; (C.T.)
| |
Collapse
|
4
|
Shao Z, Han Y, Zhou D. Optimized bisulfite sequencing analysis reveals the lack of 5-methylcytosine in mammalian mitochondrial DNA. BMC Genomics 2023; 24:439. [PMID: 37542258 PMCID: PMC10403921 DOI: 10.1186/s12864-023-09541-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND DNA methylation is one of the best characterized epigenetic modifications in the mammalian nuclear genome and is known to play a significant role in various biological processes. Nonetheless, the presence of 5-methylcytosine (5mC) in mitochondrial DNA remains controversial, as data ranging from the lack of 5mC to very extensive 5mC have been reported. RESULTS By conducting comprehensive bioinformatic analyses of both published and our own data, we reveal that previous observations of extensive and strand-biased mtDNA-5mC are likely artifacts due to a combination of factors including inefficient bisulfite conversion, extremely low sequencing reads in the L strand, and interference from nuclear mitochondrial DNA sequences (NUMTs). To reduce false positive mtDNA-5mC signals, we establish an optimized procedure for library preparation and data analysis of bisulfite sequencing. Leveraging our modified workflow, we demonstrate an even distribution of 5mC signals across the mtDNA and an average methylation level ranging from 0.19% to 0.67% in both cell lines and primary cells, which is indistinguishable from the background noise. CONCLUSIONS We have developed a framework for analyzing mtDNA-5mC through bisulfite sequencing, which enables us to present multiple lines of evidence for the lack of extensive 5mC in mammalian mtDNA. We assert that the data available to date do not support the reported presence of mtDNA-5mC.
Collapse
Affiliation(s)
- Zhenyu Shao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yang Han
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University & Chinese Academy of Medical Sciences (RU069), Shanghai, 200032, China
| | - Dan Zhou
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University & Chinese Academy of Medical Sciences (RU069), Shanghai, 201399, China.
| |
Collapse
|
5
|
Mposhi A, Cortés-Mancera F, Heegsma J, de Meijer VE, van de Sluis B, Sydor S, Bechmann LP, Theys C, de Rijk P, De Pooter T, Vanden Berghe W, İnce İA, Faber KN, Rots MG. Mitochondrial DNA methylation in metabolic associated fatty liver disease. Front Nutr 2023; 10:964337. [PMID: 37305089 PMCID: PMC10249072 DOI: 10.3389/fnut.2023.964337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/07/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Hepatic lipid accumulation and mitochondrial dysfunction are hallmarks of metabolic associated fatty liver disease (MAFLD), yet molecular parameters underlying MAFLD progression are not well understood. Differential methylation within the mitochondrial DNA (mtDNA) has been suggested to be associated with dysfunctional mitochondria, also during progression to Metabolic Steatohepatitis (MeSH). This study further investigates whether mtDNA methylation is associated with hepatic lipid accumulation and MAFLD. Methods HepG2 cells were constructed to stably express mitochondria-targeted viral and prokaryotic cytosine DNA methyltransferases (mtM.CviPI or mtM.SssI for GpC or CpG methylation, respectively). A catalytically inactive variant (mtM.CviPI-Mut) was constructed as a control. Mouse and human patients' samples were also investigated. mtDNA methylation was assessed by pyro- or nanopore sequencing. Results and discussion Differentially induced mtDNA hypermethylation impaired mitochondrial gene expression and metabolic activity in HepG2-mtM.CviPI and HepG2-mtM.SssI cells and was associated with increased lipid accumulation, when compared to the controls. To test whether lipid accumulation causes mtDNA methylation, HepG2 cells were subjected to 1 or 2 weeks of fatty acid treatment, but no clear differences in mtDNA methylation were detected. In contrast, hepatic Nd6 mitochondrial gene body cytosine methylation and Nd6 gene expression were increased in mice fed a high-fat high cholesterol diet (HFC for 6 or 20 weeks), when compared to controls, while mtDNA content was unchanged. For patients with simple steatosis, a higher ND6 methylation was confirmed using Methylation Specific PCR, but no additional distinctive cytosines could be identified using pyrosequencing. This study warrants further investigation into a role for mtDNA methylation in promoting mitochondrial dysfunction and impaired lipid metabolism in MAFLD.
Collapse
Affiliation(s)
- Archibold Mposhi
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Fabian Cortés-Mancera
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Departamento de Ciencias Aplicadas, Instituto Tecnológico Metropolitano, Medellín, Colombia
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Vincent E. de Meijer
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Bart van de Sluis
- Section of Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Svenja Sydor
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Bochum, Germany
- Ruhr-University Bochum, Bochum, Germany
| | - Lars P. Bechmann
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Bochum, Germany
- Ruhr-University Bochum, Bochum, Germany
| | - Claudia Theys
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter de Rijk
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Neuromics Support Facility, VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | - Tim De Pooter
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Neuromics Support Facility, VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | - Wim Vanden Berghe
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - İkbal Agah İnce
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Medical Microbiology, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Türkiye
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Marianne G. Rots
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
6
|
Chen X, Zhou S, Wang Y, Zheng L, Guan S, Wang D, Wang L, Guan X. Nanopore Single-molecule Analysis of Biomarkers: Providing Possible Clues to Disease Diagnosis. Trends Analyt Chem 2023; 162:117060. [PMID: 38106545 PMCID: PMC10722900 DOI: 10.1016/j.trac.2023.117060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Biomarker detection has attracted increasing interest in recent years due to the minimally or non-invasive sampling process. Single entity analysis of biomarkers is expected to provide real-time and accurate biological information for early disease diagnosis and prognosis, which is critical to the effective disease treatment and is also important in personalized medicine. As an innovative single entity analysis method, nanopore sensing is a pioneering single-molecule detection technique that is widely used in analytical bioanalytical fields. In this review, we overview the recent progress of nanopore biomarker detection as new approaches to disease diagnosis. In highlighted studies, nanopore was focusing on detecting biomarkers of different categories of communicable and noncommunicable diseases, such as pandemic Covid-19, AIDS, cancers, neurologic diseases, etc. Various sensitive and selective nanopore detecting strategies for different types of biomarkers are summarized. In addition, the challenges, opportunities, and direction for future development of nanopore-based biomarker sensors are also discussed.
Collapse
Affiliation(s)
- Xiaohan Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Shuo Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Ling Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Sarah Guan
- Hinsdale Central High School, Hinsdale, IL 60521, USA
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
- Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| |
Collapse
|
7
|
The potential role of environmental factors in modulating mitochondrial DNA epigenetic marks. VITAMINS AND HORMONES 2023; 122:107-145. [PMID: 36863791 DOI: 10.1016/bs.vh.2023.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Many studies implicate mitochondrial dysfunction in the development and progression of numerous chronic diseases. Mitochondria are responsible for most cellular energy production, and unlike other cytoplasmic organelles, mitochondria contain their own genome. Most research to date, through investigating mitochondrial DNA copy number, has focused on larger structural changes or alterations to the entire mitochondrial genome and their role in human disease. Using these methods, mitochondrial dysfunction has been linked to cancers, cardiovascular disease, and metabolic health. However, like the nuclear genome, the mitochondrial genome may experience epigenetic alterations, including DNA methylation that may partially explain some of the health effects of various exposures. Recently, there has been a movement to understand human health and disease within the context of the exposome, which aims to describe and quantify the entirety of all exposures people encounter throughout their lives. These include, among others, environmental pollutants, occupational exposures, heavy metals, and lifestyle and behavioral factors. In this chapter, we summarize the current research on mitochondria and human health, provide an overview of the current knowledge on mitochondrial epigenetics, and describe the experimental and epidemiologic studies that have investigated particular exposures and their relationships with mitochondrial epigenetic modifications. We conclude the chapter with suggestions for future directions in epidemiologic and experimental research that is needed to advance the growing field of mitochondrial epigenetics.
Collapse
|
8
|
Zhou X, Gao S, Yue M, Zhu S, Liu Q, Zhao XE. Recent advances in analytical methods of oxidative stress biomarkers induced by environmental pollutant exposure. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
9
|
Moshareva MA, Lukyanov KA, Putlyaeva LV. Fluorescence imaging of epigenetic genome modifications. Biochem Biophys Res Commun 2022; 622:86-92. [PMID: 35843098 DOI: 10.1016/j.bbrc.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
Abstract
Epigenome contains a lot of information about cell state. Epigenetic analysis includes primarily sequence-based methods, which provide detailed data on distribution of modifications along the genome, but are poorly applicable for screenings. Specific fluorescence labeling and imaging of epigenetic modifications is an attractive complementary approach. It is currently based mainly on histone modifications study. We expect that inclusion of DNA modifications into imaging-based study would empower the method. In this review we discuss methods for fluorescence imaging of DNA modifications (mainly 5-methylcytosine). It opens an easy way to single cell analysis and high-throughput screening. Moreover, tracking epigenome changes in live cells becomes possible with genetically encoded probes.
Collapse
Affiliation(s)
- Maria A Moshareva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Konstantin A Lukyanov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Lidia V Putlyaeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia.
| |
Collapse
|
10
|
Lüth T, Schaake S, Grünewald A, May P, Trinh J, Weissensteiner H. Benchmarking Low-Frequency Variant Calling With Long-Read Data on Mitochondrial DNA. Front Genet 2022; 13:887644. [PMID: 35664331 PMCID: PMC9161029 DOI: 10.3389/fgene.2022.887644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Sequencing quality has improved over the last decade for long-reads, allowing for more accurate detection of somatic low-frequency variants. In this study, we used mixtures of mitochondrial samples with different haplogroups (i.e., a specific set of mitochondrial variants) to investigate the applicability of nanopore sequencing for low-frequency single nucleotide variant detection. Methods: We investigated the impact of base-calling, alignment/mapping, quality control steps, and variant calling by comparing the results to a previously derived short-read gold standard generated on the Illumina NextSeq. For nanopore sequencing, six mixtures of four different haplotypes were prepared, allowing us to reliably check for expected variants at the predefined 5%, 2%, and 1% mixture levels. We used two different versions of Guppy for base-calling, two aligners (i.e., Minimap2 and Ngmlr), and three variant callers (i.e., Mutserve2, Freebayes, and Nanopanel2) to compare low-frequency variants. We used F1 score measurements to assess the performance of variant calling. Results: We observed a mean read length of 11 kb and a mean overall read quality of 15. Ngmlr showed not only higher F1 scores but also higher allele frequencies (AF) of false-positive calls across the mixtures (mean F1 score = 0.83; false-positive allele frequencies < 0.17) compared to Minimap2 (mean F1 score = 0.82; false-positive AF < 0.06). Mutserve2 had the highest F1 scores (5% level: F1 score >0.99, 2% level: F1 score >0.54, and 1% level: F1 score >0.70) across all callers and mixture levels. Conclusion: We here present the benchmarking for low-frequency variant calling with nanopore sequencing by identifying current limitations.
Collapse
Affiliation(s)
- Theresa Lüth
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Anne Grünewald
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
- *Correspondence: Joanne Trinh, ; Hansi Weissensteiner,
| | - Hansi Weissensteiner
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: Joanne Trinh, ; Hansi Weissensteiner,
| |
Collapse
|
11
|
Lang M, Grünewald A, Pramstaller PP, Hicks AA, Pichler I. A genome on shaky ground: exploring the impact of mitochondrial DNA integrity on Parkinson's disease by highlighting the use of cybrid models. Cell Mol Life Sci 2022; 79:283. [PMID: 35513611 PMCID: PMC9072496 DOI: 10.1007/s00018-022-04304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
Mitochondria play important roles in the regulation of key cellular processes, including energy metabolism, oxidative stress response, and signaling towards cell death or survival, and are distinguished by carrying their own genome (mtDNA). Mitochondrial dysfunction has emerged as a prominent cellular mechanism involved in neurodegeneration, including Parkinson’s disease (PD), a neurodegenerative movement disorder, characterized by progressive loss of dopaminergic neurons and the occurrence of proteinaceous Lewy body inclusions. The contribution of mtDNA variants to PD pathogenesis has long been debated and is still not clearly answered. Cytoplasmic hybrid (cybrid) cell models provided evidence for a contribution of mtDNA variants to the PD phenotype. However, conclusive evidence of mtDNA mutations as genetic cause of PD is still lacking. Several models have shown a role of somatic, rather than inherited mtDNA variants in the impairment of mitochondrial function and neurodegeneration. Accordingly, several nuclear genes driving inherited forms of PD are linked to mtDNA quality control mechanisms, and idiopathic as well as familial PD tissues present increased mtDNA damage. In this review, we highlight the use of cybrids in this PD research field and summarize various aspects of how and to what extent mtDNA variants may contribute to the etiology of PD.
Collapse
Affiliation(s)
- Martin Lang
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.,Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| |
Collapse
|
12
|
Mposhi A, Liang L, Mennega KP, Yildiz D, Kampert C, Hof IH, Jellema PG, de Koning TJ, Faber KN, Ruiters MHJ, Niezen-Koning KE, Rots MG. The Mitochondrial Epigenome: An Unexplored Avenue to Explain Unexplained Myopathies? Int J Mol Sci 2022; 23:ijms23042197. [PMID: 35216315 PMCID: PMC8879787 DOI: 10.3390/ijms23042197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
Mutations in either mitochondrial DNA (mtDNA) or nuclear genes that encode mitochondrial proteins may lead to dysfunctional mitochondria, giving rise to mitochondrial diseases. Some mitochondrial myopathies, however, present without a known underlying cause. Interestingly, methylation of mtDNA has been associated with various clinical pathologies. The present study set out to assess whether mtDNA methylation could explain impaired mitochondrial function in patients diagnosed with myopathy without known underlying genetic mutations. Enhanced mtDNA methylation was indicated by pyrosequencing for muscle biopsies of 14 myopathy patients compared to four healthy controls, at selected cytosines in the Cytochrome B (CYTB) gene, but not within the displacement loop (D-loop) region. The mtDNA methylation patterns of the four healthy muscle biopsies were highly consistent and showed intriguing tissue-specific differences at particular cytosines with control skin fibroblasts cultured in vitro. Within individual myopathy patients, the overall mtDNA methylation pattern correlated well between muscle and skin fibroblasts. Despite this correlation, a pilot analysis of four myopathy and five healthy fibroblast samples did not reveal a disease-associated difference in mtDNA methylation. We did, however, detect increased expression of solute carrier family 25A26 (SLC25A26), encoding the importer of S-adenosylmethionine, together with enhanced mtDNA copy numbers in myopathy fibroblasts compared to healthy controls. To confirm that pyrosequencing indeed reflected DNA methylation and not bisulfite accessibility, mass spectrometry was employed. Although no myopathy-related differences in total amount of methylated cytosines were detected at this stage, a significant contribution of contaminating nuclear DNA (nDNA) was revealed, and steps to improve enrichment for mtDNA are reported. In conclusion, in this explorative study we show that analyzing the mitochondrial genome beyond its sequence opens novel avenues to identify potential molecular biomarkers assisting in the diagnosis of unexplained myopathies.
Collapse
Affiliation(s)
- Archibold Mposhi
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.M.); (L.L.); (K.P.M.); (P.G.J.); (M.H.J.R.)
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Lin Liang
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.M.); (L.L.); (K.P.M.); (P.G.J.); (M.H.J.R.)
| | - Kevin P. Mennega
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.M.); (L.L.); (K.P.M.); (P.G.J.); (M.H.J.R.)
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (D.Y.); (C.K.); (I.H.H.); (K.E.N.-K.)
| | - Dilemin Yildiz
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (D.Y.); (C.K.); (I.H.H.); (K.E.N.-K.)
| | - Crista Kampert
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (D.Y.); (C.K.); (I.H.H.); (K.E.N.-K.)
| | - Ingrid H. Hof
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (D.Y.); (C.K.); (I.H.H.); (K.E.N.-K.)
| | - Pytrick G. Jellema
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.M.); (L.L.); (K.P.M.); (P.G.J.); (M.H.J.R.)
| | - Tom J. de Koning
- Department of Genetics, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
- Department of Clinical Sciences, Lund University, Lasarettgatan 40, 221 85 Lund, Sweden
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Marcel H. J. Ruiters
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.M.); (L.L.); (K.P.M.); (P.G.J.); (M.H.J.R.)
| | - Klary E. Niezen-Koning
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (D.Y.); (C.K.); (I.H.H.); (K.E.N.-K.)
| | - Marianne G. Rots
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.M.); (L.L.); (K.P.M.); (P.G.J.); (M.H.J.R.)
- Correspondence:
| |
Collapse
|
13
|
Lionaki E, Ploumi C, Tavernarakis N. One-Carbon Metabolism: Pulling the Strings behind Aging and Neurodegeneration. Cells 2022; 11:cells11020214. [PMID: 35053330 PMCID: PMC8773781 DOI: 10.3390/cells11020214] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
One-carbon metabolism (OCM) is a network of biochemical reactions delivering one-carbon units to various biosynthetic pathways. The folate cycle and methionine cycle are the two key modules of this network that regulate purine and thymidine synthesis, amino acid homeostasis, and epigenetic mechanisms. Intersection with the transsulfuration pathway supports glutathione production and regulation of the cellular redox state. Dietary intake of micronutrients, such as folates and amino acids, directly contributes to OCM, thereby adapting the cellular metabolic state to environmental inputs. The contribution of OCM to cellular proliferation during development and in adult proliferative tissues is well established. Nevertheless, accumulating evidence reveals the pivotal role of OCM in cellular homeostasis of non-proliferative tissues and in coordination of signaling cascades that regulate energy homeostasis and longevity. In this review, we summarize the current knowledge on OCM and related pathways and discuss how this metabolic network may impact longevity and neurodegeneration across species.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; (E.L.); (C.P.)
| | - Christina Ploumi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; (E.L.); (C.P.)
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 70013 Heraklion, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; (E.L.); (C.P.)
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 70013 Heraklion, Crete, Greece
- Correspondence: ; Tel.: +30-2810-391069
| |
Collapse
|