1
|
Poulen G, Perrin FE. Advances in spinal cord injury: insights from non-human primates. Neural Regen Res 2024; 19:2354-2364. [PMID: 38526271 PMCID: PMC11090432 DOI: 10.4103/nrr.nrr-d-23-01505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/13/2023] [Accepted: 12/22/2023] [Indexed: 03/26/2024] Open
Abstract
Spinal cord injury results in significant sensorimotor deficits, currently, there is no curative treatment for the symptoms induced by spinal cord injury. Basic and pre-clinical research on spinal cord injury relies on the development and characterization of appropriate animal models. These models should replicate the symptoms observed in human, allowing for the exploration of functional deficits and investigation into various aspects of physiopathology of spinal cord injury. Non-human primates, due to their close phylogenetic association with humans, share more neuroanatomical, genetic, and physiological similarities with humans than rodents. Therefore, the responses to spinal cord injury in nonhuman primates most likely resemble the responses to traumatism in humans. In this review, we will discuss nonhuman primate models of spinal cord injury, focusing on in vivo assessments, including behavioral tests, magnetic resonance imaging, and electrical activity recordings, as well as ex vivo histological analyses. Additionally, we will present therapeutic strategies developed in non-human primates and discuss the unique specificities of non-human primate models of spinal cord injury.
Collapse
Affiliation(s)
- Gaetan Poulen
- University of Montpellier, INSERM, EPHE, Montpellier, France
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Florence E. Perrin
- University of Montpellier, INSERM, EPHE, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
2
|
Brown RI, Barber HM, Kucenas S. Satellite glial cell manipulation prior to axotomy enhances developing dorsal root ganglion central branch regrowth into the spinal cord. Glia 2024; 72:1766-1784. [PMID: 39141572 PMCID: PMC11325082 DOI: 10.1002/glia.24581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 08/16/2024]
Abstract
The central and peripheral nervous systems (CNS and PNS, respectively) exhibit remarkable diversity in the capacity to regenerate following neuronal injury with PNS injuries being much more likely to regenerate than those that occur in the CNS. Glial responses to damage greatly influence the likelihood of regeneration by either promoting or inhibiting axonal regrowth over time. However, despite our understanding of how some glial lineages participate in nerve degeneration and regeneration, less is known about the contributions of peripheral satellite glial cells (SGC) to regeneration failure following central axon branch injury of dorsal root ganglia (DRG) sensory neurons. Here, using in vivo, time-lapse imaging in larval zebrafish coupled with laser axotomy, we investigate the role of SGCs in axonal regeneration. In our studies we show that SGCs respond to injury by relocating their nuclei to the injury site during the same period that DRG neurons produce new central branch neurites. Laser ablation of SGCs prior to axon injury results in more neurite growth attempts and ultimately a higher rate of successful central axon regrowth, implicating SGCs as inhibitors of regeneration. We also demonstrate that this SGC response is mediated in part by ErbB signaling, as chemical inhibition of this receptor results in reduced SGC motility and enhanced central axon regrowth. These findings provide new insights into SGC-neuron interactions under injury conditions and how these interactions influence nervous system repair.
Collapse
Affiliation(s)
- Robin I Brown
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Heather M Barber
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Cell & Developmental Biology Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Zeng X, Ropper AE, Aljuboori Z, Yu D, Teng TW, Kabatas S, Usuga E, Anderson JE, Teng YD. Concurrent Oncolysis and Neurolesion Repair by Dual Gene-Engineered hNSCs in an Experimental Model of Intraspinal Cord Glioblastoma. Cells 2024; 13:1522. [PMID: 39329707 PMCID: PMC11429792 DOI: 10.3390/cells13181522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 09/28/2024] Open
Abstract
Intramedullary spinal cord glioblastoma (ISCG) is lethal due to lack of effective treatment. We previously established a rat C6-ISCG model and the antitumor effect of F3.CD-TK, an hNSC line expressing CD and TK, via producing cytocidal 5FU and GCV-TP. However, the neurotherapeutic potential of this hNSC approach has remained uninvestigated. Here for the first time, cultured F3.CD-TK cells were found to have a markedly higher oncolytic effect, which was GJIC-dependent, and BDNF expression but less VEGF secretion than F3.CD. In Rowett athymic rats, F3.CD-TK (1.5 × 106 cells/10 µL × 2), injected near C6-ISCG (G55 seeding 7 days earlier: 10 K/each) and followed by q.d. (×5/each repeat; i.p.) of 5FC (500 mg/kg/5 mL/day) and GCV (25 mg/kg/1 mL/day), robustly mitigated cardiorespiratory, locomotor, and sensory deficits to improve neurofunction and overall survival compared to animals receiving either F3.CD or F3.CD-TK+F3.CD debris formula. The F3.CD-TK regimen exerted greater tumor penetration and neural inflammation/immune modulation, reshaped C6-ISCG topology to increase the tumor's surface area/volume ratio to spare/repair host axons (e.g., vGlut1+ neurites), and had higher post-prodrug donor self-clearance. The multimodal data and mechanistic leads from this proof-of-principle study suggest that the overall stronger anti-ISCG benefit of our hNSC-based GDEPT is derived from its concurrent oncolytic and neurotherapeutic effects.
Collapse
Affiliation(s)
- Xiang Zeng
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell, and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02129, USA
| | - Alexander E Ropper
- Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell, and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02129, USA
| | - Zaid Aljuboori
- Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell, and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02129, USA
| | - Dou Yu
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell, and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02129, USA
| | - Theodore W Teng
- Harvard College, Harvard University, Cambridge, MA 02138, USA
| | - Serdar Kabatas
- Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell, and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02129, USA
| | - Esteban Usuga
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell, and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02129, USA
| | - Jamie E Anderson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell, and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02129, USA
| | - Yang D Teng
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell, and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
4
|
Elmalky MI, Alvarez-Bolado G, Younsi A, Skutella T. Axonal Regeneration after Spinal Cord Injury: Molecular Mechanisms, Regulatory Pathways, and Novel Strategies. BIOLOGY 2024; 13:703. [PMID: 39336130 PMCID: PMC11428726 DOI: 10.3390/biology13090703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024]
Abstract
Axonal regeneration in the spinal cord after traumatic injuries presents a challenge for researchers, primarily due to the nature of adult neurons and the inhibitory environment that obstructs neuronal regrowth. Here, we review current knowledge of the intricate network of molecular and cellular mechanisms that hinder axonal regeneration, with a focus on myelin-associated inhibitors (MAIs) and other inhibitory guidance molecules, as well as the pivotal pathways implicated in both inhibiting and facilitating axonal regrowth, such as PKA/AMP, PI3K/Akt/mTOR, and Trk, alongside the regulatory roles of neurotrophins and axonal guidance cues. We also examine current insights into gene therapy, tissue engineering, and pharmacological interventions that show promise in overcoming barriers to axonal regrowth.
Collapse
Affiliation(s)
- Mohammed Ibrahim Elmalky
- Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Group for Regeneration and Reprogramming, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Gonzalo Alvarez-Bolado
- Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Group for Regeneration and Reprogramming, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Alexander Younsi
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Group for Regeneration and Reprogramming, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Huang Y, Hu R, Wu L, He K, Ma R. Immunoregulation of Glia after spinal cord injury: a bibliometric analysis. Front Immunol 2024; 15:1402349. [PMID: 38938572 PMCID: PMC11208308 DOI: 10.3389/fimmu.2024.1402349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024] Open
Abstract
Objective Immunoregulation is a complex and critical process in the pathological process of spinal cord injury (SCI), which is regulated by various factors and plays an important role in the functional repair of SCI. This study aimed to explore the research hotspots and trends of glial cell immunoregulation after SCI from a bibliometric perspective. Methods Data on publications related to glial cell immunoregulation after SCI, published from 2004 to 2023, were obtained from the Web of Science Core Collection. Countries, institutions, authors, journals, and keywords in the topic were quantitatively analyzed using the R package "bibliometrix", VOSviewer, Citespace, and the Bibliometrics Online Analysis Platform. Results A total of 613 papers were included, with an average annual growth rate of 9.39%. The papers came from 36 countries, with the United States having the highest output, initiating collaborations with 27 countries. Nantong University was the most influential institution. We identified 3,177 authors, of whom Schwartz, m, of the Weizmann Institute of Science, was ranked first regarding both field-specific H-index (18) and average number of citations per document (151.44). Glia ranked first among journals with 2,574 total citations. The keywords "microglia," "activation," "macrophages," "astrocytes," and "neuroinflammation" represented recent hot topics and are expected to remain a focus of future research. Conclusion These findings strongly suggest that the immunomodulatory effects of microglia, astrocytes, and glial cell interactions may be critical in promoting nerve regeneration and repair after SCI. Research on the immunoregulation of glial cells after SCI is emerging, and there should be greater cooperation and communication between countries and institutions to promote the development of this field and benefit more SCI patients.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Rong Hu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Lei Wu
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Kelin He
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruijie Ma
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Perez JC, Poulen G, Cardoso M, Boukhaddaoui H, Gazard CM, Courtand G, Bertrand SS, Gerber YN, Perrin FE. CSF1R inhibition at chronic stage after spinal cord injury modulates microglia proliferation. Glia 2023; 71:2782-2798. [PMID: 37539655 DOI: 10.1002/glia.24451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Traumatic spinal cord injury (SCI) induces irreversible autonomic and sensory-motor impairments. A large number of patients exhibit chronic SCI and no curative treatment is currently available. Microglia are predominant immune players after SCI, they undergo highly dynamic processes, including proliferation and morphological modification. In a translational aim, we investigated whether microglia proliferation persists at chronic stage after spinal cord hemisection and whether a brief pharmacological treatment could modulate microglial responses. We first carried out a time course analysis of SCI-induced microglia proliferation associated with morphological analysis up to 84 days post-injury (dpi). Second, we analyzed outcomes on microglia of an oral administration of GW2580, a colony stimulating factor-1 receptor tyrosine kinase inhibitor reducing selectively microglia proliferation. After SCI, microglia proliferation remains elevated at 84 dpi. The percentage of proliferative microglia relative to proliferative cells increases over time reaching almost 50% at 84 dpi. Morphological modifications of microglia processes are observed up to 84 dpi and microglia cell body area is transiently increased up to 42 dpi. A transient post-injury GW2580-delivery at two chronic stages after SCI (42 and 84 dpi) reduces microglia proliferation and modifies microglial morphology evoking an overall limitation of secondary inflammation. Finally, transient GW2580-delivery at chronic stage after SCI modulates myelination processes. Together our study shows that there is a persistent microglia proliferation induced by SCI and that a pharmacological treatment at chronic stage after SCI modulates microglial responses. Thus, a transient oral GW2580-delivery at chronic stage after injury may provide a promising therapeutic strategy for chronic SCI patients.
Collapse
Affiliation(s)
| | - Gaetan Poulen
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France
| | - Maida Cardoso
- UMR 5221, Univ. Montpellier, CNRS, Montpellier, France
| | | | | | | | | | | | - Florence Evelyne Perrin
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
7
|
Sámano C, Mazzone GL. The role of astrocytes response triggered by hyperglycaemia during spinal cord injury. Arch Physiol Biochem 2023:1-18. [PMID: 37798949 DOI: 10.1080/13813455.2023.2264538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
Objective: This manuscript aimed to provide a comprehensive overview of the physiological, molecular, and cellular mechanisms triggered by reactive astrocytes (RA) in the context of spinal cord injury (SCI), with a particular focus on cases involving hyperglycaemia.Methods: The compilation of articles related to astrocyte responses in neuropathological conditions, with a specific emphasis on those related to SCI and hyperglycaemia, was conducted by searching through databases including Science Direct, Web of Science, and PubMed.Results and Conclusions: This article explores the dual role of astrocytes in both neurophysiological and neurodegenerative conditions within the central nervous system (CNS). In the aftermath of SCI and hyperglycaemia, astrocytes undergo a transformation into RA, adopting a distinct phenotype. While there are currently no approved therapies for SCI, various therapeutic strategies have been proposed to alleviate the detrimental effects of RAs following SCI and hyperglycemia. These strategies show promising potential in the treatment of SCI and its likely comorbidities.
Collapse
Affiliation(s)
- C Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa (UAM-C), Ciudad de México, México
| | - G L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Buenos Aires, Argentina
| |
Collapse
|
8
|
Manesco C, Saavedra-Villanueva O, Martin M, de Lizaraga J, Varga B, Cloitre T, Gerber YN, Perrin FE, Gergely C. Organization of collagen fibers and tissue hardening: Markers of fibrotic scarring after spinal cord injury in mice revealed by multiphoton-atomic force microscopy imaging. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 53:102699. [PMID: 37572769 DOI: 10.1016/j.nano.2023.102699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 08/14/2023]
Abstract
Spinal cord injury is a dramatic disease leading to severe motor, sensitive and autonomic impairments. After injury the axonal regeneration is partly inhibited by the glial scar, acting as a physical and chemical barrier. The scarring process involves microglia, astrocytes and extracellular matrix components, such as collagen, constructing the fibrotic component of the scar. To investigate the role of collagen, we used a multimodal label-free imaging approach combining multiphoton and atomic force microscopy. The second harmonic generation signal exhibited by fibrillar collagen enabled to specifically monitor it as a biomarker of the lesion. An increase in collagen density and the formation of more tortuous fibers over time after injury are observed. Nano-mechanical investigations revealed a noticeable hardening of the injured area, correlated with collagen fibers' formation. These observations indicate the concomitance of important structural and mechanical modifications during the fibrotic scar evolution.
Collapse
Affiliation(s)
| | | | - Marta Martin
- L2C, Univ Montpellier, CNRS, Montpellier, France
| | | | - Béla Varga
- L2C, Univ Montpellier, CNRS, Montpellier, France
| | | | - Yannick Nicolas Gerber
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France; IUF, Intitut Universitaire de, France, Paris
| | | | | |
Collapse
|
9
|
Falcone C. Evolution of astrocytes: From invertebrates to vertebrates. Front Cell Dev Biol 2022; 10:931311. [PMID: 36046339 PMCID: PMC9423676 DOI: 10.3389/fcell.2022.931311] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
The central nervous system (CNS) shows incredible diversity across evolution at the anatomical, cellular, molecular, and functional levels. Over the past decades, neuronal cell number and heterogeneity, together with differences in the number and types of neuro-active substances, axonal conduction, velocity, and modes of synaptic transmission, have been rigorously investigated in comparative neuroscience studies. However, astrocytes, a specific type of glial cell in the CNS, play pivotal roles in regulating these features and thus are crucial for the brain's development and evolution. While special attention has been paid to mammalian astrocytes, we still do not have a clear definition of what an astrocyte is from a broader evolutionary perspective, and there are very few studies on astroglia-like structures across all vertebrates. Here, I elucidate what we know thus far about astrocytes and astrocyte-like cells across vertebrates. This information expands our understanding of how astrocytes evolved to become more complex and extremely specialized cells in mammals and how they are relevant to the structure and function of the vertebrate brain.
Collapse
Affiliation(s)
- Carmen Falcone
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
10
|
Xia M, Zhang Y, Wu H, Zhang Q, Liu Q, Li G, Zhao T, Liu X, Zheng S, Qian Z, Li H. Forsythoside B attenuates neuro-inflammation and neuronal apoptosis by inhibition of NF-κB and p38-MAPK signaling pathways through activating Nrf2 post spinal cord injury. Int Immunopharmacol 2022; 111:109120. [PMID: 35944463 DOI: 10.1016/j.intimp.2022.109120] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) is a ruinous neurological pathology that results in locomotor and sensory impairment. Neuro-inflammation and secondary neuronal apoptosis contribute to SCI, with anti-inflammatory therapies the focus of many SCI studies. Forsythoside B (FTS•B), a phenylethanoid glycoside extracted from the leaves of Lamiophlomis rotata Kudo, has been shown previously to have anti-inflammatory properties. Nevertheless, the therapeutic effect of FTS•B on neuro-inflammation after SCI is unknown. METHODS Neuro-inflammation was assessed by western blotting (WB), immunofluorescence (IF) staining, and enzyme-linked immunosorbent assay (ELISA) both in vitro and in vivo. Secondary neuronal apoptosis was simulated in a microglia-neuron co-culture model with the degree of apoptosis measured by WB, IF, and TUNEL staining. In vivo, FTS•B (10 mg/kg, 40 mg/kg) were intraperitoneally injected into SCI mice. Morphological changes following SCI were evaluated by Nissl, Hematoxylin-eosin, and Luxol Fast Blue staining. Basso Mouse Scale scores were used to evaluate locomotor function recovery. RESULTS FTS•B markedly decreased the levels of iNOS, COX-2 and signature mediators of inflammation. Phosphorylated p38 and nuclear factor-kappa B (NF-κB) were markedly decreased by FTS•B. Additionally, FTS•B-induced inhibition of NF-κB and p38-MAPK signaling pathways was reversed by Nrf2 downregulation. Administration of FTS•B also significantly reduced apoptosis-related protein levels indicating that FTS•B ameliorated secondary neuronal apoptosis. FTS•B administration inhibited glial scar formation, decreased neuronal death, tissue deficiency, alleviated demyelination, and promoted locomotor recovery. CONCLUSION FTS•B effectively attenuates neuro-inflammation and secondary neuronal apoptosis by inhibition of NF-κB and p38-MAPK signaling pathways through activating Nrf2 after SCI. This study demonstrates FTS•B to be a potential therapeutic for SCI.
Collapse
Affiliation(s)
- Mingjie Xia
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yanan Zhang
- Postgraduate School, Dalian Medical University, Dalian, China
| | - Honghui Wu
- Postgraduate School, Dalian Medical University, Dalian, China
| | - Qinyang Zhang
- Postgraduate School, Dalian Medical University, Dalian, China
| | - Qiangxian Liu
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guangshen Li
- School of Medicine, Nantong University, Nantong, China
| | - Tianyu Zhao
- Postgraduate School, Dalian Medical University, Dalian, China
| | - Xuepeng Liu
- School of Medicine, Nantong University, Nantong, China
| | - Shengnai Zheng
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Zhanyang Qian
- School of Medicine, Southeast University, Nanjing, China; Spine Center, Zhongda Hospital of Southeast University, Nanjing, China.
| | - Haijun Li
- Department of Orthopedics, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, China; Taizhou Clinical Medical School of Nanjing Medical University, Taizhou, China.
| |
Collapse
|
11
|
Poulen G, Bartolami S, Noristani HN, Perrin FE, Gerber YN. Unlike Brief Inhibition of Microglia Proliferation after Spinal Cord Injury, Long-Term Treatment Does Not Improve Motor Recovery. Brain Sci 2021; 11:brainsci11121643. [PMID: 34942945 PMCID: PMC8699766 DOI: 10.3390/brainsci11121643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/03/2023] Open
Abstract
Microglia are major players in scar formation after an injury to the spinal cord. Microglia proliferation, differentiation, and survival are regulated by the colony-stimulating factor 1 (CSF1). Complete microglia elimination using CSF1 receptor (CSF1R) inhibitors worsens motor function recovery after spinal injury (SCI). Conversely, a 1-week oral treatment with GW2580, a CSF1R inhibitor that only inhibits microglia proliferation, promotes motor recovery. Here, we investigate whether prolonged GW2580 treatment further increases beneficial effects on locomotion after SCI. We thus assessed the effect of a 6-week GW2580 oral treatment after lateral hemisection of the spinal cord on functional recovery and its outcome on tissue and cellular responses in adult mice. Long-term depletion of microglia proliferation after SCI failed to improve motor recovery and had no effect on tissue reorganization, as revealed by ex vivo diffusion-weighted magnetic resonance imaging. Six weeks after SCI, GW2580 treatment decreased microglial reactivity and increased astrocytic reactivity. We thus demonstrate that increasing the duration of GW2580 treatment is not beneficial for motor recovery after SCI.
Collapse
Affiliation(s)
- Gaëtan Poulen
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France; (G.P.); (S.B.); (H.N.N.); (F.E.P.)
- Department of Neurosurgery, Univ. Montpellier, CHU, Montpellier, France
| | - Sylvain Bartolami
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France; (G.P.); (S.B.); (H.N.N.); (F.E.P.)
| | - Harun N. Noristani
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France; (G.P.); (S.B.); (H.N.N.); (F.E.P.)
| | - Florence E. Perrin
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France; (G.P.); (S.B.); (H.N.N.); (F.E.P.)
- Institut Universitaire de France (IUF), France
| | - Yannick N. Gerber
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France; (G.P.); (S.B.); (H.N.N.); (F.E.P.)
- Correspondence: ; Tel.: +33-467143386
| |
Collapse
|